\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \usepackage{mathrsfs} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 118, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/118\hfil Strichartz estimates] {Strichartz estimates on $\alpha$-modulation spaces} \author[W. Guo, J. Chen \hfil EJDE-2013/118\hfilneg] {Weichao Guo, Jiecheng Chen} \address{Weichao Guo \newline Department of Mathematics, Zhejiang University, Hangzhou 310027, China} \email{maodunguo@163.com} \address{Jiecheng Chen \newline Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China} \email{jcchen@zjnu.edu.cn} \thanks{Submitted March 12, 2013. Published May 10, 2013.} \subjclass[2000]{42B37, 46E35, 35L05} \keywords{Strichartz estimate; Schr\"odinger equation; wave equation; \hfill\break\indent $\alpha$-modulation space} \begin{abstract} In this article, we consider some dispersive equations, including Schr\"odinger equations, nonelliptic Schr\"odinger equations, and wave equations. We develop some Strichartz estimates in the frame of $\alpha$-modulation spaces. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} We study the Cauchy problem for the Schr\"odinger type equation \begin{equation}\label{1.1} \begin{gathered} iu_t+(-\Delta)^{\beta/2}u=F \\ u(0,x)=u_{0}, \end{gathered} \end{equation} the Cauchy problem for nonelliptic Schr\"odinger equation \begin{equation}\label{1.2} \begin{gathered} iv_t+\psi(D)v=F \\ v(0,x)=v_{0} \end{gathered}, \end{equation} where $\psi(\xi)=\Sigma_{l=1}^{n}\pm|\xi_l|^{\beta}$, and the Cauchy problem for wave equation \begin{equation}\label{1.3} \begin{gathered} w_{tt}-\Delta w=F \\ w(0,x)=w_{0}, w_{t}(0,x)=w_{1}. \end{gathered} \end{equation} The initial data belongs to the $\alpha$-modulation space $M^{0,\alpha}_{2,1}$, and we use $F$ to denote some nonlinear terms. We recall Duhamel's formula for above three dispersive equations. The solution to \eqref{1.1} is \begin{equation} u(t,x)=e^{it(-\Delta)^{\beta/2}}u_0 -i\int_0^t e^{i(t-s)(-\Delta)^{\beta/2}}F(s)ds. \end{equation} The solution to \eqref{1.2} is \begin{equation} v(t,x)=e^{it\psi(D)}v_0-i\int_0^t e^{i(t-s)\psi(D)}F(s)ds. \end{equation} The solution to \eqref{1.3} is \begin{equation} w(t,x)=\cos(t\sqrt{-\Delta})w_0+\frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}w_1 +\int_0^t\frac{\sin((t-s)\sqrt{-\Delta})}{\sqrt{-\Delta}}F(s)ds. \end{equation} There are many publications about the theoretical and applied aspects of the Schr\"odinger equation and the wave equation; see for example Tao \cite{Tao_book} and Sogge \cite{Sogge_book} for a nice introduction. We refer the reader to \cite{AKKL_JFA_2007,AK_LMS_2009,Chen_Fan,Chen_Fan_Sun,RSW_2012, WH_JDE_2007,Wang_book,WZG_JFA_2006} for the study of modulation space and dispersive equation. In this paper, we are concerned mainly with the Strichartz estimates for the solutions of the above three equations. The original estimates are due to Strichartz \cite{Strichartz}, and they became fundamental and important tools in the study of dispersive equations. The theory of Strichartz estimates has also been studied by many authors. One is referred to \cite{GV1}, \cite{GV2} and \cite{KT_1998} for classical Strichartz estimates. We also refer the readers to \cite{Cordero_Zucco} and \cite{Z_NLA_2012} for the Strichartz estimates in the frame of Wiener amalgam spaces and modulation spaces. The following lemma is a basic Strchartz estimate, proved by Keel-Tao \cite{KT_1998}, that we will use it frequently in our proofs. \begin{definition}\label{def-adi}\rm An exponent pair $(r,p)$ is called $\sigma$-admissible if $r,p\geq 2$, $(r,p,n)\neq (2,\infty,2)$ and \begin{equation}\label{admissible pair} \frac{1}{r}+\frac{\sigma}{p}\leq \frac{\sigma}{2}\,. \end{equation} If the equality holds, we say that $(r,p)$ is sharp $\sigma$-admissible, otherwise we say that $(r,p)$ is nonsharp $\sigma$-admissible. If $\sigma>1$ we say the sharp $\sigma$-admissible pair \begin{equation} (2,\frac{2\sigma}{\sigma-1}) \end{equation} is an endpoint. \end{definition} Next we have the Strichartz estimates. \begin{lemma}[\cite{KT_1998}] \label{strichartz-estimates} Let $\{U(t)\}_{t\in \mathbb{R}}$ be a semigroup of operators that obey energy estimate \begin{equation} \|U(t)f\|_{L_x^2}\lesssim \|f\|_{L_x^2} \end{equation} and dispersive estimate \begin{equation} \|U(t)(U(s))^{*}g\|_{L_x^{\infty}}\lesssim |t-s|^{-\sigma}\|g\|_{L_x^1}. \end{equation} Then the estimates \begin{gather} \|U(t)f\|_{L_{t}^{r}L_x^p}\lesssim \|f\|_{L_x^2} , \\ \|\int_{\mathbb{R}}(U(s))^{*}F(s)ds\|_{L_x^2}\lesssim \|F\|_{L_{t}^{r'}L_x^{p'}} , \\ \|\int_{s0$ and $n-1-\frac{n}{p}-\frac{1}{r}-\frac{n}{\tilde{p}}-\frac{1}{\tilde{r}}>0$, then the solution of \eqref{1.3} satisfies \[ \|w\|_{l_{\Box^{\alpha}}^{s,q}(L_t^rL_x^p)} \lesssim\|w_0\|_{M_{2,q}^{s+\theta(r,p),\alpha}} +\|w_1\|_{M_{2,q}^{s+\theta(r,p)-1,\alpha}} +\|F\|_{l_{\Box^{\alpha}}^{s+\theta(r,p) +\theta(\tilde{r},\tilde{p})-1,q}(L_t^{\tilde{r}'}L_x^{\tilde{p}'})} \] where $\theta(r,p) =\alpha\frac{n}{n-1} (\frac{n-1}{2}-\frac{2}{r}-\frac{n-1}{p}) +\frac{n+1}{n-1}\frac{1}{r}$. More precisely, we have \begin{gather}\label{S-estimate3.1} \|\cos(t\sqrt{-\Delta})w_0\|_{l_{\Box^{\alpha}}^{s,q}(L_t^rL_x^p)} \lesssim \|w_0\|_{M_{2,q}^{s+\theta(r,p),\alpha}}, \\ \label{S-estimate3.2} \|\frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}w_1\|_{l_{\Box^{\alpha}}^{s,q} (L_t^rL_x^p)} \lesssim \|w_1\|_{M_{2,q}^{s+\theta(r,p)-1,\alpha}},\\ \label{S-estimate3.3} \|\int_{s2|x|$, we have \begin{equation} |x-k|\leq |x|+|k|\leq \frac{3}{2}|k|, \end{equation} then \begin{align*} |\langle x\rangle^{\alpha/(1-\alpha)} x-\langle k\rangle^{\alpha/(1-\alpha)} k| &\geq |\langle k\rangle^{\alpha/(1-\alpha)} k|-|\langle x\rangle^{\alpha/(1-\alpha)} x| \\ &\geq |\langle k\rangle^{\alpha/(1-\alpha)} k|-\frac{1}{2}|\langle k\rangle^{\alpha/(1-\alpha)} k| =\frac{1}{2}|\langle k\rangle^{\alpha/(1-\alpha)} k| \\ &\gtrsim \frac{1}{2}\cdot \frac{2}{3}|\langle k\rangle^{\alpha/(1-\alpha)}||x-k|=\frac{1}{3}|\langle k\rangle^{\alpha/(1-\alpha)}||x-k|. \end{align*} If $|k|\leq 2|x|$, then \begin{equation} \begin{split} |\langle x\rangle^{\alpha/(1-\alpha)} x-\langle k\rangle^{\alpha/(1-\alpha)} k| &\geq \min(\langle x\rangle^{\alpha/(1-\alpha)},\langle k\rangle^{\alpha/(1-\alpha)})|x-k| \\ &\geq \min(c_\alpha\langle k\rangle^{\alpha/(1-\alpha)},\langle k\rangle^{\alpha/(1-\alpha)})|x-k| \\ &\gtrsim \langle k\rangle^{\alpha/(1-\alpha)}|x-k|. \end{split} \end{equation} Similarly, for a fixed constant $G>0$, we can find a constant $c_2$ only depend on $G$, such that if $|x-k|2C$, thus \begin{equation} \operatorname{supp}\eta_k^\alpha \subset B(\langle k\rangle^{\alpha/(1-\alpha)}k,c_1\langle k\rangle^{\alpha/(1-\alpha)}R) \subset J_\alpha(B(k,R)). \end{equation} Similarly, we can choose $r$ small enough such that $rc_20$ and $n-1-\frac{n}{p}-\frac{1}{r}-\frac{n}{\tilde{p}}-\frac{1}{\tilde{r}}>0$, we can use $\Delta_j$ to cover $\Box_0^{\alpha}$ and get the estimates \eqref{S-estimate3.2.0} and \eqref{S-estimate3.3.0} for $k=0$. \begin{remark} \rm If we take $\alpha=0$ in Theorem $1.1-1.3$, we obtain the Strichartz estimates in the frame of modulation spaces. The Strichartz estimates of Schr\"odinger equation in the frame of $\alpha$ modulation spaces is the case that $\beta=2$. \end{remark} \subsection*{Acknowledgments} This work was supported by grant Y604563 from the NSFZJ of China, and grant 11271330 from the NSF of China. \begin{thebibliography}{99} \bibitem{AKKL_JFA_2007} A. Baenyi, K. Grochenig, K. A. Okoudjou, L. G. Rogers; \emph{Unimodular Fourier multiplier for modulation spaces}, J. Funct. Anal., 246 (2007), 366-384. \bibitem{AK_LMS_2009} A. Baenyi, K. A. Okoudjou; \emph{Local well-posedness of nonlinear dispersive equations on modulation spaces}, Bull. London Math. Soc., 41 (2009), 549-558. \bibitem{Chen_Fan} J. C. Chen, D. S. Fan; \emph{Estimates for wave and Klein-Gordon equations on modulation spaces}, Sci. China Math. 55 (2012) 2109-2123. \bibitem{Chen_Fan_Sun} J. C. Chen, D. S. Fan, L. J. Sun; \emph{Asymptotic estimates for unimodular Fourier multipliers on modulation spaces}. Discret Contin Dyn Syst, 2012, 32: 467-485. \bibitem{Cordero_Zucco} E. Cordero, D. Zucco; \emph{Strichartz Estimates for the Schr\"odinger Equation}, [J]. Cubo (Temuco), 2010, 12(3): 213-239. \bibitem{GV1} J. Ginibre, G. Velo; \emph{Smoothing properties and retarded estimates for some dispersive evolution equations}, Comm. Math. Phys. 123 (1989) 535-573. \bibitem{GV2} J. Ginibre, G. Velo; \emph{Generalized Stnchartz Inequalities for the Wave Equation}, Jour. Func. Anal., 133 (1995), 50-68. \bibitem{P_introduction} P. Gr\"obner; \emph{Banachr\"{a}ume Glatter Funktionen and Zerlegungsmethoden}, Doctoral thesis, University of Vienna, 1992. \bibitem{KT_1998} M. Keel, T. Tao; \emph{Endpoint Strichartz Estimates}, Amer. Math. J. 120 (1998), 955-980. \bibitem{RSW_2012} M. Ruzhansky, M. Sugimoto, B. X. Wang; \emph{Modulation spaces and nonlinear evolution equations}, Progress in Mathematics Volume 301, 2012, pp 267-283. \bibitem{Sogge_book} C. D. Sogge; \emph{Lectures on Nonlinear Wave Equations}, International Press, Cambridge, MA, 1995. \bibitem{Stein} E. M. Stein; \emph{Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals}, Princeton, NJ Princeton University Press, 1993. \bibitem{Strichartz} R. S. Strichartz; \emph{Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations}, Duke Math. J. 44 (1977) 705-714. \bibitem{Tao_book} T. Tao; \emph{Nonlinear Dispersive Equations: Local and Global Analysis}, CBMS Regional Conference Series in Mathematics 106. \bibitem{Tribel_1983} H. Triebel; \emph{Theory of Function Spaces}, Birkhauser-Verlag, Basel, 1983. \bibitem{WH_JDE_2007} B.X. Wang, H. Hudzik; \emph{The global Cauchy problem for the NLS and NLKG with small rough data}, J. Differential Equations, 232, 36-73, 2007. \bibitem{Wang_book} B. X. Wang, Z. H. Huo, C. C. Hao, Z. H. Guo; \emph{Harmonic Analysis Method for Nonlinear Evolution Equations I}. Hackensack, NJ: World Scientfic, 2011. \bibitem{WZG_JFA_2006} B. X. Wang, L. F. Zhao, B. L. Guo; \emph{Isometric decomposition operators, function spaces $E^{\lambda}_{p,q}$ and applications to nonlinear evolution equations}, J. Funct. Anal. 233 (1) (2006) 1-39. \bibitem{Wang_Han} J. S. Wang, B. X. Wang; \emph{$\alpha$-Modulation Spaces (I) Scaling}, Embedding and Algebraic Properties, arXiv:1108.0460. \bibitem{Z_NLA_2012} C.J. Zhang; \emph{Strichartz estimates in the frame of modulation spaces}, [J]. Nonlinear Analysis, 2012. \end{thebibliography} \end{document}