\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 126, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/126\hfil Existence of solutions] {Existence of solutions to second-order boundary-value problems with small perturbations of impulses} \author[G. Bonanno, B. Di Bella, J. Henderson \hfil EJDE-2013/126\hfilneg] {Gabriele Bonanno, Beatrice Di Bella, Johnny Henderson} % in alphabetical order \address{Gabriele Bonanno \newline Department of Civil, Information Technology, Construction, Environmental Engineering and Applied Mathematics, University of Messina, 98166 - Messina, Italy} \email{bonanno@unime.it} \address{Beatrice Di Bella \newline Department of Mathematics and Computer Science, University of Messina, 98166 - Messina, Italy} \email{bdibella@unime.it} \address{Johnny Henderson \newline Department of Mathematics, Baylor University, Waco, TX 76798-7328, USA} \email{Johnny\_Henderson@baylor.edu} \thanks{Submitted April 4, 2013. Published May 21, 2013.} \subjclass[2000]{34B37, 34B15, 58E05} \keywords{Dirichlet boundary condition; impulsive effects; variational methods; \hfill\break\indent critical points} \begin{abstract} In this article we study second-order impulsive differential equations with Dirichlet boundary conditions, depending on two real parameters. We show that an appropriate growth condition of the nonlinear term, under small perturbations of impulsive terms, ensures the existence of three solutions. The approach is based on variational methods. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Impulsive differential equations are recognized as adequate models to study the evolution of processes that are subject to sudden changes in their states. Processes with such a character arise naturally and often, especially in engineering and physics. In fact, it is known that many biological phenomena involving thresholds, optimal control models in economics, pharmacokinetics and frequency modulated systems, do exhibit impulse effects. For this reason, the theory of impulsive differential equations has become an important area of investigation in recent years. For an introduction of the basic theory of impulsive differential equations in $\mathbb{R}^n$, see \cite{LAS} and \cite{BHN}. Some classical tools have been used to study such problems in the literature, such as the coincidence degree theory of Mawhin, the method of upper and lower solutions with the monotone iterative technique, and some fixed point theorems in cones (see \cite{Chen,Quian,Mawhin}). Recently, some researchers have begun to study the existence of solutions for impulsive boundary value problems by using variational methods (see for instance \cite{Nieto}--\cite{Wang1}). In this article we consider the nonlinear Dirichlet boundary-value problem \begin{equation} \label{eq:impuls} \begin{gathered} -u''(t)+a(t)u'(t)+b(t)u(t)=\lambda g(t,u(t)) \quad t\in [0,T],\; t\not= t_j\\ u(0)=u(T)=0\\ \Delta u'(t_j)=u'(t^+_j)-u'(t^-_j)=\mu I_j(u(t_j)),\quad j=1,2,\dots,n \end{gathered} \end{equation} where $\lambda \in ]0,+\infty[$, $\mu \in ]0,+\infty[$, $g:[0,T]\times \mathbb{R} \to \mathbb{R}$, $a,b \in L^{\infty}([0,T])$ satisfy the conditions $\operatorname{ess\,inf}_{t \in[0,T]} a(t)\geq 0$, $\operatorname{ess\,inf}_{t \in[0,T]}b(t) \geq 0$, $0=t_0 \frac{(12+T^2)e^{2T}}{2T(e^{T}-1)(e^{3T/4}-e^{T/4})}\inf_{d >0} \frac{d^2}{\int_0^dg(x)\,dx} \] and for every negative continuous function $I_j : \mathbb{R} \to \mathbb{R}$, $j=1,\dots,n$, there exists $\delta^*>0$ such that, for each $\mu \in ]0,\delta^*[$, the problem \begin{equation}\label{eq:impuls0} \begin{gathered} -u''(t)+u'(t)+u(t)=\lambda g(u(t)) \quad t\in [0,T],\; t\not= t_j\\ u(0)=u(T)=0\\ \Delta u'(t_j)=u'(t^+_j)-u'(t^-_j)=\mu I_j(u(t_j)),\quad j=1,2,\dots,n \end{gathered} \end{equation} has at least three non-zero solutions. \end{theorem} We wish to stress that in many papers, as for instance in \cite{ZhangDai,ZouLi,LiuChen}, under assumptions similar to those of our results, the authors ensure the existence of at least only one solution for \eqref{eq:impuls} and, moreover, do not give an estimate of $\lambda$ and $\mu$ and an explicit upper bound, uniformly with respect to parameters, of the solutions. The remainder of the paper is organized as follows. In Section 2, some preliminary results will be given. In Section 3, we will state and prove the main results of the paper, as well as give some applications to \eqref{eq:impuls}. \section{Preliminaries} We consider the following problem, which is slightly different form \eqref{eq:impuls}, \begin{equation}\label{eq:impuls1} \begin{gathered} -(p(t)u'(t))'+q(t)u(t)=\lambda f(t,u(t)) \quad t\in [0,T],\; t\not= t_j\\ u(0)=u(T)=0\\ \Delta u'(t_j)=u'(t^+_j)-u'(t^-_j)=\mu I_j(u(t_j)),\quad j=1,2,\dots,n \end{gathered} \end{equation} where $p \in C^1([0,T],[0,+\infty[)$, $q \in L^{\infty}([0,T])$ with $\operatorname{ess\,inf}_{t \in[0,T]} q(t) \geq 0$. It is easy to see that the solutions of \eqref{eq:impuls1} are solutions of \eqref{eq:impuls} if $$ p(t)=e^{-\int_0^t a(\tau)\,d\tau}, \quad q(t)=b(t)e^{-\int_0^t a(\tau)\,d\tau}, \quad f(t,u)=g(t,u)e^{-\int_0^t a(\tau)\,d\tau} \,. $$ Let us introduce some notation. In the Sobolev space $H^1_0(0,T)$, consider the inner product $$ (u,v)=\int_0^T p(t)u'(t)v'(t)\,dt+\int_0^T q(t)u(t)v(t)\,dt \,, $$ which induces the norm $$ \|u\|=\Big(\int_0^T p(t)(u'(t))^2\,dt +\int_0^T q(t)(u(t))^2\,dt\Big)^{1/2}. $$ Let us recall the Poincar\`e type inequality \begin{equation} \Big[\int_0^Tu^2(t)\,dt \Big]^{1/2}\leq \frac{T}{\pi} \Big[\int_0^T(u')^2(t)\,dt \Big]^{1/2}. \label{eq:poin} \end{equation} \begin{proposition} \label{propos:ineq} Let $u \in H^1_0(0,T)$. Then \begin{equation} \|u\|_{\infty }\leq \frac{1}{2}\sqrt{\frac{T}{p^*}}\|u\| \label{eq:poinc} \end{equation} where $p^*:= \min_{t \in [0,T]}p(t)$ \end{proposition} \begin{proof} In view of H\"older's inequality one has $$ \|u\|_{\infty }\leq \frac{\sqrt T}{2}\|u'\|_{L^2([0,T])} \leq \frac{1}{2}\sqrt{\frac{T}{p^*}}\|u\| \,. $$ \end{proof} Here and in the sequel $f : [0, T]\times \mathbb{R} \to \mathbb{R}$ is an $L^1$-Carath\'eodory function, namely: \begin{itemize} \item[(F1)] \begin{itemize} \item[(a)] $t \to f(t,x)$ is measurable for every $x \in\mathbb{R}$; \item[(b)] $x \to f(t,x)$ is continuous for almost every $t \in [0,T]$; \item[(c)] for every $\rho >0$ there exists a function $l_\rho \in L^1([0,T])$ such that $$ \sup_{|x|\leq \rho}|f(t,x)|\leq l_{\rho}(t) $$ for almost every $t \in [0,T]$; \end{itemize} \end{itemize} \begin{definition} \label{def2.1}\rm A function $u \in H^1_0(0,T)$ is said to be a weak solution of \eqref{eq:impuls1}, if $u$ satisfies \begin{equation}\label{eq:debole} \begin{aligned} &\int_0^T p(t)u'(t)v'(t) \, dt +\int_0^Tq(t)u(t)v(t) dt \\ &-\lambda\int_0^Tf(t,u(t))v(t)\,dt+\mu\sum_{j=1}^n p(t_j)I_j(u(t_j))v(t_j)=0, \end{aligned} \end{equation} for any $v\in H^1_0(0,T)$. \end{definition} \begin{lemma} \label{lem2.1} $u \in H^1_0(0,T)$ is a weak solution of \eqref{eq:impuls1} if and only if $u$ is a classical solution of \eqref{eq:impuls1}. \end{lemma} \begin{proof} Let $u \in H^1_0(0,T)$ be a weak solution of \eqref{eq:impuls1}. Then \eqref{eq:debole} holds for any $v\in H^1_0(0,T)$. Fix $j \in \{0,1,2,\dots,n\}$ and let $\bar{v} \in H^1_0(0,T)$ such that $\bar{v}(t)=0$ for all $t \in [0,t_j]\cup[t_{j+1},T]$. Thus by \eqref{eq:debole} we obtain $$ \int_{t_j}^{t_{j+1}}[-(p(t)u'(t))'\bar{v}(t)+q(t)u(t)\bar{v}(t)]\,dt -\lambda\int_{t_j}^{t_{j+1}}f(t,u(t))\bar{v}(t)\,dt=0 \,. $$ This implies that $$ -(p(t)u'(t))'+q(t)u(t)=\lambda f(t,u(t)) $$ for almost every $t \in [t_j,t_{j+1}]$. Hence, $u \in H^2(t_j,t_{j+1})$ and satisfies the equation \begin{equation} -(pu')'+qu=\lambda f(t,u) \quad \text{almost every } t \in [0,T] \label{eq:sol}\,. \end{equation} Now multiplying by $v \in H^1_0(0,T)$ and integrating on $[0,T]$, we obtain that $$ -\sum_{j=1}^n \Delta u'(t_j)p(t_j)v(t_j)+\int_0^T\left[-(p(t)u'(t))'+q(t)u(t) -\lambda f(t,u(t))\right]v(t)\,dt=0 \,. $$ Taking again \eqref{eq:debole} into account, we obtain $$ \sum_{j=1}^n \Delta u'(t_j)p(t_j)v(t_j)=\mu\sum_{j=1}^nI_j(u(t_j))p(t_j)v(t_j) \,. $$ Hence $\Delta u'(t_j)=\mu I_j(u(t_j)$, for every $j=1,2,\dots,n$, and the impulsive condition in \eqref{eq:impuls1} is satisfied. \end{proof} Now, we define the functionals $\Phi, \Psi: H^1_0(0,T) \to \mathbb{R}$ by \begin{equation} \Phi(u)=\frac{1}{2}\|u\|^2\quad \Psi(u)=\int_{0}^T F(t,u(t))\,dt-\frac{\mu}{\lambda} \sum_{j=1}^n p(t_j)\int_0^{u(t_j)}I_j(x)\,dx, \label{eq:def} \end{equation} for each $u \in H^1_0(0,T)$, where $F(t,\xi)=\int_0^{\xi}f(t,x)\,dx$ for each $(t,\xi) \in [0,T]\times \mathbb{R}$. Using the property of $f$ and the continuity of $I_j$, $j=1,2,\dots,n$, we have that $\Phi, \Psi\,\in C^1(H^1_0(0,T),\mathbb{R})$ and for any $v\in H^1_0(0,T)$, we have $$ \Phi'(u)(v)=\int_0^T p(t)u'(t)v'(t)\,dt + \int_0^T q(t)u(t)v(t)\,dt $$ and $$ \Psi'(u)(v)=\int_0^Tf(t,u(t))v(t)\,dt -\frac{\mu}{\lambda}\sum_{j=1}^n p(t_j)I_j(u(t_j))v(t_j). $$ So, arguing in a standard way, it is possible to prove that the critical points of the functional $E_{\lambda,\mu}(u):=\Phi(u)-\lambda \Psi(u)$ are the weak solutions of problem \eqref{eq:impuls1} and so they are classical. We now state two critical point theorems which are the main tools for the proofs of our results. The following statement comes easily by the results contained in \cite{BONMAR} and in \cite{BONCAND}. \begin{theorem}[{\cite[Theorem 2.6]{BONMAR}}] \label{teo:bon} Let $X$ be a reflexive real Banach space; $\Phi:X \to \mathbb{R}$ be a sequentially weakly lower semicontinuous, coercive and continuously G\^ateaux differentiable functional whose G\^ateaux derivative admits a continuous inverse on $X^*$, $\Psi:X \to \mathbb{R}$ be a sequentially weakly upper semicontinuous, continuously G\^ateaux differentiable functional whose G\^ateaux derivative is compact, such that $$ \Phi(0)= \Psi(0)=0 \,. $$ Assume that there exist $r >0$ and $\bar{x}\in X$, with $r<\Phi(\bar{x})$ such that \begin{itemize} \item [(i)] $\sup_{\Phi(x)\leq r}\Psi(x) 0$ and $\bar{x}\in X$, with $2r_1<\Phi(\bar{x})<\frac{r_2}{2}$, such that \begin{itemize} \item[(j)] $\frac{\sup_{\Phi(x)\leq r_1}\Psi(x)}{r_1}<\frac{2}{3}\frac{\Psi(\bar{x})}{\Phi(\bar{x})}$, \item[(jj)] $\frac{\sup_{\Phi(x)\leq r_2}\Psi(x)}{r_2}<\frac{1}{3}\frac{\Psi(\bar{x})}{\Phi(\bar{x})}$, \item[(jjj)] for each $\lambda$ in \[ \Lambda_{r_1,r_2}^* :=\Bigl] \frac{3}{2}\frac{\Phi(\bar{x})}{\Psi(\bar{x})}, \min\big\{\frac{r_1}{\sup_{\Phi(x)\leq r_1}\Psi(x)}, \frac{r_2}{2\sup_{\Phi(x)\leq r_2}\Psi(x)}\big\}\Bigr[ \] and for every $x_1,x_2 \in X$, which are local minima for the functional $\Phi-\lambda \Psi$, and such that $\Psi(x_1)\geq 0$ and $\Psi(x_2)\geq 0$, one has $\inf_{t \in [0,1]}\Psi(tx_1+(1-t)x_2) \geq 0$. \end{itemize} Then, for each $\lambda \in \Lambda_{r_1,r_2}^*$ the functional $\Phi-\lambda \Psi$ has at least three distinct critical points which lie in $\Phi^{-1}(]-\infty, r_2[)$. \end{theorem} \section{Main results} First, we give the following lemma which we will use in the proof of our main result. \begin{lemma}\label{stime} Assume that \begin{itemize} \item [(H1)] there exist constants $\alpha,\beta>0$ and $\sigma\in [0,1[$ such that $$ |I_j(x)|\leq \alpha+\beta|x|^{\sigma} \quad \text{for all } x \in \mathbb{R}, \; j=1,2,\dots,n\,. $$ \end{itemize} Then, for any $u \in H^1_0(0,T)$, one has \begin{equation} \label{dis7} \big| \sum_{j=1}^n p(t_j)\int_0^{u(t_j)}I_j(x)\,dx \big| \le \sum_{j=1}^n p(t_j) \Big( \alpha \|u\|_{\infty} + \frac{\beta}{\sigma+1} \|u\|_{\infty}^{\sigma+1}\Big). \end{equation} \end{lemma} \begin{proof} Thanks to condition (H1), one has $$ \big|\int_0^{u(t_j)}I_j(x)\,dx \big| \leq \alpha|u(t_j)|+\frac{\beta}{\sigma +1}|u(t_j)|^{\sigma +1}. $$ Thus, \eqref{dis7} is obtained. \end{proof} \begin{remark} \label{rmk3.1} \rm It is easy to verify that the condition \begin{itemize} \item[(H1')] There exist constants $\gamma_j,\beta_j>0$ and $\sigma_j\in [0,1[$ , ($j=1,2,\dots,n$), such that $$ |I_j(x)|\leq \gamma_j+\beta_j|x|^{\sigma_j} \quad \text{for all } x \in \mathbb{R}, \; j=1,2,\dots,n\,. $$ \end{itemize} is equivalent to (H1). In fact, it is sufficient to put $\beta:= \max_{1\leq j\leq n} \beta_j$, $\gamma:= \max_{1\leq j\leq n} \gamma_j$, $\alpha=\gamma+ \beta$ and $\sigma:= \max_{1\leq j\leq n} \sigma_j$. \end{remark} Now, put \[ \tilde p:=\sum_{j=1}^n p(t_j),\quad k:=\frac{6p^*}{12\|p\|_{\infty}+T^2\|q\|_{\infty}},\quad \Gamma_c:=\frac{\alpha}{c}+ \big(\frac{\beta}{\sigma+1}\big)c^{\sigma-1}, \] where $\alpha$, $\beta$, $\sigma$ are given by $\rm(h_1)$ and $c$ is a positive constant. \begin{theorem} \label{thm1} Suppose that {\rm (F1), (H1)} are satisfied. Furthermore, assume that there exist two positive constants $c,d$, with $c0$. Now, fix $\lambda$ and $\mu$ as in the conclusion. Our aim is to apply Theorem \ref{teo:bon}. For this end, take $X= H^1_0(0,T)$ and $\Phi, \Psi$ as in \eqref{eq:def}. Put $r=2c^2p^*/T$. Taking \eqref{eq:poinc} into account, for every $u \in X$ such that $\Phi(u)\leq r$, one has $\max_{t \in [0,T]}|u(t)| \leq c$. Consequently, from Lemma \ref{stime} it follows that $$ \sup_{\Phi(u)\leq r}\Psi(u)\leq\int_0^T\max_{|\xi|\leq c}F(t,\xi)\,dt +\frac{\mu}{\lambda} \tilde p \Big(\alpha c +\frac{\beta}{\sigma+1}c^{\sigma+1}\Big); $$ that is, $$ \frac{\sup_{\Phi(u)\leq r}\Psi(u)}{r}\leq \frac{T}{2p^*} \Big[\frac{\int_0^T\max_{|\xi|\leq c}F(t,\xi)\,dt}{c^2} +\frac{\mu}{\lambda} \tilde p \Gamma_c \Big]\,. $$ Hence, bearing in mind that $\mu < \delta$, one has \begin{equation} \frac{\sup_{\Phi(u)\leq r}\Psi(u)}{r}<\frac{1}{\lambda}\,. \label{eq:1} \end{equation} Put $$ \bar{v}(t)= \begin{cases} \frac{4d}{T}t, & t\in[0,T/4],\\ d, & t\in ]T/4,3T/4], \\ \frac{4d}{T}(T-t), & t\in ]3T/4,T]. \end{cases} $$ Clearly $\bar v \in X$. Moreover, one has \begin{equation} \label{dis9} \frac{8p^*}{T}d^2\le\|\bar v\|^2 \leq \frac{2d^2(12\|p\|_{\infty}+T^2\|q\|_{\infty})}{3T} =\frac{4d^2p^*}{kT}. \end{equation} So, from $c<\sqrt{2} d$ we obtain $r<\Phi(\bar{v})$. Moreover, again from the previous inequality, we have $$ \Phi(\bar{v}) <\frac{2p^*d^2}{kT}. $$ Now, due to Lemma \ref{stime}, (A1), \eqref{eq:poinc} and \eqref{dis9} one has \begin{align*} \Psi(\bar{v}) &\geq \int_{T/4}^{3T/4}F(t,d)\,dt -\frac{\mu}{\lambda} \tilde p \Big( \alpha \|\bar v\|_{\infty} + \frac{\beta}{\sigma+1} \|\bar v\|_{\infty}^{\sigma+1}\Big)\\ &\ge\int_{T/4}^{3T/4}F(t,d)\,dt-\frac{\mu}{\lambda} \frac{\tilde p \,d^2}{k}\Gamma_{(d /\sqrt k)}. \end{align*} So, we obtain $$ \frac{\Psi(\bar v)}{\Phi(\bar v)} \geq \frac{kT\int_{T/4}^{3T/4}F(t,d) \,dt -\frac{\mu}{\lambda}\tilde p T d^2 \Gamma_{(d /\sqrt k)}}{2p^* d^2}. $$ Since $\mu < \delta$, one has \begin{equation} \frac{\Psi(\bar v)}{\Phi(\bar v)}>\frac{1}{\lambda} \label{eq:2} \,. \end{equation} Therefore, from \eqref{eq:1} and \eqref{eq:2}, condition (i) of Theorem \ref{teo:bon} is fulfilled. Now, to prove the coercivity of the functional $\Phi -\lambda \Psi$, due to (A3), we have \[ \limsup_{|\xi|\to +\infty} \frac{\sup_{t \in [0,T]}F(t,\xi)}{\xi^2} <\big(\frac{\pi^2 p^*}{2T^2}\big)\frac{1}{\lambda}. \] So, we can fix $\varepsilon >0$ satisfying $$ \limsup_{|\xi|\to +\infty} \frac{\sup_{t \in [0,T]}F(t,\xi)}{\xi^2} <\varepsilon <\big(\frac{\pi^2 p^*}{2T^2}\big)\frac{1}{\lambda}\,. $$ Then, there exists a positive constant $h$ such that $$ F(t,\xi)\leq \varepsilon |\xi|^{2}+h \quad \forall t \in [0,T], \; \forall \xi \in \mathbb{R} \,. $$ Taking into account Lemma \ref{stime}, Proposition \ref{propos:ineq} and \eqref{eq:poin}, it follows that \begin{align*} &\Phi(u)-\lambda \Psi(u)\\ &\geq \frac{1}{2}\|u\|^2 -\lambda \varepsilon\|u\|^2_{L^2[0,T]}-\lambda hT -\mu \tilde p\Big[\alpha \frac{1}{2}\sqrt{\frac{T}{p^*}}\|u\| + \frac{\beta}{\sigma+1} \Big(\frac{1}{2}\sqrt{\frac{T}{p^*}}\Big)^{\sigma+1} \|u\|^{\sigma+1}\Big]\\ &\geq \Big(\frac{1}{2}-\lambda \varepsilon\frac{T^2}{\pi^2 p^*}\Big)\|u\|^2 -\lambda hT -\mu \tilde p\Big[\alpha \frac{1}{2}\sqrt{\frac{T}{p^*}}\|u\| + \frac{\beta}{\sigma+1} \Big(\frac{1}{2}\sqrt{\frac{T}{p^*}}\Big)^{\sigma+1} \|u\|^{\sigma+1}\Big], \end{align*} for all $u \in H^1_0(0,T)$. So, the functional $\Phi -\lambda \Psi$ is coercive. Now, the conclusion of Theorem \ref{teo:bon} can be used. It follows that, for every \[ \lambda \in \Big]\frac{2k }{T}\frac{d^2}{\int_{T/4}^{3T/4}F(t,d)\,dt}, \frac{2}{T}\frac{c^2}{\int_0^1\max_{|\xi|\leq c}F(t,\xi)\,dt}\Big[ \,, \] the functional $\Phi-\lambda \Psi$ has at least three distinct critical points in $X$, which are the weak solutions of the problem \eqref{eq:impuls1}. This completes the proof. \end{proof} \begin{corollary} \label{cor1} Suppose that {\rm (H1)} holds. Let $h \in L^1([0,T])$ be a nonnegative and non-zero function and let $g:\mathbb{R} \to \mathbb{R}$ be a continuous function. Put $h_0:=\int_{T/4}^{3T/4}h(t)dt$ and $G(\xi)=\int_{0}^{\xi}g(x)dx$ for all $\xi \in \mathbb{R}$, and assume that there exist two positive constants $c,d$, with $c0 \,. $$ Our other main result is as follows. \begin{theorem} \label{thm2} Suppose that {\rm (F1)} is satisfied. Furthermore, assume that there exist three positive constants $c_1,c_2,d$, with $c_1\lambda_1$, put $G(\xi)=\int_0^{\xi} g(x)\,dx$ for all $\xi \in \mathbb{R}$, and let $d>0$ such that $G(d)>0$ and $$ \lambda >\frac{(12+T^2)e^{2T}}{2T(e^{T}-1)(e^{3T/4}-e^{T/4})}\frac{d^2}{G(d)}. $$ From \eqref{eq:0} there is $c_1>0$ such that $c_10$ such that \[ d<\sqrt{\frac{3e^{-T}}{12+T^2}}c_2,\quad \frac{G(c_2)}{c_2^2}<\frac{1}{T(e^{T}-1)\lambda}. \] Therefore, Theorem \ref{thm5} ensures the conclusion. \end{proof} Finally, we give two applications of the results above. \begin{example}\label{esempio1}\rm The problem \begin{equation} \begin{gathered} -u''(t)+(\frac{t}{\pi}-1)^2u(t)=\lambda u^2(3-4u)\sin t \quad \text{a.e. in } [0,\pi]\\ u(0)=u(\pi)=0\\ \Delta u'(t_1)=u'(t^+_1)-u'(t^-_1)=\mu (1-\sqrt[3]{u(t_1)}) \end{gathered} \end{equation} admits at least three non-trivial solutions for each $\lambda \in [7,20]$ and for each $0< \mu<\frac{1}{38 \pi}(1-\frac{63\lambda \pi}{4096})$. Indeed, it is sufficient to apply Theorem \ref{thm1} by choosing, for instance, $c=1/64$ and $d=1/2$. \end{example} We remark that although \cite[Theorem 3.2]{ZouLi} can be applied, it guarantees the existence of at least one solution, only. Our results go further than \cite[Theorem 1]{Dai}, we have precise values of the parameter $\lambda$ for which the problem admits solutions. \begin{example}\label{esempio2}\rm Let $g:(t,x) \in (0,1]\times \mathbb{R} \to \mathbb{R}$, be defined as $$ g(t,x)=\begin{cases} 10^{-4}e^{t^2}/ \sqrt[4]{t} &\text{if }x \leq 10^{-2}\\ x^2e^{t^2}/\sqrt[4]{t} &\text{if }10^{-2} 1. \end{cases} $$ By Theorem \ref{thm4}, for each $\lambda \in [33,55]$ and each $\mu \in ]0,3.4\times 10^{-4}[$ the problem \begin{gather*} -u''(t)+2tu'(t)+(1-t)u(t)=\lambda g(t,u(t)) \quad\text{a.e. in }[0,1]\\ u(0)=u(1)=0\\ \Delta u'(t_1)=u'(t^+_1)-u'(t^-_1)=\mu (-1-|u(t_1)|^3) \end{gather*} admits at least three non-trivial solutions $u_i$, such that $0<|u_i(t)|<10^2$ for all $t\in [0,1]$, $i=1,2,3$. It suffices to choose, for instance, $c_1=10^{-2}$, $c_2=10^2$, $d=1$. \end{example} We observe that in Example \ref{esempio1} we do not have the negativity of the impulsive term, so we cannot apply Theorem \ref{thm4}. On the other hand, in Example \ref{esempio2} the function is negative, but it does not have the sublinear growth. \begin{thebibliography}{99} \bibitem{Dai} Bai, L.; Dai, B.; \emph{An application of variational methods to a class of Dirichlet boundary value problems with impulsive effects}, J. Franklin Inst. \textbf{348} (2011), 2607--2624. \bibitem{BHN} Benchohra, M.; Henderson, J.; Ntouyas, S.; \emph{Theory of Impulsive Differential Equations}, Contemporary Mathematics and Its Applications, 2. Hindawi Publishing Corporation, New York, (2006). \bibitem{BONCAND} Bonanno G. and Candito P., \emph{Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities}, {{\em {\rm J. Differential Equations,}}} \textbf{244} (2008), 3031--3059. \bibitem{BONMAR} Bonanno, G.; Marano, S.A.; \emph{On the structure of the critical set of non-differentiable functionals with a weak compactness condition}, Appl. Anal., \textbf{89} (2010), 1--10. \bibitem{Chen} Chen, J.; Tisdell, C.C.; Yuan, R.; \emph{On the solvability of periodic boundary value problems with impulse}, J. Math. Anal. Appl., \textbf{331} (2007), 902--912. \bibitem{Chen2} Chen, P.; Tang, X. H.; \emph{New existence and multiplicity of solutions for some Dirichlet problems with impulsive effects}, Math. Comput. Modelling, \textbf{55} (2012), 723--739. \bibitem{LAS} Lakshmikantham, V.; Bainov, D. D.; Simeonov, P.S.; \emph{Impulsive differential equations and inclusions}, World Scientific, Singapore (1989). \bibitem{LiuChen} Liu, Z.; Chen, H.; Zhou, T.; \emph{Variational methods to the second-order impulsive differential equation with Dirichlet boundary value problem}, Comput. Math. Appl., \textbf{61} (2011), 1687--1699. \bibitem{Mawhin} Mawhin, J.; \emph{Topological degree and boundary value problems for nonlinear differential equations}, Topological methods for ordinary differential equations, Lecture Notes in Math., \textbf{1537} Springer, Berlin, 1993, 74–-142. \bibitem{Nieto} Nieto, J. J.; O'Regan, D.; \emph{Variational approach to impulsive differential equations}, Nonlinear Anal., RWA,\textbf{70} (2009), 680--690. \bibitem{Quian} Qian, D.; Li, X.; \emph{Periodic solutions for ordinary differential equations with sublinear impulsive effects}, J. Math. Anal. Appl., \textbf{303} (2005), 288--303. \bibitem{Tian} Tian, Y.; Ge, W. G.; \emph{Applications of variational methods to boundary value problem for impulsive differential equations}, Proc. Edinburgh Math. Soc., \textbf{51} (2008), 509--527. \bibitem{Wang} Wang, W.; Shen, J.; \emph{Eigenvalue problems of second order impulsive differential equations}, Comput. Math. Appl., \textbf{62} (2011), 142–-150. \bibitem{Wang1} Wang, W.; Yang, X.; \emph{Multiple solutions of boundary-value problems for impulsive differential equations}, Math. Meth. Appl. Sci., \textbf{34} (2011), 1649–-1657. \bibitem{Nieto2} Xiao, J.; Nieto, J. J.; \emph{Variational approach to some damped Dirichlet nonlinear impulsive differential equations}, Journal of the Franklin Institute, \textbf{348} (2011), 369–-377. \bibitem{ZhangDai} Zhang, D.; Dai, B.; \emph{Existence of solutions for nonlinear impulsive differential equations with Dirichlet boundary conditions}, Math. Comput. Modelling, \textbf{53} (2011), 1154--1161. \bibitem{ZouLi} Zhou, J.; Li, Y.; \emph{Existence and multiplicity of solutions for some Dirichlet problems with impulse effects}, Nonlinear Anal., TMA,\textbf{71} (2009), 2856--2865. \end{thebibliography} \end{document}