\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 131, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/131\hfil Quenching for diffusion equations] {Quenching for singular and degenerate quasilinear diffusion equations} \author[Y. Nie, C. Wang, Q. Zhou \hfil EJDE-2013/131\hfilneg] {Yuanyuan Nie, Chunpeng Wang, Qian Zhou} % in alphabetical order \address{Yuanyuan Nie \newline School of Mathematics, Jilin University, Changchun 130012, China} \email{nieyuanyuan@live.cn} \address{Chunpeng Wang \newline School of Mathematics, Jilin University, Changchun 130012, China} \email{wangcp@jlu.edu.cn} \address{Qian Zhou \newline School of Mathematics, Jilin University, Changchun 130012, China} \email{zhouqian@jlu.edu.cn} \thanks{Submitted January 23, 2013. Published May 29, 2013.} \subjclass[2000]{35K65, 35K67, 35B40} \keywords{Quench; singular; degenerate} \begin{abstract} This article concerns the quenching phenomenon of the solution to the Dirichlet problem of a singular and degenerate quasilinear diffusion equation. It is shown that there exists a critical length for the special domain in the sense that the solution exists globally in time if the length of the special domain is less than this number while the solution quenches if the length is greater than this number. Furthermore, we also study the quenching properties for the quenching solution, including the location of the quenching points and the blowing up of the derivative of the solution with respect to the time at the quenching time. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In the paper, we consider the problem \begin{gather}\label{a-1.1} x^q\frac{\partial u}{\partial t}-\frac{\partial^2 u^m}{\partial x^2}=f(u^m),\quad (x,t) \in (0,a)\times(0,T),\\ \label{a-1.2} u(0,t)=0=u(a,t),\quad t \in (0,T), \\ \label{a-1.3} u(x,0)=0,\quad x \in (0,a), \end{gather} where $a>0$, $q\in\mathbb R$, $m\geq1$ and $f\in C^2([0,c^m))$ with $c>0$ satisfies $$ f(0)>0,\quad f'(0)>0,\quad f''(s)\geq 0 \quad \text{for }00$ and degenerate if $q<0$. Furthermore, \eqref{a-1.1} is degenerate at the points where $u=0$ in the quasilinear case $m>1$. If $q=0$ and $m>1$, \eqref{a-1.1} is the famous porous medium equation, which arises from many physical and biological models \cite{NDE}. If $q>0$ and $m=1$, \eqref{a-1.1} can be used to describe the Ockendon model for the flow in a channel of a fluid whose viscosity is temperature-dependent \cite{another2,another3}. Due to the properties of $f$, the solution $u$ to \eqref{a-1.1}--\eqref{a-1.3} may quench at a finite time. That is to say, there exists a finite time $T>0$ such that \begin{align*} \lim_{t\to T^-}\sup_{(0,a)}u(\cdot,t)=c. \end{align*} Quenching phenomena were introduced by Kawarada \cite{Kawarada} in 1975 for the problem \eqref{a-1.1}--\eqref{a-1.3} in the case $q=0$, $m=1$ and $$ f(s)=\frac1{1-s},\quad 0\le s<1, $$ where Kawarada proved the existence of the critical length (which is $2\sqrt2$). That is to say, the solution exists globally in time if $a$ is less than the critical length, while it quenches if $a$ is greater than the critical length. For the quenching case, Kawarada also showed that $a/2$ is the quenching point and the derivative of the solution with respect to the time blows up at the quenching time. Since then, there are many interesting results on quenching phenomena for semilinear uniformly parabolic equations (see, e.g., \cite{AW,Boni,DL,Levine1,LL,LM} and the references therein) and for singular or degenerate semilinear parabolic equations (see, e.g., \cite{C1,CHK,C6,C2,GH,KN} and the references therein). Among these, Chan and Kong \cite{C1} considered \eqref{a-1.1}--\eqref{a-1.3} in the semilinear case $m=1$, where the authors showed the existence of the critical length, the location of the quenching points and the blowing up of the derivative of the solution with respect to the time at the quenching time. Recently, there are few results on quenching phenomena for quasilinear diffusion equations \cite{C3,DX,Winkler,YYJ,Zheng}. \cite{C3} and \cite{Zheng} showed some sufficient conditions for quenching solutions to the Dirichlet problems of porous medium equations. In \cite{DX} and \cite{YYJ}, the authors considered quenching phenomena for the one-dimensional homogeneous porous medium equation and $p$-Laplacian equation with singular boundary flux, respectively. It is shown that the solution quenches at the singular boundary and the quenching rate was estimated. Winkler \cite{Winkler} studied the following problem for a strongly degenerate diffusion equation with strong absorption \begin{gather*} \frac{\partial u}{\partial t}-u^p\frac{\partial^2 u}{\partial x^2}=-u^{-\beta}\chi_{\{u>0\}},\quad (x,t) \in (0,a)\times(0,T), \\ u(0,t)=0=u(a,t),\quad t \in (0,T), \\ u(x,0)=u_0(x),\quad x \in (0,a), \end{gather*} where $a>0$, $p>1$, $-1<\beta1$, this equation in non-divergence form cannot be transformed into the porous medium equation. Winkler \cite{Winkler} ruled out the possibility of quenching in infinite time under certain assumptions on $p$, $\beta$ and $a$. In this article, we study the quenching phenomenon of the solution to the problem \eqref{a-1.1}--\eqref{a-1.3}. The equation \eqref{a-1.1} is quasilinear in the case $m>1$. Furthermore, there are two kinds of singularity or degeneracy in \eqref{a-1.1}: one is the degeneracy at $u=0$ in the case $m>1$, the other is the singularity ($q>0$) or degeneracy ($q<0$) at $x=0$. Therefore, the classical solution to the problem \eqref{a-1.1}--\eqref{a-1.3} may not exist and the weak solution should be considered. By precise estimates near the parabolic boundary, it is shown that the problem \eqref{a-1.1}--\eqref{a-1.3} admits a continuous solution before the quenching time. By constructing suitable super and sub solutions, we prove the existence of the critical length. For the quenching solution, we also study the location of the quenching points and the blowing up of the derivative of the solution with respect to the time at the quenching time by energy estimates and many kinds of comparison principles. Due to the quasilinearity and the two kinds of singularity or degeneracy in \eqref{a-1.1}, we have to overcome some technical difficulties when doing estimates, constructing super and sub solutions, and using comparison principles. This paper is arranged as follows. The well-posedness of the problem \eqref{a-1.1}--\eqref{a-1.3} is shown in $\S 2$. The existence of the critical length is proved in $\S 3$. Subsequently, in $\S 4$ we study the quenching properties for the quenching solution, including the location of the quenching points and the blowing up of the derivative of the solution with respect to the time at the quenching time. \section{Well-posedness} Solutions to \eqref{a-1.1}, and super and sub solutions, are defined as follows. \begin{definition} A nonnegative function $u\in L^\infty((0,a)\times(0,T))$ is said to be a super (sub) solution to \eqref{a-1.1} in $(0,T)$ for some $00$. Furthermore, $u\in C^{2,1}((0,a)\times(0,T])\cap C([0,a]\times[0,T])$, $\frac{\partial u}{\partial t},\frac{\partial u}{\partial x}\in C^{2,1}((0,a)\times(0,T])$ and \begin{gather*} u(x,t)>0,\quad \frac{\partial u}{\partial t}(x,t)>0, \quad(x,t)\in(0,a)\times(0,T), \\ \int_0^a\Big(\frac{\partial u^m}{\partial x}(x,t)\Big)^2dx \le 2ma\int_0^{\max_{(0,a)}u(\cdot,t)}s^{m-1}f(s^m)ds,\quad t\in(0,T). \end{gather*} \end{theorem} \begin{proof} Fix $00$, which are independent of $n$ and $k$, such that \begin{gather*} \Big(x+\frac 1k\Big)^q\frac{\partial \underline w_{n,k}}{\partial t} -\frac{\partial^2 \underline w_{n,k}^m}{\partial x^2}\le f(0), \quad(x,t)\in(\tilde x-\delta,\tilde x+\delta)\times(0,{T_0}), \\ \Big(x+\frac 1k\Big)^q\frac{\partial \bar z_{n,k}}{\partial t} -\frac{\partial^2 \bar z_{n,k}^m}{\partial x^2}\ge f(c_0^m), \quad(x,t)\in(\tilde x-\delta,\tilde x+\delta)\times(0,{T_2}). \end{gather*} Therefore, $\underline w_{n,k}$ is a subsolution of the problem \begin{gather} \label{a-2.5-1} \Big(x+\frac 1k\Big)^q\frac{\partial w_{n,k}}{\partial t} -\frac{\partial^2w_{n,k}^m}{\partial x^2}=f(0), \quad (x,t)\in(\tilde x-\delta,\tilde x+\delta)\times(0,{T_0}), \\ \label{a-2.5-2} w_{n,k}(\tilde x-\delta,t)=w_{n,k}(\tilde x+\delta,t)=\frac1n,\quad t\in(0,T_0), \\ \label{a-2.5-3} w_{n,k}(x,0)=\frac1n,\quad x\in(\tilde x-\delta,\tilde x+\delta), \end{gather} $\bar z_{n,k}$ is a supersolution to the problem \begin{gather} \label{a-2.6-1} \Big(x+\frac 1k\Big)^q\frac{\partial z_{n,k}}{\partial t} -\frac{\partial^2z_{n,k}^m}{\partial x^2}=f(c_0^m), \quad (x,t)\in(\tilde x-\delta,\tilde x+\delta)\times(0,{T_2}), \\ \label{a-2.6-2} z_{n,k}(\tilde x-\delta,t)=z_{n,k}(\tilde x+\delta,t)=c_0,\quad t\in(0,T_2), \\ \label{a-2.6-3} z_{n,k}(x,0)=\frac1n,\quad x\in(\tilde x-\delta,\tilde x+\delta). \end{gather} Further, \eqref{a-2.4} shows that $u_{n,k}$ is a supersolution to the problem \eqref{a-2.5-1}--\eqref{a-2.5-3} in $(0,{T_0})$ and a subsolution to the problem \eqref{a-2.6-1}--\eqref{a-2.6-3} in $(0,{T_2})$. It follows from the classical comparison principle that \begin{gather} \label{a-2.7-1} u_{n,k}(x,t)\ge w_{n,k}(x,t)\ge \underline w_{n,k}(x,t), \quad(x,t)\in(\tilde x-\delta,\tilde x+\delta)\times(0,{T_0}), \\ \label{a-2.7-2} u_{n,k}(x,t)\le z_{n,k}(x,t)\le \bar z_{n,k}(x,t), \quad(x,t)\in(\tilde x-\delta,\tilde x+\delta)\times(0,{T_2}). \end{gather} Set $$ E_{n,k}(t)=\frac 12 \int_0^a\Big(\frac{\partial u_{n,k}^m}{\partial x}(x,t)\Big)^2dx -m\int_0^a\int_0^{u_{n,k}(x,t)}s^{m-1}f(s^m)\,ds\,dx, $$ for $t\in[0,T_0]$. Integrating by parts, one gets \begin{align*} E'_{n,k}(t) &=\int_0^a\frac{\partial u_{n,k}^m}{\partial x}(x,t)\frac{\partial^2 u_{n,k}^m}{\partial t\partial x}(x,t)dx -m\int_0^a\frac{\partial u_{n,k}}{\partial t}u_{n,k}^{m-1}(x,t)f(u^m_{n,k}(x,t))dx \\ &=\frac{\partial u_{n,k}^m}{\partial x}(a,t)\frac{\partial u_{n,k}^m}{\partial t}(a,t) -\frac{\partial u_{n,k}^m}{\partial x}(0,t)\frac{\partial u_{n,k}^m}{\partial t}(0,t) \\ &\quad-m\int_0^a u_{n,k}^{m-1}(x,t)\frac{\partial u_{n,k}}{\partial t}(x,t) \Big(\frac{\partial^2 u_{n,k}^m}{\partial x^2}(x,t)+f(u^m_{n,k}(x,t))\Big)dx \\ &=-m\int_0^a u_{n,k}^{m-1}(x,t)\Big(\frac{\partial u_{n,k}}{\partial t}(x,t)\Big)^2dx\le0,\quad t\in(0,T_0). \end{align*} Therefore, $$ E_{n,k}(t)\le E_{n,k}(0)\leq 0,\quad t\in(0,T_0), $$ which leads to \begin{equation} \label{www-c1} \begin{aligned} \int_0^a\Big(\frac{\partial u_{n,k}}{\partial x}(x,t)\Big)^2dx &\le 2m\int_0^a\int_0^{u_{n,k}(x,t)}s^{m-1}f(s^m)\,ds\,dx\\ &\le 2ma\int_0^{\max_{(0,a)}u_{n,k}(\cdot,t)}s^{m-1}f(s^m)ds,\quad t\in(0,T_0). \end{aligned} \end{equation} From the classical comparison principle and \eqref{a-2.4-0}, we have \[ u_{n_2,k}(x,t)\le u_{n_1,k}(x,t),\quad (x,t)\in[0,a]\times[0,{T_0}],\quad n_2\ge n_1\ge\frac{(2\text{e})^{1/m}}{c_0}, \] for $k\ge 1$, and \[ \begin{cases} u_{n,k_2}(x,t)\le u_{n,k_1}(x,t), &\text{if }q\ge0, \\ u_{n,k_2}(x,t)\ge u_{n,k_1}(x,t), &\text{if }q\le0, \end{cases} \] for $(x,t)\in(0,a)\times(0,{T_0})$, $n\ge (2\text{e})^{1/m}/c_0$, $k_2\ge k_1\ge1$. Let $$ u(x,t)=\lim_{k\to\infty}\lim_{n\to\infty}u_{n,k}(x,t), \quad(x,t)\in[0,a]\times[0,{T_0}]. $$ Due to \eqref{a-2.4}, \eqref{a-2.4-0}, \eqref{a-2.4-1}, \eqref{a-2.7-1} and \eqref{a-2.7-2}, the function $u$ satisfies \begin{gather} \label{a-2.8-1} 0\le u(x,t)\le c_0,\quad (x,t)\in(0,a)\times(0,{T_0}), \\ \label{a-2.8-5} u(x,\cdot)\text{ is increasing in } (0,T_0),\quad x\in(0,a), \\ \label{a-2.8-2} 0\le u(x,t)\le\Big(\frac1{2}f(c_0^m)x(a-x)\Big)^{1/m}, \quad (x,t)\in(0,a)\times(0,{T_0}), \\ \label{a-2.8-3} u(x,t)\ge (x-\tilde x+\delta)(\tilde x+\delta-x)\min\{t,T_1\}, \quad(x,t)\in(\tilde x-\delta,\tilde x+\delta)\times(0,{T_0}), \\ \label{a-2.8-4} u(x,t)\le c_0\delta^{-2}(x-\tilde x)^2+\frac t{T_2}, \quad(x,t)\in(\tilde x-\delta,\tilde x+\delta)\times(0,{T_2}). \end{gather} It is not hard to show that $u$ is a solution of \eqref{a-1.1}--\eqref{a-1.3} in $(0,T_0)$. Furthermore, \eqref{a-2.8-3} yields that \begin{equation} \label{ww-1} u(x,t)>0,\quad(x,t)\in(0,a)\times(0,T_0). \end{equation} Therefore, $u\in C^{2,1}((0,a)\times(0,T_0])$, which together with \eqref{a-2.8-1}--\eqref{ww-1} and $f\in C^2([0,c^m))$, implies that $u\in C([0,a]\times[0,T_0])$ satisfies \eqref{a-1.2} and \eqref{a-1.3}, $\frac{\partial u}{\partial t},\frac{\partial u}{\partial x}\in C^{2,1}((0,a)\times(0,T_0])$ and \begin{align} \label{ww-2} \frac{\partial u}{\partial t}(x,t)\ge0,\quad(x,t)\in(0,a)\times(0,T_0). \end{align} Noting $\frac{\partial u}{\partial t}\in C^{2,1}((0,a)\times(0,T_0])$ with \eqref{ww-2} solves \begin{equation} \label{www-w1} x^q\frac{\partial }{\partial t}\Big(\frac{\partial u}{\partial t}\Big) -m\frac{\partial^2}{\partial x^2}\Big(u^{m-1}(x,t)\frac{\partial u}{\partial t}\Big) -mf'(u^m(x,t))u^{m-1}(x,t)\frac{\partial u}{\partial t}=0, \end{equation} for $(x,t)\in(0,a)\times(0,T_0)$. From the classical strong maximum principle and \eqref{ww-1} we obtain \begin{equation} \label{www} \frac{\partial u}{\partial t}(x,t)>0,\quad(x,t)\in(0,a)\times(0,T_0). \end{equation} Indeed, if \eqref{www} is wrong, then there exists $(x_0,t_0)\in(0,a)\times(0,T_0)$ such that $\frac{\partial u}{\partial t}(x_0,t_0)=0$. For any $0<\varepsilon<\min\{x_0,a-x_0\}$ and any $0<\tau0:\text{ the problem \eqref{a-1.1}--\eqref{a-1.3} admits a solution in } (0,T)\big\}. $$ We call $T_*$ the life span of the solution to problem \eqref{a-1.1}--\eqref{a-1.3}. \begin{remark} \label{existencere} \rm By the standard extension process, one can show that Problem \eqref{a-1.1}--\eqref{a-1.3} admits uniquely a solution $u$ in $(0,T_*)$. Furthermore, $u\in C^{2,1}((0,a)\times(0,T_*))\cap C([0,a]\times[0,T_*))$, $\frac{\partial u}{\partial t},\frac{\partial u}{\partial x}\in C^{2,1}((0,a)\times(0,T_*))$ and \begin{gather*} u(x,t)>0,\quad \frac{\partial u}{\partial t}(x,t)>0, \quad(x,t)\in(0,a)\times(0,T_*), \\ \int_0^a\Big(\frac{\partial u^m}{\partial x}(x,t)\Big)^2dx \le 2ma\int_0^{\max_{(0,a)}u(\cdot,t)}s^{m-1}f(s^m)ds,\quad t\in(0,T_*). \end{gather*} \end{remark} \section{Critical length} Assume that $u$ is the solution to \eqref{a-1.1}--\eqref{a-1.3} and $T_*$ is its life span. If $T_*=+\infty$, then $u$ exists globally in time. If $T_*<+\infty$, then $u$ must quench at a finite time, i.e. \begin{align*} \lim_{t\to T_*^-}\sup_{(0,a)}u(\cdot,t)=c. \end{align*} Let us study the relation between $T_*$ and $a$ in this section. For convenience, we denote $u_a$ by the solution to \eqref{a-1.1}--\eqref{a-1.3}, and $T_*(a)$ its life span. \begin{lemma} \label{lemma-3.1} If $a$ is positive and sufficiently small, then $T_*(a)=+\infty$ and \[ \sup_{(0,a)\times(0,+\infty)}u_a0$ is sufficiently large, then $T_*(a)<+\infty$. \end{lemma} \begin{proof} Set $$ \underline u_a(x,t)=\frac{t}{T}\Big(\frac{f(0)}4(x-a/2)(a-x)\Big)^{1/m},\quad (x,t)\in [a/2,a]\times[0,T] $$ with $$ T={2}{\max\{(a/2)^q,a^q\}}\Big(\frac{a^2}{64f^{m-1}(0)}\Big)^{1/m}. $$ Then, $\underline u_a$ satisfies \begin{align*} x^q\frac{\partial \underline u_a}{\partial t}-\frac{\partial^2\underline u_a^m}{\partial x^2} &=\frac{x^q}{T}\Big(\frac{f(0)}4(x-a/2)(a-x)\Big)^{1/m} +\frac{f(0)}{2}\Big(\frac{t}{T}\Big)^m\\ &\le f(0)\le f(\underline u^m_a), \quad (x,t)\in(a/2,a)\times(0,T). \end{align*} The comparison principle (Theorem \ref{comparison}) shows that $$ u_a(x,t)\ge\underline u_a(x,t),\quad(x,t)\in [a/2,a]\times[0,T]. $$ Particularly, $$ u_a(3a/4,T)\ge\Big(\frac{f(0)a^2}{64}\Big)^{1/m}, $$ which yields $T_*(a)<+\infty$ if $a\ge 8 c^{m/2}f^{-1/2}(0)$. \end{proof} \begin{lemma} \label{lemma-3.3} For any $00,\quad t\in(0,T_*(a_2)). $$ Then, it follows from the comparison principle (Theorem \ref{comparison}) that $$ u_{a_1}(x,t)\le u_{a_2}(x,t),\quad (x,t)\in (0,a_1)\times(0,T_*(a_2)). $$ Set $$ w(x,t)=u_{a_1}(x,t)-u_{a_2}(x,t),\quad (x,t)\in [0,a_1]\times[0,T_*(a_2)). $$ By Remark \ref{existencere}, $w\in C^{2,1}((0,a_1)\times(0,T_*(a_2))) \cap C([0,a_1]\times[0,T_*(a_2)])$ and solves \begin{align*} &x^q\frac{\partial w}{\partial t}-m\frac{\partial^2}{\partial x^2} \Big(w\int_0^1(\sigma u_{a_1}(x,t)+(1-\sigma)u_{a_2}(x,t))^{m-1}d\sigma\Big) \\ &=mw\int_0^1f'(\sigma u^m_{a_1}(x,t)+(1-\sigma)u^m_{a_2}(x,t)) d\sigma\\ &\quad\times \int_0^1(\sigma u_{a_1}(x,t)+(1-\sigma)u_{a_2}(x,t))^{m-1}d\sigma, \quad (x,t)\in (0,a_1)\times(0,T_*(a_2)), \end{align*} where $u_{a_1},u_{a_2}\in C^{2,1}((0,a_1)\times(0,T_*(a_2))) \cap C([0,a_1]\times[0,T_*(a_2)])$ with $$ u_{a_1}(x,t)>0,\quad u_{a_2}(x,t)>0,\quad (x,t)\in (0,a_1)\times(0,T_*(a_2)). $$ The classical strong maximum principle (a similar discussion to \eqref{www} in Theorem \ref{existence}) leads to $$ w(x,t)<0,\quad (x,t)\in (0,a_1)\times(0,T_*(a_2)), $$ i.e. $$ u_{a_1}(x,t)0$ such that $u_a$ quenches at the infinite time, i.e. $T_*(a)=+\infty$ and $\sup_{(0,a)\times(0,+\infty)}u_{a}=c$. \end{lemma} \begin{proof} Assume that $u_{a_0}$ quenches at the infinite time for some $a_0>0$. For $a>a_0$, set $$ \underline u_a(x,t)=\lambda^{2/m} u_{a_0}(\lambda^{-1}x,\lambda^{-2/m-q}t),\quad(x,t)\in [0,a]\times[0,+\infty), \quad \lambda=\frac{a}{a_0}. $$ Then, $\lambda>1$, and $\underline u_a$ solves $$ x^q\frac{\partial \underline u_a}{\partial t}-\frac{\partial^2\underline u_a^m}{\partial x^2} =f(\lambda^{-2}\underline u_a^m), \quad(x,t)\in(0,a)\times(0,+\infty). $$ Therefore, $\underline u_a$ is a subsolution to \eqref{a-1.1}--\eqref{a-1.3}. Since $$ \lim_{t\to+\infty}\sup_{(0,a)}\underline u_a(\cdot,t)=\lambda^{2/m} c>c, $$ $u_a$ must quench at a finite time. \end{proof} \begin{theorem} \label{thm3.1} There exists $a_*>0$ such that \begin{itemize} \item[(i)] $T_*(a)=+\infty$ and $\sup_{(0,a)\times(0,+\infty)}u_{a}a_*$. \end{itemize} \end{theorem} \begin{proof} Set $$ S=\big\{a>0: T_*(a)=+\infty \text{ and }\sup_{(0,a)\times(0,+\infty)}u_aa_*$, the definition of $S$ shows that $T_*(a)<+\infty$ or $u_a$ quenches at the infinite time. Let us prove that the latter case is impossible by contradiction. Otherwise, assume that $u_{a_0}$ quenches at the infinite time for some $a_0>a_*$. From the definition of $S$ and Lemma \ref{lemma-3.3}, $u_{\tilde a}$ must quench at the infinite time for each $a_*<\tilde aa_*$. In this section, we investigate the location of the quenching points and the blowing up of $\frac{\partial u}{\partial t}$. \begin{definition} \rm Assume that the solution $u$ to \eqref{a-1.1}--\eqref{a-1.3} quenches at $0a_*$. Then \begin{itemize} \item[(i)] there is no quenching point in $(a/2,a)$ if $q>0$, \item[(ii)] there is no quenching point in $(0,a/2)$ if $q<0$. \end{itemize} \end{theorem} \begin{proof} We prove the case $q>0$ only; the other case can be proved similarly. By Remark \ref{existencere}, \begin{equation} \label{www-1} u(x,t)>0,\quad\frac{\partial u}{\partial t}(x,t)>0,\quad(x,t) \in (0,a)\times(0,T_*). \end{equation} Set $$ v(x,t)=u(a-x,t),\quad (x,t)\in [0,a/2]\times[0,T_*). $$ Then, $v$ is a solution of the equation \begin{align} \label{www-2} (a-x)^q\frac{\partial v}{\partial t}-\frac{\partial^2 v^m}{\partial x^2}=f(v^m),\quad(x,t)\in (0,a/2)\times(0,T_*). \end{align} By \eqref{www-1}, $u$ is a supersolution to \eqref{www-2}. Similar to the proof of Lemma \ref{lemma-3.3}, one can show that \begin{equation} \label{www-3} u(x,t)>v(x,t),\quad(x,t)\in (0,a/2)\times(0,T_*). \end{equation} Set $$ w(x,t)=u^m(x,t)-v^m(x,t), \quad (x,t)\in [0,a/2]\times[0,T_*). $$ Then $w$ solves \begin{equation} \label{a-3.6} x^q h(x,t)\frac{\partial w}{\partial t}-\frac{\partial^2 w}{\partial x^2} +x^q \frac{\partial h}{\partial t}(x,t)w\ge g(x,t)w, \quad (x,t)\in (0,a/2)\times(0,T_*), \end{equation} where \begin{gather*} h(x,t)=\frac{1}{m}\int_0^1(\sigma{u^m}(x,t)+(1-\sigma){v^m}(x,t))^{1/m-1} d\sigma, \\ g(x,t)=\int_0^1f'(\sigma u^m(x,t)+(1-\sigma)v^m(x,t)) d\sigma\ge f'(0)>0, \end{gather*} for $(x,t)\in (0,a/2)\times(0,T_*)$. From \eqref{www-1} and \eqref{www-3}, for $(x,t)\in (0,a/2)\times(0,T_*)$, follows that \begin{gather*} \frac{\partial h}{\partial t}(x,t)=\frac{1}{m}\Big(\frac{1}{m}-1\Big) \int_0^1\Big(\sigma \frac{\partial u^m(x,t)}{\partial t}+(1-\sigma) \frac{\partial v^m(x,t)}{\partial t}\Big)^{1/m-1} d\sigma<0,\\ w(x,t)>0. \end{gather*} Therefore, $w$ satisfies \begin{equation}\label{a-3.7} x^q h(x,t)\frac{\partial w}{\partial t}-\frac{\partial^2 w}{\partial x^2}\ge 0, \quad (x,t)\in (0,a/2)\times(0,T_*). \end{equation} For any $0<\eta0,\quad(x,t)\in(\eta,a/2-\eta)\times[T_*/2,T_*]. \end{equation} By \eqref{a-3.7} and \eqref{www-3}, $w$ is a supersolution to \eqref{a-3.8}--\eqref{a-3.10}. The classical comparison principle leads to \begin{align*} w(x,t)\ge z(x,t),\quad(x,t)\in(\eta,a/2-\eta)\times(T_*/2,T_*); \end{align*} i.e., \begin{align*} u^m(a-x,t)\le u^m(x,t)-z(x,t),\quad(x,t)\in(\eta,a/2-\eta)\times(T_*/2,T_*). \end{align*} So, there is no quenching point in $(a/2+\eta,a-\eta)$ owing to \eqref{www-a2}. Then, (i) is proved due to the arbitrariness of $0<\eta a_*$ and $M=\int_0^{c} s^{m-1}f(s^m)ds<+\infty$. Then $$ M\ge\frac{c^{2m}}{ma^2} $$ and \begin{itemize} \item[(i)] the quenching points belong to $[c^{2m}/(2Mma),a/2]$ if $q>0$, \item[(ii)] the quenching points belong to $[c^{2m}/(2Mma),a-c^{2m}/(2Mma)]$ if $q=0$, \item[(iii)] the quenching points belong to $[a/2,a-c^{2m}/(2Mma)]$ if $q<0$. \end{itemize} \end{theorem} \begin{proof} From Remark \ref{existencere}, one gets \begin{equation} \label{www-5} \int_0^a\Big(\frac{\partial u^m}{\partial x}(x,t)\Big)^2dx \le 2mMa,\quad t\in(0,T_*). \end{equation} Then, it follows from \eqref{www-5} and the Schwarz inequality that \begin{equation} \label{www-6} \begin{aligned} u^m(x,t)&=\int^x_0 \frac{\partial u^m}{\partial x}(y,t) dy\leq x^{1/2} \Big(\int_0^a\Big(\frac{\partial u^m}{\partial x}(y,t)\Big)^2dy\Big)^{1/2}\\ &\le (2mMax)^{1/2},\quad (x,t)\in[0,a/2]\times[0,T_*) \end{aligned} \end{equation} and \begin{equation} \label{www-7} \begin{aligned} u^m(x,t)&=-\int_x^a \frac{\partial u^m}{\partial x}(y,t) dy\leq(a-x)^{1/2} \Big(\int_0^a\Big(\frac{\partial u^m}{\partial x}(y,t)\Big)^2dy\Big)^{1/2}\\ &\le (2mMa(a-x))^{1/2},\quad (x,t)\in[a/2,a]\times[0,T_*). \end{aligned} \end{equation} Since \begin{align*} \lim_{t\to T_*^-}\sup_{(0,a)}u(\cdot,t)=c \end{align*} by Theorem \ref{thm3.1}, from \eqref{www-6} and \eqref{www-7} it follows that $$ M\ge\frac{c^{2m}}{ma^2}. $$ Furthermore, (i)--(iii) follow from Theorem \ref{thm3.2}, \eqref{www-6} and \eqref{www-7} directly. \end{proof} \begin{theorem} \label{th3.4} Assume that $a>a_*$ and $\int_0^{c} s^{m-1}f(s^m)ds<+\infty$. Then the solution $u$ of \eqref{a-1.1}--\eqref{a-1.3} satisfies $$ \lim_{t\to T_*^-}\sup_{(0,a)}\frac{\partial u}{\partial t}(\cdot,t)=+\infty. $$ \end{theorem} \begin{proof} From Theorem \ref{thm3.3}, there exist $00,\quad(x,t) \in (0,a)\times(0,T_*). \end{align} Let $z$ be the solution to the problem \begin{gather} \label{www-b5} \frac{x^q}{m} w^{1/m-1}(x,t)\frac{\partial z}{\partial t}-\frac{\partial z^2 }{\partial x^2}=0,\quad (x,t)\in (x_1,x_4)\times(T_*/2,T_*), \\ \label{www-b6} z(x_1,t)=z(x_4,t)=0,\quad t\in(T_*/2,T_*), \\ \label{www-b7} z(x,T_*/2)=\delta\sin\Big(\frac{\pi(x-x_1)}{x_4-x_1}\Big),\quad x\in(x_1,x_4), \end{gather} where $$ \delta=\min_{(x_1,x_4)}\frac{\partial w}{\partial t}(\cdot,T_*/2). $$ Since \eqref{www-b5} is a uniformly parabolic equation, one gets from the classical maximum principle that \begin{equation} \label{www-b8} z(x,t)>0,\quad(x,t)\in(x_1,x_4)\times[T_*/2,T_*]. \end{equation} By \eqref{www-b3} and \eqref{www-b4}, the function $\frac{\partial w}{\partial t}$ is a supersolution to \eqref{www-b5}--\eqref{www-b8}. The classical comparison principle leads to \begin{equation} \label{www-b9} \frac{\partial w}{\partial t}(x,t)\ge z(x,t),\quad(x,t)\in(x_1,x_4)\times(T_*/2,T_*). \end{equation} Set $$ v(x,t)=\frac{\partial w}{\partial t}(x,t)-\kappa f(w(x,t)),\quad(x,t)\in[x_2,x_3]\times[T_*/2,T_*). $$ By \eqref{www-b2}, \eqref{www-b4}, \eqref{www-b8} and \eqref{www-b9}, there exists $\kappa>0$ such that \begin{equation} \label{www-b10} v(x,t)\ge 0,\quad(x,t)\in \{x_2,x_3\}\times[T_*/2,T_*) \cup [x_2,x_3]\times\{T_*/2\}. \end{equation} From \eqref{www-b3-0} and \eqref{www-b3}, $v$ solves \begin{align*} &\frac{x^q}{m}w^{1/m-1}(x,t)\frac{\partial v}{\partial t}-\frac{\partial^2 v}{\partial x^2}-f'(w(x,t))v \\ &=\frac{x^q}{m}w^{1/m-1}\Big(\frac{\partial^2 w}{\partial t^2}-\kappa f'(w)\frac{\partial w}{\partial t}\Big)- \frac{\partial^3 w}{\partial t \partial x^2}+\kappa f''(w)\Big(\frac{\partial w}{\partial x}\Big)^2 \\ &\quad +\kappa f'(w)\frac{\partial^2 w}{\partial x^2}-f'(w)\Big(\frac{\partial w}{\partial t}-\kappa f(w)\Big) \\ &= \Big(1-\frac{1}{m}\Big)\frac{x^q}{m} w^{1/m-2}\Big(\frac{\partial w}{\partial t}\Big)^2 +\kappa f''(w)\Big(\frac{\partial w}{\partial x}\Big)^2 \\ &\ge 0,\quad(x,t)\in(x_2,x_3)\times(T_*/2,T_*). \end{align*} Then, from the classical comparison principle with \eqref{www-b10} it follows that $$ v(x,t)\ge0,\quad(x,t)\in[x_2,x_3]\times[T_*/2,T_*), $$ which, together with \eqref{www-b1}, yields $$ \lim_{t\to T_*^-}\sup_{(x_2,x_3)}\frac{\partial u}{\partial t}(\cdot,t)=+\infty. $$ \end{proof} \subsection*{Acknowledgments} This research was supported by the National Natural Science Foundation of China, the 985 Program of Jilin University and the Basic Research Foundation of Jilin University. \begin{thebibliography}{99} \bibitem{AW} A. Acker, W. Walter; \emph{The quenching problem for nonlinear parabolic equations}, Lecture Notes in Mathematics, 564, Springer-Verlag, New York, 1976. \bibitem{Boni} T. Boni; \emph{On quenching of solutions for some semilinear parabolic equations of second order}, Bull. Belg. Math. Soc. Simon Stevin, \textbf{7} (1)(2000), 73--95. \bibitem{C1} C. Y. Chan, P. C. Kong; \emph{Quenching for degenerate semilinear parabolic equations}, Appl. Anal., \textbf{54} (1994), 17--25. \bibitem{CHK} C. Y. Chan, H. G. Kapper; \emph{Quenching for semilinear singular parabolic problems}, SIAM J. Math. Anal., \textbf{20} (1989), 558--566. \bibitem{C6} C. Y. Chan, X. O. Jiang; \emph{Quenching for a degenerate parabolic problem due to a concentrated nonlinear source}, Quart. Appl. Math., \textbf{62} (2004), 553--568. \bibitem{C2} W. Y. Chan; \emph{Quenching of the solution for a degenerate semilinear parabolic equation}, Neural Parallel Sci. Comput., \textbf{16} (2008), 237--252. \bibitem{C3} W. Y. Chan; \emph{Quenching for nonlinear degenerate parabolic problems}, J. Comput. Appl. Math., \textbf{235} (13)(2011), 3831--3840. \bibitem{DL} K. Deng, H. A. Levine; \emph{On the blow up of $u_t$ at quenching}, Proc. of Amer. Math. Soc., \textbf{106} 4(1989), 1049--1056. \bibitem{DX} K. Deng, M. X. Xu; \emph{Quenching for a nonlinear diffusion equation with a singular boundary condition}, Z. Angew. Math. Phys., \textbf{50} (4)(1999), 574--584. \bibitem{another2} M. S. Floater; \emph{Blow-up at the boundary for degenerate semilinear parabolic equations}, Arch. Rational Mech. Anal., {\bf114} (1991), 57--77. \bibitem{GH} J. S. Guo, B. Hu; \emph{The profile near quenching time for the solution of a singular semilinear heat equation}, Proc. Edinburgh Math. Soc., \textbf{40} (1997), 437--456. \bibitem{Kawarada} H. Kawarada; \emph{On solutions of initial-boundary problem for $u_t=u_{xx}+1/(1-u)$}, Publ. RIMS. Kyoto Univ., \textbf{10} (1975), 729--736. \bibitem{KN} L. Ke, S. Ning; \emph{Quenching for degenerate parabolic problems}, Nonlinear Anal., \textbf{34} (1998), 1123--1135. \bibitem{another3} A. A. Lacey; \emph{The form of blow-up for nonlinear parabolic equations}, Proc. Roy. Soc. Edinburgh Sect. A, \textbf{98} (1984), 183--202. \bibitem{Levine1} H. A. Levine; \emph{The quenching of solutions of linear hyperbolic and parabolic with nonlinear boundary conditions}, SIAM J. Math. Anal., \textbf{14} (1983), 1139--1153. \bibitem{LL} H. A. Levine, G. M. Lieberman; \emph{Quenching of solutions of parabolic equations with nonlinear boundary conditions in several dimensions}, J. Reine Ang. Math., \textbf{345} (1983), 23--38. \bibitem{LM} H. A. Levine, J. T. Montgomery; \emph{Quenching of solutions of some nonlinear parabolic problems}, SIAM J. Math. Anal., \textbf{11} (1980), 842--847. \bibitem{Winkler} M. Winkler; \emph{Quenching phenomena in strongly degenerate diffusion equations with strong absorption}, J. Math. Anal. Appl., \textbf{288} (2)(2003), 481-504. \bibitem{NDE} Z. Q. Wu, J. N. Zhao, J. X. Yin, H. L. Li; \emph{Nonlinear diffusion equations}, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. \bibitem{YYJ} Y. Yang, J X. Yin, C. H. Jin; \emph{A quenching phenomenon for one-dimensional $p$-Laplacian with singular boundary flux}, Appl. Math. Lett., \textbf{23} (9)(2010), 955--959. \bibitem{Zheng} G. F. Zheng; \emph{On quenching for some parabolic problems}, Nonlinear Anal., \textbf{71} (2009), 2416--2430. \end{thebibliography} \end{document}