\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 125, pp. 1--16.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/125\hfil Multiple solutions] {Existence of multiple solutions for a mixed boundary-value problem} \author[S. Heidarkhani, G. A. Afrouzi, A. Hadjian \hfil EJDE-2013/125\hfilneg] {Shapour Heidarkhani, Ghasem Alizadeh Afrouzi, Armin Hadjian} % in alphabetical order \address{Shapour Heidarkhani \newline Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran; \newline School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran} \email{s.heidarkhani@razi.ac.ir} \address{Ghasem Alizadeh Afrouzi \newline Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran} \email{afrouzi@umz.ac.ir} \address{Armin Hadjian \newline Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran} \email{a.hadjian@umz.ac.ir} \thanks{Submitted October 31, 2012. Published May 21, 2013.} \subjclass[2000]{34B15, 35B38, 58E05} \keywords{Mixed boundary value problem; critical points; variational methods} \begin{abstract} Using three critical points theorems, we prove the existence of at least three solutions for a second-order mixed boundary-value problem. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} In this article, we show the existence of at least three weak solutions for the mixed boundary-value problem \begin{equation}\label{e1.1} \begin{gathered} -(p u')'+q u=\lambda f(x,u)+g(u)\quad \text{in } (0,1),\\ u(0)=0,\quad u'(1)=0, \end{gathered} \end{equation} where $p,q\in L^\infty([0,1])$ are such that $$ p_0:=\operatorname{ess\,inf}_{x\in [0,1]}p(x)>0,\quad q_0:=\operatorname{ess\,inf}_{x\in [0,1]}q(x)\geq 0, $$ $\lambda$ is a positive parameter, $f:[0,1]\times\mathbb{R}\to\mathbb{R}$ is an $L^1$-Carath\'{e}odory function and $g:\mathbb{R}\to\mathbb{R}$ is a Lipschitz continuous function with Lipschitz constant $L>0$; i.e., $$ |g(t_1)-g(t_2)|\leq L|t_1-t_2| $$ for every $t_1,t_2\in\mathbb{R}$, and $g(0)=0$. Motivated by the fact that such problems are used to describe a large class of physical phenomena, many authors looked for existence and multiplicity of solutions for second-order ordinary differential nonlinear equations, with mixed conditions at the ends. For an overview on this subject, we cite the papers \cite{AveBuccTor, AveSa, AveGiovTorn, BonaTor, DHM, Sa}. For instance, in \cite{BonaTor}, Bonanno and Tornatore, using Ricceri's Variational Principle \cite{Ricceri1}, established the existence of infinitely many weak solutions for the mixed boundary-value problem \begin{gather*} -(p u')'+q u=\lambda f(x,u)\quad \text{in } (a,b),\\ u(a)=u'(b)=0, \end{gather*} where $p,q\in L^\infty([a,b])$ such that $$ p_0:=\operatorname{ess\,inf}_{x\in [a,b]}p(x)>0,\quad q_0:=\operatorname{ess\,inf}_{x\in [a,b]}q(x)\geq 0, $$ $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ is a Carath\'{e}odory function and $\lambda$ is a positive real parameter. We also refer the reader to \cite{HeiMot} which, by means of an abstract critical point result of Ricceri \cite{Ricceri2}, shows the existence of at least three solutions for the two-point boundary-value problem \begin{gather*} u''+(\lambda f(t,u)+g(u))h(t,u')=\mu p(t,u)h(t,u')\quad \text{ in } (a,b),\\ u(a)=u(b)=0, \end{gather*} where $\lambda$ and $\mu$ are positive parameters, $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ is continuous, $g:\mathbb{R}\to\mathbb{R}$ is Lipschitz continuous with $g(0)=0$, $h:[a,b]\times\mathbb{R}\to\mathbb{R}$ is bounded, continuous, with $m:=\inf h>0$, and $p:[a,b]\times\mathbb{R}\to\mathbb{R}$ is $L^1$-Carath\'{e}odory function. The goal of the present paper is to establish some new criteria for \eqref{e1.1} to have at least three weak solutions (Theorems \ref{the3.1}-\ref{the3.3}). Our analysis is mainly based on three recent critical point theorems that are contained in Theorems \ref{the2.1}-\ref{the2.3} below. In fact, employing rather different three critical points theorems, under different assumptions on the nonlinear term $f$, we obtain the exact collections of $\lambda$ for whihc \eqref{e1.1} admits at least three weak solutions in the space $\{u\in W^{1,2}([0,1]) : u(0)=0\}$. A special case of our main results is the following theorem. \begin{theorem}\label{the1.1} Let $p,q\in L^\infty([a,b])$ such that $$ p_0:=\operatorname{ess\,inf}_{x\in [a,b]}p(x)>0,\quad q_0:=\operatorname{ess\,inf}_{x\in [a,b]}q(x)\geq 0, $$ $g:\mathbb{R}\to\mathbb{R}$ be a Lipschitz continuous function with the Lipschitz constant $L>0$ and $g(0)=0$ such that $L0$ for some $d>0$ and $F(\xi)\geq 0$ in $[0,d]$ and $$ \liminf_{\xi\to 0}\frac{F(\xi)}{\xi^{2}}=0,\quad \limsup_{|\xi|\to +\infty}\frac{F(\xi)}{\xi^{2}}=0. $$ Then, there is $\lambda^*>0$ such that for each $\lambda>\lambda^*$ the problem \begin{gather*} -(p u')'+q u=\lambda f(u)+g(u)\quad \text{in } (0,1),\\ u(0)=0,\quad u'(1)=0, \end{gather*} admits at least three weak solutions. \end{theorem} \section{Preliminaries} First we here recall for the reader's convenience our main tools to prove the results; in the first one and the second one the coercivity of the functional $\Phi-\lambda\Psi$ is required, while in the third one a suitable sign hypothesis is assumed. The first result has been obtained in \cite{Bonanno}, the second one in \cite{BM} and the third one in \cite{AveBona2}. We recall the third as given in \cite{BonaCan}. \begin{theorem}[{\cite[Theorem 3.1]{Bonanno}}]\label{the2.1} Let $X$ be a separable and reflexive real Banach space, $\Phi:X\to\mathbb{R}$ a nonnegative continuously G\^{a}teaux differentiable and sequentially weakly lower semicontinuous functional whose G\^{a}teaux derivative admits a continuous inverse on $X^{*}$, $\Psi:X\to\mathbb{R}$ a continuously G\^{a}teaux differentiable functional whose G\^{a}teaux derivative is compact. Assume that there exists $x_0\in X$ such that $\Phi(x_0)=\Psi(x_0)=0$ and that $$ \lim_{\|x\|\to+\infty}(\Phi(x)-\lambda\Psi(x))=+\infty\quad \text{for all }\lambda\in[0,+\infty[. $$ Further, assume that there are $r>0$, $x_1\in X$ such that $r<\Phi(x_1)$ and $$ \sup_{x\in\overline{\Phi^{-1}(]-\infty,r[)}^{w}}\Psi(x) <\frac{r}{r+\Phi(x_1)}\Psi(x_1); $$ here $\overline{\Phi^{-1}(]-\infty,r[)}^{w}$ denotes the closure of $\Phi^{-1}(]-\infty,r[)$ in the weak topology. Then, for each $$ \lambda\in \Lambda_1:=\Big] \frac{\Phi(x_1)}{\Psi(x_1)-\sup_{x\in\overline{\Phi^{-1}(]-\infty,r[)}^{w}}\Psi(x)}, \frac{r}{\sup_{x\in\overline{\Phi^{-1}(]-\infty,r[)}^{w}}\Psi(x)}\Big[, $$ the equation \begin{equation}\label{e2.1} \Phi'(u)-\lambda \Psi'(u)=0 \end{equation} has at least three solutions in $X$ and, moreover, for each $h>1$, there exist an open interval $$ \Lambda_2\subseteq\Big[0,\frac{hr}{r\frac{\Psi(x_1)}{\Phi(x_1)} -\sup_{x\in\overline{\Phi^{-1}(-\infty,r[)}^{w}}\Psi(x)}\Big] $$ and a positive real number $\sigma$ such that, for each $\lambda\in\Lambda_2$, equation \eqref{e2.1} has at least three solutions in $X$ whose norms are less than $\sigma$. \end{theorem} \begin{theorem}\cite[Theorem 3.6]{BM}\label{the2.2} Let $X$ be a reflexive real Banach space, let $ \Phi:X \to \mathbb{R}$ be a sequentially weakly lower semicontinuous, coercive and continuously G\^{a}teaux differentiable whose G\^{a}teaux derivative admits a continuous inverse on $X^*$, and let $\Psi:X\to \mathbb{R}$ be a sequentially weakly upper semicontinuous and continuously G\^{a}teaux differentiable functional whose G\^{a}teaux derivative is compact. Assume that there exist $r\in \mathbb{R}$ and $u_1\in X$ with $00$ and for every $u_1,\ u_2$ which are local minima for the functional $\Phi-\lambda\Psi$ and such that $\Psi(u_1)\geq 0$ and $\Psi(u_2)\geq 0$, one has $$ \inf_{s\in[0,1]}\Psi(su_1+(1-s)u_2)\geq 0. $$ \end{enumerate} Assume that there are two positive constants $r_1,r_2$ and $\overline{v}\in X$, with $2r_1<\Phi(\overline{v})<\frac{r_2}{2}$, such that \begin{itemize} \item[(B1)] $\frac{\sup_{u\in\Phi^{-1}(]-\infty,r_1[)}\Psi(u)}{r_1}< \frac{2\Psi(\overline{v})}{3\Phi(\overline{v})}$; \item[(B2)] $\frac{\sup_{u\in\Phi^{-1}(]-\infty,r_2[)}\Psi(u)}{r_2}< \frac{1}{3}\frac{\Psi(\overline{v})}{\Phi(\overline{v})}$. \end{itemize} Then, for each $\lambda$ in \[ \Big]\frac{3}{2}\frac{\Phi(\overline{v})}{\Psi(\overline{v})}, \min\{ \frac{r_1}{\sup_{u\in\Phi^{-1}(]-\infty,r_1[)}\Psi(u)}, \frac{\frac{r_2}{2}}{\sup_{u\in\Phi^{-1}(]-\infty,r_2[)}\Psi(u)}\}\Big[\,, \] the functional $\Phi-\lambda \Psi$ has at least three distinct critical points which lie in $\Phi^{-1}(]-\infty,r_2[)$. \end{theorem} Let $f:[0,1]\times\mathbb{R}\to\mathbb{R}$ be an $L^1$-Carath\'{e}odory function and $g:\mathbb{R}\to\mathbb{R}$ be a Lipschitz continuous function with the Lipschitz constant $L>0,$ i.e., $$ |g(t_1)-g(t_2)| \leq L|t_1-t_2| $$ for every $t_1,t_2\in\mathbb{R}$, and $g(0)=0$. Put $$ F(x,t):=\int_0^t f(x,\xi)d\xi,\quad G(t):=-\int_0^t g(\xi)d\xi $$ for all $x\in [0,1]$ and $t\in\mathbb{R}$. Denote $$ X:=\big\{u\in W^{1,2}([0,1]) : u(0)=0\big\}; $$ the usual norm in $X$ is defined by $$ \|u\|_X:=\Big(\int_0^1 (u(x))^2dx+\int_0^1 (u'(x))^2dx\Big)^{1/2}. $$ For every $u,v\in X$, we define \begin{equation}\label{e2.2} (u,v):=\int_0^1 p(x)u'(x)v'(x)dx+\int_0^1 q(x)u(x)v(x)dx. \end{equation} Clearly, \eqref{e2.2} defines an inner product on $X$ whose corresponding norm is $$ \|u\|:=\Big(\int_0^1 p(x)(u'(x))^2dx+\int_0^1 q(x)(u(x))^2dx\Big)^{1/2}. $$ Then, it is easy to see that the norm $\|\cdot\|$ on $X$ is equivalent to $\|\cdot\|_X$. In the following, we will use $\|\cdot\|$ instead of $\|\cdot\|_X$. Note that $X$ is a separable and reflexive real Banach space. We say that a function $u\in X$ is a \textit{weak solution} of problem \eqref{e1.1} if \begin{align*} &\int_0^1 p(x)u'(x)v'(x)dx+\int_0^1 q(x)u(x)v(x)dx\\ &-\lambda\int_0^1 f(x,u(x))v(x)dx-\int_0^1 g(u(x))v(x)dx=0 \end{align*} for all $v\in X$. By standard regularity results, if $f$ is a continuous function, $p\in C^1([0,1])$ and $q\in C^0([0,1])$, then weak solutions of the problem \eqref{e1.1} belong to $C^2([0,1])$, thus they are classical solutions. It is well known that $(X,\|\cdot\|)$ is compactly embedded in $(C^0([0,1]),\|\cdot\|_\infty)$ and \begin{equation}\label{e2.3} \|u\|_\infty \leq \frac{1}{\sqrt{p_0}}\|u\| \end{equation} for all $u\in X$ (see, e.g., \cite{Talenti}). Also, we use the following notation: $$ \|p\|_\infty:=\operatorname{ess\,sup}_{x\in [0,1]}p(x),\quad \|q\|_\infty:=\operatorname{ess\,sup}_{x\in [0,1]}q(x). $$ Suppose that the Lipschitz constant $L>0$ of the function $g$ satisfies $L\frac{2p_0\,r}{p_0-L};$ \item[(A2)] $\int_0^1\sup_{|t|\leq\sqrt{\frac{2r}{p_0-L}}}F(x,t)dx 1$, there exist an open interval $$ \Lambda_2\subseteq\Big[0,\frac{hr}{\frac{2p_0\,r}{(p_0+L)\|w\|^2}\int_0^1 F(x,w(x))dx-\int_0^1\sup_{|t|\leq\sqrt{\frac{2r}{p_0-L}}}F(x,t)dx}\Big] $$ and a positive real number $\sigma$ such that, for each $\lambda\in\Lambda_2$, the problem \eqref{e1.1} admits at least three weak solutions in $X$ whose norms are less than $\sigma$. \end{theorem} \begin{theorem}\label{the3.2} Assume that there exist a function $w\in X$ and a positive constant $r$ such that \begin{itemize} \item[(B1)] $\|w\|^2>\frac{2p_0\,r}{p_0-L}$; \item[(B2)] $\frac{\int_0^1\sup_{|t|\leq\sqrt{\frac{2r}{p_0-L}}}F(x,t)dx}{r} <\frac{2p_0}{p_0+L}\frac{\int_0^1 F(x,w(x))dx}{\|w\|^2}$; \item[(B3)] $ \frac{2}{p_0-L}\limsup_{|t|\to +\infty }\frac{F(x,t)}{t^2}<\frac{\int_0^1\sup_{|t| \leq\sqrt{\frac{2r}{p_0-L}}}F(x,t)dx}{r}$. \end{itemize} Then, for each $$ \lambda\in\Big]\frac{p_0+L}{2p_0}\frac{\|w\|^2}{\int_0^1 F(x,w(x))dx},\ \frac{r}{\int_0^1\sup_{|t|\leq\sqrt{\frac{2r}{p_0-L}}} F(x,t)dx}\Big[, $$ problem \eqref{e1.1} admits at least three weak solutions. \end{theorem} \begin{theorem}\label{the3.3} Suppose that $f:[0,1]\times \mathbb{R}\to \mathbb{R}$ satisfies the condition $f(x,t)\geq 0$ for all $x\in [0,1]$ and $t\in\mathbb{R}$. Assume that there exist a function $w\in X$ and two positive constants $r_1$ and $r_2$ with $\frac{4p_0\,r_1}{p_0-L}<\|w\|^2<\frac{p_0\,r_2}{p_0+L}$ such that \begin{itemize} \item[(C1)] \[ \frac{\int_0^1\sup_{|t|\leq\sqrt{\frac{2r_1}{p_0-L}}} F(x,t) dx }{r_1}<\frac{4p_0}{3(p_0+L)}\frac{\int_0^1 F(x,w(x))dx} {\|w\|^2}; \] \item[(C2)] \[ \frac{\int_0^1\sup_{|t|\leq\sqrt{\frac{2r_2}{p_0-L}}} F(x,t) dx }{r_2}<\frac{2p_0}{3(p_0+L)}\frac{\int_0^1 F(x,w(x))dx} {\|w\|^2}. \] \end{itemize} Then, for each $$ \lambda\in\Big]\frac{3(p_0+L)}{4p_0}\frac{\|w\|^2}{\int_{0}^1F(x,w(x))dx},\ \Theta_1\Big[, $$ where $$ \Theta_1:=\min\Big\{\frac{r_1}{\int_0^1\sup_{|t|\leq\sqrt{\frac{2r}{p_0-L}}} F(x,t)dx},\frac{\frac{r_2}{2}}{\int_0^1 \sup_{|t|\leq\sqrt{\frac{2r}{p_0-L}}}F(x,t)dx}\Big\}, $$ problem \eqref{e1.1} admits at least three nonnegative weak solutions $v^1,v^2,v^3$ such that $$ |v^{j}(x)|<\sqrt{\frac{2r_2}{p_0-L}} $$ for each $x\in [0,1]$ and $j=1,2,3$. \end{theorem} Let us give particular consequences of Theorems \ref{the3.1}-\ref{the3.3} for a fixed test function $w$. \begin{corollary}\label{cor3.4} Assume that there exist a positive function $a\in L^1$ and three positive constants $c$, $d$ and $\gamma$ with $c<\sqrt{2}d$ and $\gamma<2$ such that Assumption {\rm (A3)} in Theorem \ref{the3.1} holds. Furthermore, suppose that \begin{itemize} \item[(A4)] $F(x,t)\geq 0$ for all $(x,t)\in [0,\frac{1}{2}]\times[0,d]$; \item[(A5)] $\int_0^1\sup_{t\in [-c,c]}F(x,t)dx <(k\tau c^2) \frac{\int_{1/2}^{1}F(x,d)dx}{k\tau c^2+d^2}$. \end{itemize} Then, for each $\lambda$ in $$ \Lambda'_1:=\Big] \frac{\frac{p_0+L}{2k}d^2}{\int_{1/2}^{1}F(x,d)dx -\int_0^1\sup_{t\in[-c,c]}F(x,t)dx}, \frac{(p_0-L)c^2}{2\int_0^1\sup_{t\in [-c,c]}F(x,t)dx}\Big[, $$ problem \eqref{e1.1} admits at least three weak solutions in $X$ and, moreover, for each $h>1$, there exist an open interval $$ \Lambda'_2\subseteq\Big[0,\frac{(p_0-L)h c^2/2}{\frac{2k\tau c^2}{d^2}\int_{1/2}^{1}F(x,d)dx-\int_0^1\sup_{t\in [-c,c]}F(x,t)dx}\Big] $$ and a positive real number $\sigma$ such that, for each $\lambda\in\Lambda'_2$, problem \eqref{e1.1} admits at least three weak solutions in $X$ whose norms are less than $\sigma$. \end{corollary} \begin{proof} We claim that all the assumptions of Theorem \ref{the3.1} are fulfilled with $w$ given by \begin{equation}\label{e3.1} w(x):=\begin{cases} 2 d^2 x, & x\in [0,1/2[,\\ d, & x\in [1/2,1]. \end{cases} \end{equation} and $r:=(p_0-L)c^2/2$. It is easy to verify that $w\in X$ and, in particular, one has $$ 2p_0 d^2\leq\|w\|^2\leq\frac{p_0 d^2}{k}. $$ Hence, taking into account that $c<\sqrt{2}d$, we have $$ \|w\|^2>\frac{2p_0\,r}{p_0-L}. $$ Thus, (A1) holds. Since $0\leq w(x)\leq d$ for each $x\in[0,1]$, the condition (A4) ensures that $$ \int_{0}^{1/2}F(x,w(x))dx\geq 0, $$ so from (A5), \begin{align*} \int_0^1\sup_{t\in [-c,c]}F(x,t)dx &<(k\tau c^2) \frac{\int_{1/2}^{1}F(x,d)dx}{k\tau c^2+d^2}\\ &=\frac{(p_0-L)kc^2}{(p_0-L)kc^2+(p_0+L)d^2}\int_{1/2}^{1}F(x,d)dx\\ &=\frac{(p_0-L)c^2}{2}\frac{\int_{1/2}^{1}F(x,d)dx}{\frac{(p_0-L)c^2}{2}+\frac{(p_0+L)d^2}{2k}}\\ &\leq r\frac{\int_{ 0}^1F(x,w(x))dx}{r+\frac{p_0+L}{2p_0}\|w\|^2}, \end{align*} and thus (A2) holds. Next notice that \begin{align*} &\frac{\frac{p_0+L}{2p_0}\|w\|^2}{\int_0^1 F(x,w(x))dx-\int_0^1\sup_{|t|\leq\sqrt{\frac{2r}{p_0-L}}}F(x,t)dx}\\ &\leq\frac{\frac{p_0+L}{2k}d^2}{\int_{1/2}^{1}F(x,d)dx-\int_{0}^1\sup_{t\in[-c,c]}F(x,t)dx} \end{align*} and $$ \frac{r}{\int_0^1\sup_{|t|\leq\sqrt{\frac{2r}{p_0-L}}}F(x,t)dx} =\frac{(p_0-L)c^2}{2\int_{0}^1 \sup_{t\in[-c,c]}F(x,t)dx}. $$ In addition note \begin{align*} &\frac{\frac{p_0+L}{2k}d^2}{\int_{1/2}^{1}F(x,d)dx-\int_{0}^1\sup_{t\in[-c,c]}F(x,t)dx}\\ &<\frac{\frac{p_0+L}{2k}d^2}{\Big{(}\frac{\frac{(p_0-L)c^2}{2}+ \frac{(p_0+L)d^2}{2k}}{\frac{(p_0-L)c^2}{2}}-1\Big{)} \int_0^1\sup_{t\in[-c,c]}F(x,t)dx}\\ &=\frac{(p_0-L)c^2}{2\int_{0}^1 \sup_{t\in[-c,c]}F(x,t)dx}. \end{align*} Finally note that \begin{align*} &\frac{hr}{\frac{2p_0\,r}{(p_0+L)\|w\|^2}\int_0^1 F(x,w(x))dx-\int_0^1\sup_{|t|\leq\sqrt{\frac{2r}{p_0-L}}}F(x,t)dx}\\ &\leq\frac{(p_0-L)h c^2/2}{\frac{2k\tau c^2}{d^2}\int_{1/2}^{1}F(x,d)dx-\int_0^1\sup_{t\in [-c,c]}F(x,t)dx}, \end{align*} and taking into account that $\Lambda'_1\subseteq \Lambda_1$ and $\Lambda_2\subseteq \Lambda'_2$, we have the desired conclusion directly from Theorem \ref{the3.1}. \end{proof} \begin{corollary}\label{cor3.5} Assume that there exist two positive constants $c$ and $d$ with $c\lambda^*:= \frac{(p_0+L)d^2}{kF(d)}$ for some $d>0$. Since $$ \liminf_{\xi\to 0}\frac{F(\xi)}{\xi^{2}}=0, $$ there is $\{c_m\}_{m\in \mathbb{N}}\subseteq ]0,+\infty[$ such that $\lim_{m\to +\infty} c_{m}=0$ and $$ \lim_{m\to +\infty}\frac{\sup_{|\xi| \leq c_{m}}F(\xi)}{c_m}=0. $$ In fact, one has $$ \displaystyle \lim _{m\to +\infty}\frac{\sup_{|\xi| \leq c_{m}}F(\xi)}{c_m}=\lim_{m\to +\infty}\frac{F(\xi_{c_m})}{\xi_{c_m}^{2}}. \frac{\xi_{c_m}^{2}}{c_m}=0, $$ where $F(\xi_{c_m})=\sup_{|\xi|\leq c_m}F(\xi)$. Hence, there is $\overline{c}>0$ such that $$ \frac{\sup_{|\xi| \leq\overline{c}}F(\xi)}{\overline{c}^{2}} <\min\Big\{\frac{k\tau F(d)}{2d^{2}};\ \frac{p_0-L}{2\lambda}\Big\} $$ and $\overline{c}0$ and $g(0)=0$, $\bar{p}\in C^1([0,1]),\,\bar{q},\bar{r}\in C^0([0,1])$ and $\lambda$ is a positive parameter. Moreover, $\bar{p}$ is nonnegative and $R$ is a primitive of $\bar{r}/\bar{p}$. If fact, since the solutions of problem \eqref{e3.3} are solutions of the problem \begin{gather*} -(e^{-R}\bar{p} u')'+e^{-R}\bar{q}u=\Big{(}\lambda f(x,u) +g(u)\Big{)}e^{-R}\quad \text{in } (0,1),\\ u(0)=0,\quad u'(1)=0, \end{gather*} assuming the Lipschitz constant $L>0$ of the function $g$ satisfies \[ L<\min_{x\in [0,1]}e^{-R(x)}\bar{p}(x), \] and setting $$ k':=\frac{3\min_{x\in [0,1]}e^{-R(x)}\bar{p}(x)}{6\|e^{-R}\bar{p}\|_\infty+2\|e^{-R}\bar{q}\|_\infty}, \quad \tau':=\frac{\min_{x\in [0,1]}e^{-R(x)}\bar{p}(x)-L}{\min_{x\in [0,1]}e^{-R(x)}\bar{p}(x)+L}, $$ under the assumptions of Corollary \ref{cor3.4} but with (A5) replaced by the assumption $$ \int_0^1\sup_{t\in [-c,c]}e^{-R(x)}F(x,t)dx<(k'\tau' c^2) \frac{\int_{1/2}^{1}e^{-R(x)}F(x,d)dx}{k'\tau' c^2+d^2}, $$ by the same reasoning as in the proof of Corollary \ref{cor3.4}, using Theorem \ref{the3.1}, for each $\lambda$ in \begin{align*} \Lambda''_1:=\Big]&\frac{\frac{\min_{x\in [0,1]}e^{-R(x)}\bar{p}(x)+L}{2k'}d^2}{\int_{1/2}^{1}e^{-R(x)}F(x,d)dx-\int_0^1\sup_{t\in[-c,c]}e^{-R(x)}F(x,t)dx},\\ &\frac{(\min_{x\in [0,1]}e^{-R(x)}\bar{p}(x)-L)c^2}{2\int_0^1\sup_{t\in [-c,c]}e^{-R(x)}F(x,t)dx}\Big[, \end{align*} problem \eqref{e3.3} admits at least three classical solutions in $X$; moreover, for each $h>1$, there exist an open interval $$ \Lambda''_2\subseteq\Big[0,\frac{(\min_{x\in [0,1]}e^{-R(x)}\bar{p}(x)-L)h c^2/2}{\frac{2k'\tau' c^2}{d^2}\int_{1/2}^{1}e^{-R(x)}F(x,d)dx-\int_0^1\sup_{t\in [-c,c]}e^{-R(x)}F(x,t)dx}\Big] $$ and a positive real number $\sigma$ such that, for each $\lambda\in\Lambda''_2$, problem \eqref{e3.3} admits at least three classical solutions in $X$ whose norms are less than $\sigma$. Moreover, under the assumptions of Corollary \ref{cor3.5}, but replacing Assumptions (B4) and (B5) by the assumptions $$ \int_0^1\sup_{t\in [-c,c]}e^{-R(x)}F(x,t)dx <\frac{k'\tau' c^2}{d^2}\int_{1/2}^{1}e^{-R(x)}F(x,d)dx $$ and $$ \limsup_{|t|\to+\infty}\frac{e^{-R(x)}F(x,t)}{t^2} <\frac{\int_0^1\sup_{t\in [-c,c]}e^{-R(x)}F(x,t)dx}{c^2}, $$ respectively, by the same reasoning as given in the proof of Corollary \ref{cor3.5}, using Theorem \ref{the3.2}, for each $\lambda$ in $$ \Big]\frac{\min_{x\in [0,1]}e^{-R(x)}\bar{p}(x)+L}{2k'} \frac{d^2}{\int_{1/2}^{1}e^{-R(x)}F(x,d)dx},\frac{(\min_{x\in [0,1]}e^{-R(x)}\bar{p}(x)-L)c^2}{2\int_0^1\sup_{t\in [-c,c]}e^{-R(x)}F(x,t)dx}\Big[, $$ problem \eqref{e3.3} admits at least three classical solutions. Also, under the assumptions of Corollary \ref{cor3.6}, but replacing the condition $\sqrt{\frac{2}{k\tau}}dr$. From the definition of $\Phi$ and by using \eqref{e4.1} we have \begin{align*} \Phi^{-1}(]-\infty,r[) &=\Big\{u\in X : \Phi(u)\Big(\frac{2p_0r}{(p_0+L)\|w\|^2}-\frac{r}{r+\frac{p_0+L}{2p_0}\|w\|^2}\Big)\int_0^1 F(x,w(x))dx\\ &\geq\Big(\frac{2p_0r}{(p_0+L)\|w\|^2}-\frac{2p_0r}{(p_0+L)\|w\|^2} \Big)\int_0^1 F(x,w(x))dx=0, \end{align*} since $\int_0^1 F(x,w(x))dx\geq 0$ (note $F(x,0)=0$ so $\int_{0}^1\sup_{|t|\leq\sqrt{\frac{2r}{p_0-L}}}F(x,t)dx\geq 0$ and now apply (A2)). Now with $x_0=0$ and $x_1=w$ from Theorem \ref{the2.1} (note $\Psi(0)=0$) it follows that, for each $\lambda\in\Lambda_1$, the problem \eqref{e1.1} admits at least three weak solutions and there exist an open interval $\Lambda_2\subseteq[0,\rho]$ and a real positive number $\sigma$ such that, for each $\lambda\in\Lambda_2$, the problem \eqref{e1.1} admits at least three weak solutions whose norms in $X$ are less than $\sigma$. Thus, the conclusion is achieved. \end{proof} \begin{proof}[Proof of Theorem \ref{the3.2}] To apply Theorem \ref{the2.2} to our problem, we take the functionals $\Phi,\Psi:X\to\mathbb{R}$ as given in the proof of Theorem \ref{the3.1}. Let us prove that the functionals $\Phi$ and $\Psi$ satisfy the conditions required in Theorem \ref{the2.2}. The regularity assumptions on $\Phi$ and $\Psi$, as requested in Theorem \ref{the2.2} hold. According to (B1) we deduce $\Phi(w)>r$. From the definition of $\Phi$ we have $$ \Phi^{-1}(]-\infty,r[)\subseteq \Big\{u\in X : |u(x)|<\sqrt{\frac{2r}{p_0-L}}\quad \text{for all } x\in [0,1]\Big\}, $$ and it follows that $$ \sup_{u\in\Phi^{-1}(]-\infty,r[)}\Psi(u)\leq\int_0^1 \sup_{|t|\leq\sqrt{\frac{2r}{p_0-L}}}F(x,t)dx. $$ Therefore, due to assumption (B2), we have \begin{align*} \frac{\sup_{u\in\Phi^{-1}(]-\infty,r[)}\Psi(u)}{r} &\leq \frac{\int_{0}^1 \sup_{|t|\leq\sqrt{\frac{2r}{p_0-L}}}F(x,t)dx}{r}\\ &<\frac{2p_0}{p_0+L}\frac{\int_0^1 F(x,w(x))dx}{\|w\|^2}\\ &\leq\frac{\Psi(w)}{\Phi(w)}. \end{align*} Furthermore, from (B3) there exist two constants $\eta, \vartheta\in \mathbb{R}$ with $$ \eta<\frac{\int_{0}^1 \sup_{|t|\leq\sqrt{\frac{2r}{p_0-L}}}F(x,t)dx}{r} $$ such that $$ \frac{2}{p_0-L}F(x,t)\leq \eta t^2+\vartheta $$ for all $x\in [0,1]$ and all $t\in \mathbb{R}$. Fix $u\in X$. Then \begin{equation}\label{e4.3} F(x,u(x))\leq \frac{p_0-L}{2}(\eta |u(x)|^2+\vartheta) \end{equation} for all $x\in [0,1]$. Now, to prove the coercivity of the functional $\Phi-\lambda\Psi$, first we assume that $\eta>0$. So, for any fixed $$ \lambda\in\Big]\frac{p_0+L}{2p_0}\frac{\|w\|^2}{\int_0^1 F(x,w(x))dx},\ \frac{r}{\int_0^1\sup_{|t|\leq\sqrt{\frac{2r}{p_0-L}}} F(x,t)dx}\Big[, $$ using \eqref{e4.3}, we have \begin{align*} \Phi(u)-\lambda \Psi(u) &=\frac{1}{2}\|u\|^2+\int_0^1 G(u(x))dx-\lambda\int^1_0 F(x,u(x))dx\\ &\geq \frac{p_0-L}{2p_0}\|u\|^2-\frac{\lambda(p_0-L)}{2}\Big(\eta \int_0^1|u(x)|^2dx+\vartheta\Big)\\ &\geq \frac{p_0-L}{2p_0}\Big{(}1-\eta\frac{r}{\int_{0}^1 \sup_{|t|\leq\sqrt{\frac{2r}{p_0-L}}}F(x,t)dx}\Big{)}\|u\|^2 -\frac{\lambda(p_0-L)}{2}\vartheta, \end{align*} and thus $$ \lim_{\|u\|\to+\infty}(\Phi(u)-\lambda\Psi(u))=+\infty. $$ On the other hand, if $\eta\leq 0$, clearly we obtain $\lim_{\|u\|\to+\infty}(\Phi(u)-\lambda \Psi(u))=+\infty$. Both cases lead to the coercivity of functional $\Phi-\lambda \Psi$. So, the assumptions (A1) and (A2) in Theorem \ref{the2.2} are satisfied. Hence, by using Theorem \ref{the2.2}, the problem \eqref{e1.1} admits at least three distinct weak solutions in $X$. \end{proof} \begin{proof}[Proof of Theorem \ref{the3.3}] Let $\Phi$ and $\Psi$ be as in the proof of Theorem \ref{the3.1}. Let us apply Theorem \ref{the2.3} to our functionals. Obviously, $\Phi$ and $\Psi$ satisfy the condition (1) of Theorem \ref{the2.3}. Now, we show that the functional $\Phi-\lambda\Psi$ satisfies the assumption (2) of Theorem \ref{the2.3}. Let $u^\ast$ and $u^{\ast\ast}$ be two local minima for $\Phi-\lambda\Psi$. Then $u^\ast$ and $u^{\ast\ast}$ are critical points for $\Phi-\lambda\Psi$, and so, they are weak solutions for the problem \eqref{e1.1}, and in particular they are nonnegative. Indeed, by the similar reasoning as given in \cite[Theorem 3.1]{DHM}, let $u_0$ be a weak solution of the problem \eqref{e1.1}. Arguing by a contradiction, assume that the set $A=\big\{x \in ]0,1] : u_0(x)<0\big\}$ is nonempty and of positive measure. Put $\bar v(x)=\min\{0, u_0(x)\}$ for all $x \in [0,1]$. % Clearly, $\bar v\in X$ and, taking into account that $u_0$ is a weak solution and by choosing $v=\bar v $, one has \begin{align*} &\int_0^1 p(x)u'_0(x)\bar v'(x)dx +\int_0^1 q(x)u_0(x)\bar v(x)dx \\ &- \lambda\int_0^1 f(x,u_{0}(x))\bar v(x)dx-\int_0^1 g(u_{0}(x))\bar v(x)dx =0\,. \end{align*} Thus, from our sign assumptions on the data, we have $$ \int_A p(x)|u'_0(x)|^2dx+\int_A q(x)|u_0(x)|^2dx-\int_A g(u_0(x))u_0(x)dx\leq 0\,. $$ On the other hand, \begin{align*} &\frac{p_0-L(m(A))^2}{p_0}\|u_0\|_{W^{1,2}(A)}^2\\ &\leq\int_A p(x)|u'_0(x)|^2dx+\int_A q(x)|u_0(x)|^2dx -\int_A g(u_0(x))u_0(x)dx, \end{align*} where $m(A)$ is the Lebesgue measure of the set $A$. Hence, $u_0\equiv0$ on $A$ which is absurd. Then, $u^{\ast}(x)\geq 0$ and $u^{\ast\ast}(x)\geq 0$ for every $x\in [0,1]$. Thus, it follows that $su^{\ast}+(1-s)u^{\ast\ast}\geq 0$ for all $s\in [0,1]$, and that $$ f(x,su^{\ast}+(1-s)u^{\ast\ast})\geq 0, $$ and consequently, $\Psi(su^{\ast}+(1-s)u^{\ast\ast})\geq 0$, for every $s\in [0,1]$. Moreover, from the condition $\frac{4p_0\,r_1}{p_0-L}<\|w\|^2<\frac{p_0\,r_2}{p_0+L}$, we observe $2r_1<\Phi(w)<\frac{r_2}{2}$. From the definition of $\Phi$ we have $$ \Phi^{-1}(]-\infty,r[)\subseteq \Big\{u\in X : |u(x)|<\sqrt{\frac{2r}{p_0-L}}\quad \text{for all } x\in [0,1]\Big\}, $$ and it follows that $$ \sup_{u\in\Phi^{-1}(]-\infty,r[)}\Psi(u)\leq\int_0^1 \sup_{|t|\leq\sqrt{\frac{2r}{p_0-L}}}F(x,t)dx. $$ Therefore, due to the assumption (C1), we infer that \begin{align*} \frac{\sup_{u\in\Phi^{-1}(]-\infty,r_1[)}\Psi(u)}{r_1} &\leq \frac{\int_{0}^1 \sup_{|t|\leq\sqrt{\frac{2r_1}{p_0-L}}}F(x,t)dx}{r_1}\\ &<\frac{4p_0}{3(p_0+L)}\frac{\int_0^1 F(x,w(x))dx}{\|w\|^2}\\ &\leq\frac{2}{3}\frac{\Psi(w)}{\Phi(w)}. \end{align*} As above, from assumption (C2), we deduce that \begin{align*} \frac{\sup_{u\in\Phi^{-1}(]-\infty,r_2[)}\Psi(u)}{r_2} &\leq \frac{\int_0^1 \sup_{|t|\leq\sqrt{\frac{2r_2}{p_0-L}}}F(x,t)dx}{r_2}\\ &<\frac{2p_0}{3(p_0+L)}\frac{\int_0^1 F(x,w(x))dx}{\|w\|^2}\\ &\leq\frac{1}{3}\frac{\Psi(w)}{\Phi(w)}. \end{align*} So, the assumptions (B1) and (B2) in Theorem \ref{the2.3} are satisfied. Hence, by using Theorem \ref{the2.3}, the problem \eqref{e1.1} admits at least three distinct weak solutions in $X$. This completes the proof. \end{proof} \subsection*{Acknowledgments} The authors express their sincere gratitude to the referees for reading this paper and specially for their valuable suggestions leading to improvements. The research of Shapour Heidarkhani was partially supported by grant 91470046 from IPM. \begin{thebibliography}{99} \bibitem{AveBona1} D. Averna, G. Bonanno; \emph{A three critical points theorem and its applications to the ordinary Dirichlet problem}, Topol. Methods Nonlinear Anal., \textbf{22} (2003), 93-103. \bibitem{AveBona2} D. Averna, G. Bonanno; \emph{A mountain pass theorem for a suitable class of functions}, Rocky Mountain J. Math., \textbf{39} (2009), 707-727. \bibitem{AveBuccTor} D. Averna, S. M. Buccellato, E. Tornatore; \emph{On a mixed boundary value problem involving the $p$-Laplacian,} Matematiche (Catania), \textbf{66} (2011), 93-104. \bibitem{AveSa} D. Averna, R. Salvati; \emph{Three solutions for a mixed boundary value problem involving the one-dimensional $p$-laplacian}, J. Math. Anal. Appl., \textbf{298} (2004), 245-260. \bibitem{AveGiovTorn} D. Averna, N. Giovannelli, E. Tornatore; \emph{Existence of three solutions for a mixed boundary value problem with the Sturm-Liouville equation}, Bull. Korean Math. Soc., \textbf{49} (2012), No. 6, 1213-1222. \bibitem{Bonanno} G. Bonanno; \emph{A critical points theorem and nonlinear differential problems}, J. Global Optim., \textbf{28} (2004), 249-258. \bibitem{BonaCan} G. Bonanno, P. Candito; \emph{Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities}, J. Differential Equations, \textbf{244} (2008), 3031-3059. \bibitem{BM} G. Bonanno, S. A. Marano; \emph{On the structure of the critical set of non-differentiable functionals with a weak compactness condition}, Appl. Anal., 89 (2010), 1-10. \bibitem{BonaTor} G. Bonanno, E. Tornatore; \emph{Infinitely many solutions for a mixed boundary value problem}, Ann. Polon. Math., \textbf{99} (2010), 285-293. \bibitem{DHM} G. D'Agu\`{i}, S. Heidarkhani, G. Molica Bisci; \emph{Multiple solutions for a perturbed mixed boundary value problem involving the one-dimensional $p$-Laplacian}, Electron. J. Qual. Theory Diff. Eqns., (EJQTDE), to appear. \bibitem{Hei} S. Heidarkhani; \emph{Existence of solutions for a two-point boundary-value problem of a fourth-order Sturm-Liouville type}, Electron. J. Differential Equations, Vol. \textbf{2012} (2012), No. 84, 1-15. \bibitem{HeiMot} S. Heidarkhani, D. Motreanu; \emph{Multiplicity results for a two-point boundary value problem}, Panamer. Math. J., \textbf{19} (2009), 69-78. \bibitem{Ricceri1} B. Ricceri; \emph{A general variational principle and some of its applications}, J. Comput. Appl. Math., \textbf{113} (2000), 401-410. \bibitem{Ricceri2} B. Ricceri; \emph{A three critical points theorem revisited}, Nonlinear Anal., \textbf{70} (2009), 3084-3089. \bibitem{Sa} R. Salvati; \emph{Multiple solutions for a mixed boundary value problem}, Math. Sci. Res. J., \textbf{7} (2003), 275-283. \bibitem{Talenti} G. Talenti; \emph{Some inequalities of Sobolev type on two-dimensional spheres}, In: W. Walter (eds.), General Inequalities, vol. 5, In: Internat. Ser. Numer. Math. Birkh\"{a}user, Basel, \textbf{80} (1987), 401-408. \bibitem{Zeidler} E. Zeidler; \emph{Nonlinear Functional Analysis and its Applications}, vol. II/B, Springer-Verlag, Berlin-Heidelberg-New York, 1985. \end{thebibliography} \end{document}