\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb, epic} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 138, pp. 1--5.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/138\hfil Existence of solutions] {Existence of solutions to non-local problems for parabolic-hyperbolic equations with three lines of type changing} \author[E. T. Karimov, A. I. Sotvoldiev \hfil EJDE-2013/138\hfilneg] {Erkinjon T. Karimov, Akmal I. Sotvoldiyev} % in alphabetical order \address{Erkinjon T. Karimov\newline Institute of Mathematics, National University of Uzbekistan ``Mirzo Ulugbek'', Durmon yuli str., 29, Tashkent, 100125, Uzbekistan} \email{erkinjon@gmail.com, erkinjon.karimov@hotmail.com} \address{Akmal I. Sotvoldiyev \newline Institute of Mathematics, National University of Uzbekistan ``Mirzo Ulugbek'', Durmon yuli str., 29, Tashkent, 100125, Uzbekistan} \email{akmal.sotvoldiyev@mail.ru} \thanks{Submitted May 14, 2013. Published June 20, 2013.} \subjclass[2000]{35M10} \keywords{Parabolic-hyperbolic equation; non-local condition; \hfill\break\indent Volterra integral equation} \begin{abstract} In this work, we study a boundary problem with non-local conditions, by relating values of the unknown function with various characteristics. The parabolic-hyperbolic equation with three lines of type changing is equivalently reduced to a system of Volterra integral equations of the second kind. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \allowdisplaybreaks \section{Introduction} Consider an equation \begin{equation} \begin{gathered} u_{xx} - u_y =0, \quad (x,y) \in \Omega _0, \\ u_{xx} - u_{yy},\quad (x,y) \in \Omega _i\; i = 1,2,3 \\ \end{gathered} \label{e1} \end{equation} in the domain $\Omega = \Omega _0 \cup \Omega _1 \cup \Omega _2 \cup \Omega _3 \cup AB \cup A A_0 \cup B B_0$; see Figure \ref{fig1}. \begin{figure}[ht] \begin{center} \setlength{\unitlength}{1mm} \begin{picture}(80,53)(0,5) \dashline{1}(25,50)(55,50) \put(0,20){\line(1,0){80}} \put(79,19.1){$\rightarrow$} \put(81,17){$x$} \put(25,5){\line(0,1){50}} \put(24.2,54.5){$\uparrow$} \put(55,20){\line(0,1){30}} \put(5,35){\line(4,3){20}} \put(5,35){\line(4,-3){35}} \put(75,35){\line(-4,3){20}} \put(75,35){\line(-4,-3){35}} \put(21,50){1} \put(26,52){$A_0$} \put(53,52){$B_0$} \put(1,34){$D$} \put(16,34){$\Omega_2$} \put(38.5,34){$\Omega_0$} \put(61,34){$\Omega_3$} \put(76,34){$E$} \put(27,22){A} \put(51,22){B} \put(38.5,14){$\Omega_1$} \put(5,19){\line(0,1){2}} \put(2,16){-1/2} \put(21,16){0} \put(54,16){1} \put(75,19){\line(0,1){2}} \put(72,16){3/2} \put(24,10){\line(1,0){2}} \put(16,9){-1/2} \put(38.5,5){$C$} \end{picture} \end{center} \caption{Domain $\Omega$} \label{fig1} \end{figure} \subsection*{Problem AS} Find a regular solution of equation \eqref{e1} in the domain $\Omega $, satisfying the following conditions: \begin{gather} a_1( t )u(-t,t) + a_2( t )u( {t, - t} ) = a_3( t ),\quad 0 \leqslant t \leqslant \frac{1}{2},\label{e2}\\ b_1( t )u( {t,t - 1} ) + b_2( t )u( {2 - t,1 - t} ) = b_3( t ),\quad \frac{1}{2} \leqslant t \leqslant 1,\label{e3}\\ c_1( t )( {u_x + u_y} )(t-1,t) + c_2( t )(u_x - u_y) ( {2 - t,t} ) = c_3( t ),\quad \frac{1}{2} < t < 1.\label{e4} \end{gather} Here ${a_i}( t ),{b_i}( t ),{c_i}( t )$ $(i = 1,2,3 )$ are given functions, such that \begin{gather*} a_1( 0 ) + a_2( 0 ) \ne 0,\quad b_1( 1 ) + b_2( 1 ) \ne 0,\quad a_1^2( t ) + a_2^2( t ) > 0,\\ b_1^2( t ) + b_2^2( t ) > 0, \quad c_1^2( t ) + c_2^2( t ) > 0,\quad a_1^2 + b_2^2 > 0,\quad a_2^2 + b_1^2 > 0. \end{gather*} Note that problem AS is a generalization of the following problems: \begin{itemize} \item[Case A] $a_1\equiv 0$. \begin{itemize} \item[(1)] $a_2,b_1,b_2,c_1,c_2\neq 0$, \item[(2)] $b_1\equiv 0, a_2,b_2,c_1,c_2\neq 0$, \item[(3)] $c_2\equiv 0, a_2,b_1,b_2,c_1\neq 0$, \item[(4)] $b_1\equiv 0, c_2\equiv 0, a_2, b_2, c_1\neq 0$; \end{itemize} \item[Case B] $a_2\equiv 0$. \begin{itemize} \item[(1)] $a_1,b_1,b_2,c_1,c_2\neq 0$, \item[(2)] $b_2\equiv 0, a_1,b_1,c_1,c_2\neq 0$, \item[(3)] $c_1\equiv 0, a_1,b_1,b_2,c_2\neq 0$, \item[(4)] $b_2\equiv 0, c_1\equiv 0, a_1, b_1, c_2\neq 0$; \end{itemize} \item[Case C] $b_1\equiv 0$. \begin{itemize} \item[(1)] $a_1,a_2,b_2,c_1,c_2\neq 0$, \item[(2)] $c_2\equiv 0, a_1,a_2,b_2,c_1\neq 0$; \end{itemize} \item[Case D] $b_2\equiv 0$. \begin{itemize} \item[(1)] $a_1,a_2,b_1,c_1,c_2\neq 0$, \item[(2)] $c_1\equiv 0, a_1,a_2,b_1,c_2\neq 0$; \end{itemize} \item[Case E] $c_1\equiv 0$. $a_1,a_2,b_1,b_2,c_2\neq 0$; \item[Case F] $c_2\equiv 0$. $a_1,a_2,b_1,b_2,c_1\neq 0$. \end{itemize} Also note that cases A4 and B4 were studied in \cite{r1}. Other cases were not investigated, and the main result of this paper is true for these particular cases. Boundary problems for parabolic-hyperbolic equations with two lines of type changing were investigated in \cite{a1,e1,e2,n1}, and with three lines of type changing in \cite{b1,b2}. The main point in this present work is the non-local condition, which relates values of the unknown function with various characteristics. It makes very difficult the reduction of the considered problem to a system of integral equations, we need a special algorithm for solving this problem. \section{Main results} In the domain $\Omega _1$ solution of the Cauchy problem with initial data $u(x,0) = \tau _1( x )$, $u_y(x,0) = \nu _1( x )$ can be represented, as in \cite{b3}, by \begin{equation} 2u(x,y) = \tau_1( {x + y} ) + \tau_1(x - y) + \int_{x - y}^{x + y} {\nu_1( z )dz} .\label{e5} \end{equation} Assuming that in condition \eqref{e2}, \begin{equation} u(-t,t) = {\varphi _1}( t ),\quad 0 \leqslant t \leqslant \frac{1}{2}, \label{e6} \end{equation} from \eqref{e5}, we find that \begin{equation} \tau '_1( t ) = \nu_1( t ) + {\Big( {\frac{{2[ {a_3(\frac{t}{2}) - a_1 (\frac{t}{2}){\varphi _1}(\frac{t}{2})}]}}{{a_2 (\frac{t}{2})}}} \Big)' },\quad 0 < t < 1.\label{e7} \end{equation} In condition \eqref{e3} introduce \begin{equation} u( 2 - t,1 - t ) = {\varphi _2}( t ),\quad \frac{1}{2} \leqslant t \leqslant 1,\label{e8} \end{equation} and from \eqref{e5}, we obtain \begin{equation} \tau '_1( t ) = - \nu _1( t ) + \Big( \frac{2[b_3( \frac{t + 1}{2}) - b_2(\frac{t + 1}{2} ) \varphi _2 (\frac{t + }{2})]} {b_1(\frac{t + 1}{2})}\Big)' ,\quad 0 < t < 1. \label{e9} \end{equation} From \eqref{e7} and \eqref{e9}, it follows that \begin{equation} \tau '_1( t ) = \Big( {\frac{{a_3(\frac{t}{2}) - a_1(\frac{t}{2}){\varphi _1}(\frac{t}{2})}}{{a_2(\frac{t}{2})}}} \Big)' + \Big( {\frac{{b_3( {\frac{{t + 1}}{2}} ) - b_2( {\frac{{t + 1}}{2}} ){\varphi _2} ( {\frac{{t + 1}}{2}} )}}{{b_1( {\frac{{t + 1}}{2}} )}}} \Big)',\quad 0 < t < 1.\label{e10} \end{equation} The solution of the Cauchy problem in the domain ${\Omega _2}$, with given data $u(0,y) = {\tau _2}( y )$, $u_x( {0,y} ) = {\nu _2}( y )$, is written as follows \cite{b3}, \begin{equation} 2u(x,y) = {\tau _2}( {y + x} ) + {\tau _2}( {y - x} ) + \int_{y - x}^{y + x} {{\nu _2}( z )dz} .\label{e11} \end{equation} Considering \eqref{e6} from \eqref{e11} we obtain \begin{equation} {\tau '_2}( t ) = {\nu _2}( t ) + {\varphi '_1}(\frac{t}{2}),\quad 0 < t < 1.\label{e12} \end{equation} In condition \eqref{e4} introduce another designation \begin{equation} (u_x - u_y)( {2 - t,t} ) = {\varphi _3}( t ),\quad \frac{1}{2} < t < 1.\label{e13} \end{equation} Then from \eqref{e11} we obtain \begin{equation} \frac{{c_3( {\frac{{t + 1}}{2}} ) - c_2( {\frac{{t + 1}}{2}} ){\varphi _3} ( {\frac{{t + 1}}{2}} )}}{{c_1( {\frac{{t + 1}}{2}} )}} = {\tau '_2}( t ) + {\nu _2}( t ),\,\,0 < t < 1.\label{e14} \end{equation} From \eqref{e12} and \eqref{e14} we deduce \begin{equation} 2{\tau '_2}( t ) = {\varphi '_1}(\frac{t}{2}) + \frac{{c_3( {\frac{{t + 1}}{2}} ) - c_2( {\frac{{t + 1}}{2}} ){\varphi _3} ( {\frac{{t + 1}}{2}} )}}{{c_1( {\frac{{t + 1}}{2}} )}},\quad 0 < t < 1.\label{e15} \end{equation} The solution of the Cauchy problem with data $u( {1,y} ) = {\tau _3}( y ),\,u_x( {1,y} ) = {\nu _3}( y )$ in the domain ${\Omega _3}$ has a form \cite{b3} \begin{equation} 2u(x,y) = {\tau _3}( {y + x - 1} ) + {\tau _2}( {y - x + 1} ) + \int_{y - x + 1}^{y + x - 1} {{\nu _3}( z )dz}.\label{e16} \end{equation} Using \eqref{e8} and \eqref{e13} from \eqref{e16}, after some evaluations one can get \begin{equation} 2{\tau '_3}( t ) = - {\varphi '_2}( {\frac{{2 - t}}{2}} ) - {\varphi _3}( {\frac{{t + 1}}{2}} ),\quad 0 < t < 1.\label{e17} \end{equation} Further, from the equation \eqref{e1} we pass to the limit at $y \to + 0$ and considering \eqref{e7} we find \begin{equation} {\tau ''_1}( t ) - {\tau '_1}( t ) = - {\Big( {\frac{{2\left[ {a_3(\frac{t}{2}) - a_1 (\frac{t}{2}){\varphi _1}(\frac{t}{2})} \right]}}{{a_2(\frac{t}{2})}}} \Big)' }. \label{e18} \end{equation} The solution of \eqref{e18} with the conditions \begin{equation} \tau_1( 0 ) = \frac{{a_3( 0 )}}{{a_1( 0 ) + a_2( 0 )}},\quad \tau_1( 1 ) = \frac{{b_3( 1 )}}{{b_1( 1 ) + b_2( 1 )}},\label{e19} \end{equation} which is deduced from \eqref{e2} and \eqref{e3}, can be represented as \cite{d1} \begin{equation} \begin{aligned} \tau_1( x ) &= \frac{{a_3( 0 )}}{{a_1( 0 ) + a_2( 0 )}} + x\Big[ {\frac{{b_3( 1 )}}{{b_1( 1 ) + b_2( 1 )}} - \frac{{a_3( 0 )}}{{a_1( 0 ) + a_2( 0 )}}} \Big] \\ &\quad + \int_0^1 {G(x,t)} \Big[ {\frac{{b_3( 1 )}}{{b_1( 1 ) + b_2( 1 )}} - \frac{{a_3( 0 )}}{{a_1( 0 ) + a_2( 0 )}}} \Big]dt \\ &\quad - \int_0^1 {G(x,t)} {\Big( {\frac{{2[ {a_3(\frac{t}{2}) - a_1(\frac{t}{2}){\varphi _1}(\frac{t}{2})} ]}}{{a_2(\frac{t}{2})}}} \Big)'}dt,\quad 0 \leqslant x \leqslant 1, \end{aligned} \label{e20} \end{equation} where $G(x,t)$ is Green's function of problem \eqref{e18}-\eqref{e19}. Continuing to assume that the function $\varphi _1$ is known, using the formula \eqref{e10} we represent function ${\varphi _2}$ via ${\varphi _1}$. Then using the solution of the first boundary problem for equation \eqref{e1} in the domain ${\Omega _0}$ (see \cite{d1}) and functional relations between functions ${\tau _j}$ and ${\nu _j}$ $(j = 2,3)$, we obtain \begin{equation} \begin{gathered} {{\tau '}_2}( y ) = \int_0^y {{{\tau '}_3}( \eta )N( {0,y,1,\eta } )d\eta } - \int_0^y {{{\tau '}_2}( \eta )N( {0,y,0,\eta } )d\eta } + {F_1}( y ), \\ {{\tau '}_3}( y ) = \int_0^y {{{\tau '}_3}( \eta )N( {1,y,1,\eta } )d\eta } - \int_0^y {{{\tau '}_2}( \eta )N( {1,y,0,\eta } )d\eta } + {F_2}( y ), \end{gathered} \label{e21} \end{equation} where \begin{gather*} \begin{aligned} {F_1}( y ) &= \int_0^1 {\tau_1( \xi ){{\overline G }_x} ( {o,y,\xi ,0} )d\xi } - \frac{{a_3( 0 )}}{{a_1( 0 ) + a_2( 0 )}}N( {0,y,0,0} ) \\ &\quad + \frac{{b_3( 1 )}}{{b_1( 1 ) + b_2( 1 )}}N( {0,y,1,0} ) + {{\varphi '}_1}( {\frac{y}{2}} ), \end{aligned} \\ \begin{aligned} {F_2}( y ) &= \int_0^1 {\tau_1( \xi ){{\overline G }_x}( {1,y,\xi ,0} )d\xi } - \frac{{a_3( 0 )}}{{a_1( 0 ) + a_2( 0 )}}N( {1,y,0,0} ) \\ &\quad + \frac{{b_3( 1 )}}{{b_1( 1 ) + b_2( 1 )}}N( {1,y,1,0} ) - {\varphi _3}( {\frac{{y + 1}}{2}} ), \end{aligned} \end{gather*} and \[ \overline G ( {x,y,\xi ,\eta } ) = \frac{1}{{2\sqrt {\pi ( {y - \eta } )} }} \sum_{n = - \infty }^\infty \Big[ {{e^{ - \frac{{{{( {x - \xi + 2n} )}^2}}}{{4( {y - \eta } )}}}} - {e^{ - \frac{{{{( {x + \xi + 2n} )}^2}}}{{4( {y - \eta } )}}}}} \Big] \] is the Green's function of the first boundary problem; see \cite{d1}, $$ N( {x,y,\xi ,\eta } ) = \frac{1}{{2\sqrt {\pi ( {y - \eta } )} }} \sum_{n = - \infty }^\infty \Big[ {{e^{ - \frac{{{{( {x - \xi + 2n} )}^2}}}{{4( {y - \eta } )}}}} + {e^{ - \frac{{{{( {x + \xi + 2n} )}^2}}}{{4( {y - \eta } )}}}}} \Big]. $$ From the first equation in \eqref{e21}, we represent function ${\varphi _3}$ via ${\varphi _1}$ and further, from the second equation of \eqref{e21}, we find the function ${\varphi _1}$. After the finding function ${\varphi _1}$, using appropriate formulas, we find functions ${\varphi _2}$, ${\varphi _3}$, ${\tau _i}$, ${\nu _i}$, $( {i = 1,2,3 } )$. Solution of the problem AS can be established in the domain ${\Omega _0}$ as a solution of the first boundary problem, and in the domains ${\Omega _i}$ $(i = 1,2,3)$ as a solution of the Cauchy problem. \begin{theorem} \label{thm1} If the functions $a_i,b_i,c_i$ are continuously differentiable on a segment, and have continuous second-order derivatives on an interval, then problem AS has a unique regular solution. \end{theorem} \begin{thebibliography}{00} \bibitem{a1} Abdullaev, A. S.; \emph{On some boundary problems for mixed parabolic-hyperbolic type equations Equations of mixed type and problem with free boundary}, Tashkent, Fan, 1987, pp. 71-82. \bibitem{b1} Berdyshev, A. S.; Rakhmatullaeva, N. A.; \emph{Nonlocal problems with special gluing for a parabolic-hyperbolic equation}, Further Progress in Analysis, Proceedings of the 6th ISAAC Congress. Ankara, Turkey, 13-18 August, 2007, pp. 727-734. \bibitem{b2} Berdyshev, A.S.; Rakhmatullaeva, N.A.; \emph{Non-local problems for parabolic-hyperbolic equations with deviation from the characteristics and three type-changing lines}, Electronic Journal of Differential Equations, Vol. (2011) 2011, No 7, pp. 1-6. \bibitem{b3} Bitsadze, A. V.; \emph{Equations of mathematical physics}, Mir Publishers, Moscow, 1980. \bibitem{d1} Djuraev, T. D.; Sopuev, A.; Mamajonov, M.; \emph{Boundary value problems for the parabolic-hyperbolic type equations}, Fan, Tashkent, 1986. \bibitem{e1} Egamberdiev, U.; \emph{Boundary problems for mixed parabolic-hyperbolic equation with two lines of type changing}, PhD thesis, Tashkent, 1984. \bibitem{e2} Eleev, V. A.; Lesev, V. N.; \emph{On two boundary problems for mixed type equations with perpendicular lines of type changing}, Vladikavkaz math. journ., Vol. 3,2001, Vyp. 4, pp. 9-22. \bibitem{n1} Nakusheva, V. A.; \emph{First boundary problem for mixed type equation in a characteristic polygon}, Dokl. AMAN, 2012, Vol. 14, No 1, pp. 58-65. \bibitem{r1} Rakhmatullaeva, N. A.; \emph{Local and non-local problems for parabolic-hyperbolic equations with three lines of type changing}, PhD thesis, Tashkent, 2011. \end{thebibliography} \end{document}