\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 172, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/172\hfil Ulam-Hyers-Rassias stability] {Ulam-Hyers-Rassias stability of semilinear differential equations with impulses} \author[Xuezhu Li, Jinrong Wang \hfil EJDE-2013/172\hfilneg] {Xuezhu Li, Jinrong Wang} % in alphabetical order \address{Xuezhu Li \newline Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, China} \email{xzleemath@126.com} \address{Jinrong Wang \newline Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, China} \email{wjr9668@126.com} \thanks{Submitted March 20, 2013. Published July 26, 2013.} \subjclass[2000]{34G20, 34D10, 45N05} \keywords{Semilinear differential equations; impulses; \hfill\break\indent Ulam-Hyers-Rassias stability} \begin{abstract} In this article, we present Ulam-Hyers-Rassias and Ulam-Hyers stability results for semilinear differential equations with impulses on a compact interval. An example is also provided to illustrate our results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Many researchers paid attention to the stability properties of all kinds of equations since Ulam \cite{Ulam} raised the famous stability problem of functional equations (Ulam problem) in 1940. Such problems have been taken up by Hyers \cite{Hyers41}, Rassias \cite{Rassias} and other mathematicians. Recently, the study of this area has the grown to be one of the most important subjects in the mathematical analysis area. For the advanced contribution on Ulam problem, we refer the reader to Andr\'{a}s and Kolumb\'{a}n \cite{Andras-NATMA}, Andr\'{a}s and M\'{e}sz\'{a}ros \cite{Andras-AMC}, Burger et al \cite{Burger}, C\u{a}dariu \cite{Cadariu1}, Cimpean and Popa \cite{Cimpean}, Hyers \cite{Hyers}, Hegyi and Jung \cite{Hegyi}, Jung \cite{Jung1,Jung-aml1}, Lungu and Popa \cite{Lungu}, Miura et al \cite{Miura1,Miura2}, Ob{\l}oza \cite{Obloza1,Obloza2}, Rassias \cite{Rassias98,Rassias00}, Rus \cite{Rus2009,Rus2010}, Takahasi et al \cite{Takahasi} and Wang et al \cite{Wang-JMAA}. However, Ulam-Hyers-Rassias stability of semilinear differential equations with impulses have not been studied. Motivated by recent works \cite{Rus2010,Wang-JMAA}, we investigate Ulam-Hyers-Rassias stability of the following semilinear differential equations with impulses \begin{equation}\label{sy.1-im-no} \begin{gathered} x'(t)=\lambda x(t)+f(t,x(t)),\quad t\in J':=J\setminus \{t_{1},\dots,t_{m}\},\; J:=[0,T],\\ \Delta x(t_{k})=I_{k}(x(t^{-}_k)),\quad k=1,2,\dots,m, \end{gathered} \end{equation} where $00$, $f:J \times \mathbb{R}\to \mathbb{R}$ is continuous, $I_{k}: \mathbb{R}\to \mathbb{R}$ and $t_{k}$ satisfy $0=t_{0}0$, $\psi\ge0$ and $\varphi\in PC(J,\mathbb{R}_+)$ is nondecreasing. We consider the set of inequalities \begin{equation}\label{U-H stable} \begin{gathered} |y'(t)-\lambda y(t)-f(t,y(t))|\leq\epsilon,\quad t\in J',\\ |\Delta y(t_{k})-I_{k}(y(t^{-}_k))|\leq \epsilon, \quad k=1,2,\dots,m; \end{gathered} \end{equation} the set of inequalities \begin{equation}\label{generalized U-H-R stable} \begin{gathered} |y'(t)-\lambda y(t)-f(t,y(t))|\leq\varphi(t), \quad t\in J',\\ |\Delta y(t_{k})-I_{k}(y(t^{-}_k))|\leq \psi,\quad k=1,2,\dots,m; \end{gathered} \end{equation} and the set of inequalities \begin{equation}\label{U-H-R stable} \begin{gathered} |y'(t)-\lambda y(t)-f(t,y(t))|\leq\epsilon\varphi(t), \quad t\in J',\\ |\Delta y(t_{k})-I_{k}(y(t^{-}_k))|\leq\epsilon \psi,\quad k=1,2,\dots,m. \end{gathered} \end{equation} \begin{definition}\label{def1} \rm Equation \eqref{sy.1-im-no} is Ulam-Hyers stable if there exists a real number $c_{f,m}>0$ such that for each $\epsilon>0$ and for each solution $y\in PC^1(J,\mathbb{R})$ of the inequality \eqref{U-H stable} there exists a solution $x\in PC^1(J,R)$ of the equation \eqref{sy.1-im-no} with \[ |y(t)-x(t)|\leq c_{f,m}\epsilon ,\quad t\in J. \] \end{definition} \begin{definition}\label{def2} \rm Equation \eqref{sy.1-im-no} is generalized Ulam-Hyers stable if there exists $\theta_{f,m}\in C(\mathbb{R}_+,\mathbb{R}_+)$, $\theta_{f,m}(0)=0$ such that for each solution $y\in PC^1(J,\mathbb{R})$ of the inequality \eqref{U-H stable} there exists a solution $x\in PC^1(J,\mathbb{R})$ of the equation \eqref{sy.1-im-no} with \[ |y(t)-x(t)|\leq\theta_{f,m}(\epsilon),\quad t\in J. \] \end{definition} \begin{definition}\label{def3}\rm Equation \eqref{sy.1-im-no} is Ulam-Hyers-Rassias stable with respect to $(\varphi,\psi)$ if there exists $c_{f,m,\varphi}>0$ such that for each $\epsilon>0$ and for each solution $y\in PC^1(J,\mathbb{R})$ of the inequality \eqref{U-H-R stable} there exists a solution $x\in PC^1(J,\mathbb{R})$ of the equation \eqref{sy.1-im-no} with \[ |y(t)-x(t)|\leq c_{f,m,\varphi}\epsilon (\varphi(t)+\psi),\quad t\in J. \] \end{definition} \begin{definition}\label{def4}\rm The equation \eqref{sy.1-im-no} is generalized Ulam-Hyers-Rassias stable with respect to $(\varphi,\psi)$ if there exists $c_{f,m,\varphi}>0$ such that for each solution $y\in PC^1(J,\mathbb{R})$ of the inequality \eqref{generalized U-H-R stable} there exists a solution $x\in PC^1(J,\mathbb{R})$ of the equation \eqref{sy.1-im-no} with \begin{align*} |y(t)-x(t)|\leq c_{f,m,\varphi}(\varphi(t)+\psi),~t\in J. \end{align*} \end{definition} \begin{remark}\label{def1-4-remark} \rm It is clear that: (i) Definition \ref{def1} implies Definition \ref{def2}; (ii) Definition \ref{def3} implies Definition \ref{def4}; (iii) Definition \ref{def3} for $\varphi (t)=\psi=1$ implies Definition \ref{def1}. \end{remark} \begin{remark}\label{remark1} \rm A function $y\in PC^{1}(J,\mathbb{R})$ is a solution of the inequality \eqref{U-H stable} if and only if there is $g\in PC(J,\mathbb{R})$ and a sequence $g_k$, $k=1,2,\dots,m$ (which depend on $y$) such that \begin{itemize} \item[(i)] $|g(t)|\leq\epsilon \varphi(t),~t\in J$ and $|g_k|\le\epsilon \psi$, $k=1,2,\dots,m$; \item[(ii)] $y'(t)=f(t,y(t))+g(t)$, $t\in J'$; \item[(iii)] $\Delta y(t_{k})=I_{k}(y(t^{-}_k))+g_k$, $k=1,2,\dots,m$. \end{itemize} \end{remark} One can have similar remarks for inequalities \eqref{generalized U-H-R stable} and \eqref{U-H stable}. \begin{remark} \rm If $y\in PC^{1}(J,\mathbb{R})$ is a solution of the inequality \eqref{U-H-R stable} then $y$ is a solution of the integral inequality \begin{equation}\label{est1} \begin{aligned} &\Big|y(t)-e^{\lambda t}y(0)-\sum_{i=1}^{k}e^{\lambda(t-t_{i})}I_i(y(t_i^-)) -\int_0^{t}e^{\lambda(t-s)}f(s,y(s))ds\Big| \\ &\leq e^{\lambda t}m\epsilon \psi+\epsilon\int_0^{t}e^{\lambda(t-s)}\varphi(s)ds,\quad t\in J. \end{aligned} \end{equation} \end{remark} In fact, by Remark \ref{remark1} we have \begin{equation}\label{est1-eq} \begin{gathered} y'(t)=f(t,y(t))+g(t),\quad t\in J',\\ \Delta y(t_{k})=I_{k}(y(t^{-}_k))+g_k,\quad k=1,2,\dots,m. \end{gathered} \end{equation} Clearly, the solution of \eqref{est1-eq} is given by \begin{align*} y(t)&= e^{\lambda t}y(0)+\sum_{i=1}^{k}e^{\lambda(t-t_{i})}I_i(y(t_i^-)) +\sum_{i=1}^{k}e^{\lambda(t-t_{i})}g_i\\ &\quad +\int_0^{t}e^{\lambda(t-s)}f(s,y(s))ds +\int_0^{t}e^{\lambda(t-s)}g(s)ds,~t\in (t_k,t_{k+1}]. \end{align*} From this it follows that \begin{align*} &\Big|y(t)-e^{\lambda t}y(0)-\sum_{i=1}^{k}e^{\lambda(t-t_{i})}I_i(y(t_i^-)) -\int_0^{t}e^{\lambda(t-s)}f(s,y(s))ds\Big|\\ &\leq \sum_{i=1}^{m}e^{\lambda(t-t_{i})}|g_i| +\int_0^{t}e^{\lambda(t-s)}|g(s)|ds\\ &\leq e^{\lambda t}m\epsilon \psi +\epsilon\int_0^{t}e^{\lambda(t-s)}\varphi(s)ds. \end{align*} Clearly, one can give similar remarks for the solutions of the inequalities \eqref{generalized U-H-R stable} and \eqref{U-H stable}. \section{Ulam-Hyers-Rassias stability results} We use the following assumptions: \begin{itemize} \item[(H1)] $f\in C(J\times\mathbb{R},\mathbb{R})$. \item[(H2)] There exists $L_{f}(\cdot)\in C(J,\mathbb{R}_+)$ such that \[ |f(t,u_{1})-f(t,u_{2})|\leq L_{f}(t)|u_{1}-u_{2}|,\quad \text{for each $t\in J$ and all }u_{1},u_{2} \in \mathbb{R}. \] \item[(H3)] There exists $\rho_{k}>0$ such that $ |I_{k}(u_1)-I_{k}(u_2)|\leq \rho_{k}|u_1-u_2|$ for each $u_1,u_2\in \mathbb{R}$ and $k=1,2,\dots,m$. \item[(H4)] Let $\varphi\in C(J,\mathbb{R_{+}})$ be a nondecreasing function. There exists $c_{\varphi}>0$ such that \[ \int_{0}^{t}\varphi(s)ds\leq c_{\varphi}\varphi(t),\quad\text{for each }t\in J. \] \end{itemize} Now, we are ready to state the following Ulam-Hyers-Rassias stable result. \begin{theorem}\label{theorem-U-H-R} Assume that {\rm (H1)--(H4)} are satisfied. Then \eqref{sy.1-im-no} is Ulam-Hyers-Rassias stable with respect to $(\varphi,\psi)$. \end{theorem} \begin{proof} Let $y\in PC^1(J,\mathbb{R})$ be a solution of the inequality \eqref{U-H-R stable}. Denote by $x$ the unique solution of the impulsive Cauchy problem \begin{equation}\label{sy.1-ref} \begin{gathered} x'(t)=\lambda x(t)+f(t,x(t)),\quad t\in J',\\ \Delta x(t_k)=I_k(x(t_k^-)),\quad k=1,2,\dots,m,\\ x(0)=y(0). \end{gathered} \end{equation} Then we have \[ x(t)=\begin{cases} e^{\lambda t}y(0)+\int_{0}^{t} e^{\lambda(t-s)}f(s,x(s))ds, &\text{for }t\in[0,t_1],\\ e^{\lambda t}y(0)+e^{\lambda(t-t_{1})}I_1(x(t_1^-)) +\int_{0}^{t}e^{\lambda(t-s)}f(s,x(s))ds, &\text{for }t\in(t_1,t_2],\\ \dots\\ e^{\lambda t}y(0)+\sum_{k=1}^{m}e^{\lambda(t-t_{k})}I_k(x(t_k^-))+ \int_{0}^{t}e^{\lambda(t-s)}f(s,x(s))ds, &\text{for }t\in(t_m,T]. \end{cases} \] By \eqref{est1}, for each $t\in(t_k,t_{k+1}]$, we have \begin{align*} &\Big|y(t)-e^{\lambda t}y(0)-\sum_{i=1}^{k} e^{\lambda(t-t_{i})}I_i(y(t_i^-))-\int_0^{t}e^{\lambda(t-s)}f(s,y(s))ds\Big|\\ &\leq e^{\lambda t}m\epsilon \psi +\epsilon\int_0^{t}e^{\lambda(t-s)}\varphi(s)ds\\ &\leq \varepsilon e^{\lambda T}(m+c_{\varphi})[\psi+\varphi(t)]. \end{align*} Hence for each $t\in(t_k,t_{k+1}]$, it follows that \begin{align*} &|y(t)-x(t)|\\ &\leq \Big|y(t)-e^{\lambda t}y(0)-\sum_{i=1}^{k}e^{\lambda(t-t_{i})}I_i(y(t_i^-)) -\int_0^{t}e^{\lambda(t-s)}f(s,y(s))ds\Big|\\ &\quad +\sum_{i=1}^{k}e^{\lambda(t-t_{i})}|I_i(y(t_i^-))-I_i(x(t_i^-))| +\int_{0}^{t}e^{\lambda(t-s)}|f(s,y(s))-f(s,x(s))|ds\\ &\leq \varepsilon e^{\lambda T}(m+c_{\varphi})[\psi+\varphi(t)] +\int_{0}^{t}e^{\lambda (t-s)}L_f(s)|y(s)-x(s)|ds\\ &\quad +e^{\lambda T}\sum_{i=1}^{k}\rho_{i}|y(t_i^-)-x(t_i^-)|. \end{align*} By Lemma \ref{Gronwall-class}, we obtain \begin{align*} |y(t)-x(t)| &\leq \varepsilon e^{\lambda T}(m+c_{\varphi})[\psi+\varphi(t)] \Big(\prod_{00. \] Thus, \eqref{sy.1-im-no} is Ulam-Hyers-Rassias stable with respect to $(\varphi,\psi)$. The proof is complete. \end{proof} Next, we replace (H3) by \begin{itemize} \item[(H3*)] There exist nondecreasing functions $\rho_{k}\in C(\mathbb{R}_+,\mathbb{R}_+)$, with $\rho_k(0)=0$ such that \[ |I_{k}(u_1)-I_{k}(u_2)|\leq \rho_{k}(|u_1-u_2|), \] for each $u_1,u_2\in \mathbb{R}$ and $k=1,2,\dots,m$. \end{itemize} Next, we present the following Ulam-Hyers stable result. \begin{theorem}\label{theorem-g-U-H} Assume that {\rm (H1), (H2)} and {\rm (H3*)} are satisfied. Then \eqref{sy.1-im-no} is generalized Ulam-Hyers stable. \end{theorem} \begin{proof} From the proof in Theorem \ref{theorem-U-H-R}, we are led to the inequality \begin{equation}\label{ineq1} \begin{aligned} |v(t)|&\leq \varepsilon e^{\lambda T}(m+T) + e^{\lambda T}\int_{0}^{t}L_f(s)|v(s)|ds\\ &\quad +e^{\lambda T}\sum_{i=1}^{k}\rho_{i}(|v(t_i^-)|),\quad t\in(t_k,t_{k+1}], \end{aligned} \end{equation} where $v(t):=y(t)-x(t)$. Let $M_k:=\sup_{t\in[t_k,t_{k+1}]}\{|v(t)|\}$ for $k=0,\dots,m$. Then the inequality \eqref{ineq1} implies $$ |v(t)|\leq (m+T)e^{\lambda T}\epsilon+ e^{\lambda T}\int_{0}^{t}L_f(s)\left|v(s)\right|ds +e^{\lambda T}\sum_{i=1}^{k}\rho_{i}(M_{i-1}) $$ for $t\in(t_k,t_{k+1}]$. Using the standard Gronwall inequality we obtain \begin{equation}\label{ineq2} M_{k}\leq e^{\lambda T}\Big((m+T)\epsilon+\sum_{i=1}^{k}\rho_{i}(M_{i-1})\Big) e^{e^{\lambda T}\int_{0}^{T}L_f(s)ds}. \end{equation} Setting \begin{gather*} \theta_0(\epsilon)= (m+T)\epsilon e^{e^{\lambda T}\int_{0}^{T}L_f(s)ds},\\ \theta_k(\epsilon)= \Big((m+T)\epsilon+\sum_{i=1}^{k}\rho_{i}(e^{\lambda T}\theta_{i-1}(\epsilon))\Big)e^{e^{\lambda T}\int_{0}^{T}L_f(s)ds},\quad k=1,\dots,m. \end{gather*} Obviously, the inequality \eqref{ineq2} implies \[ M_k\le e^{\lambda T}\theta_k(\epsilon),\quad k=0,\dots,m. \] Let $\theta_{f,m}(\epsilon)=\max\{e^{\lambda T}\theta_k(\epsilon): k=0,\dots,m\}$. Hence \[ |v(t)|\leq \theta_{f,m}(\epsilon). \] Clearly $\theta_{f,m}\in C(\mathbb{R}_+,\mathbb{R}_+)$ and $\theta_{f,m}(0)=0$. Thus, the equation \eqref{sy.1-im-no} is generalized Ulam-Hyers stable. The proof is complete. \end{proof} \section{Example} Let $\lambda=1$, $\varphi(t)=t$, $\psi=1$. We consider the linear impulsive ordinary differential equation \begin{equation}\label{E4.1} \begin{gathered} x'(t)=x(t),\quad t\in [0,2]\setminus \{1\},\\ \Delta x(1)=\frac{|x(1^{-})|}{1+|x(1^{-})|}, \end{gathered} \end{equation} and the inequalities \begin{equation}\label{E4.2} \begin{gathered} |y'(t)-y(t)|\leq\epsilon t,\quad t\in ( [0,2]\setminus\{1\},\\ \big|\Delta y(1)-\frac{|y(1^{-})|}{1+|y(1^{-})|}\big| \leq\epsilon,\quad \epsilon>0. \end{gathered} \end{equation} Let $y\in PC^{1}([0,2],\mathbb{R})$ be a solution of inequality \eqref{E4.2}. Then there exist $g\in PC^{1}([0,2],\mathbb{R})$ and $g_1\in \mathbb{R}$ such that: \begin{gather}\label{E4.2-add} |g(t)|\leq \epsilon t, \quad t\in [0,2],\; |g_1|\le\epsilon,\\ \label{E4.3} y'(t)= y(t)+g(t),\quad t\in [0,2]\setminus\{1\}, \\ \label{E4.3-im} \Delta y(1)= \frac{|y(1^{-})|} {1+|y(1^{-})|}+g_1. \end{gather} Integrating \eqref{E4.3} from $0$ to $t$ via \eqref{E4.3-im}, we have \[ y(t)= e^{t}y(0)+\chi_{(1,2]}(t)e^{t-1}\Big(\frac{|y(1^{-})|}{1+|y(1^{-})|} +g_1\Big)+\int_{0}^{t}e^{t-s}g(s)ds, \] for the characteristic function $\chi_{(1,2]}(t)$ on $(1,2]$. Let us consider the solution $x$ of \eqref{E4.1} given by \[ x(t)= e^{t}y(0)+\chi_{(1,2]}(t)e^{t-1}\frac{|x(1^{-})|}{1+|x(1^{-})|}. \] We have \begin{align*} |y(t)-x(t)| &= \Big|\chi_{(1,2]}(t)e^{t-1}\Big(\frac{|y(1^{-})|}{1+|y(1^{-})|} -\frac{|x(1^{-})|}{1+|x(1^{-})|} +g_1\Big)+\int_0^{t}e^{t-s}g(s)ds\Big|\\ &\leq e^{t}|y(1^{-})-x(1^{-})|+e^{t}|g_1|+e^{t}\int_0^{t}|g(s)|ds\\ &\leq e^{t}|y(1^{-})-x(1^{-})| +e^{t}\epsilon+\epsilon e^{t}\int_0^{t} s ds\\ &\leq e^{t}|y(1^{-})-x(1^{-})| +e^{t}\epsilon+\epsilon e^{t}\frac{1}{2}t^2\\ &\leq e^{t}|y(1^{-})-x(1^{-})| +e^{t}\epsilon(1+t),~t\in [0,2], \end{align*} which gives \[ |y(t)-x(t)|\leq e^{2}(1+e^2)\epsilon (t+1),\quad t\in [0,2]. \] Thus, \eqref{E4.1} is Ulam-Hyers-Rassias stable with respect to $(t,1)$. \subsection*{Acknowledgments} This work is supported by grant 11201091 from the National Natural Science Foundation of China, and by the Key Support Subject (Applied Mathematics) of Guizhou Normal College. \begin{thebibliography}{00} \bibitem{Andras-NATMA} Sz. Andr\'{a}s, J. J. Kolumb\'{a}n; \emph{On the Ulam-Hyers stability of first order differential systems with nonlocal initial conditions}, Nonlinear Anal.:TMA, 82(2013), 1-11. \bibitem{Andras-AMC} Sz. Andr\'{a}s, A. R. M\'{e}sz\'{a}ros, Ulam-Hyers stability of dynamic equations on time scales via Picard operators, Appl. Math. Comput., 219(2013), 4853-4864. \bibitem{Bainov} D. D. Bainov, S. G. Hristova; \emph{Integral inequalities of Gronwall type for piecewise continuous functions}, J. Appl. Math. Stoc. Anal., 10(1997), 89-94. \bibitem{Burger} M. Burger, N. Ozawa, A. Thom; \emph{On Ulam stability}, Isr. J. Math., (2012), doi: 10.1007/s11856-012-0050-z. \bibitem{Cadariu1} L. C\u{a}dariu; \emph{Stabilitatea Ulam-Hyers-Bourgin pentru ecuatii functionale}, Ed. Univ. Vest Timi\c{s}oara, Timi\c{s}ara, 2007. \bibitem{Cimpean} D. S. Cimpean, D. Popa; \emph{Hyers-Ulam stability of Euler's equation}, Appl. Math. Lett., 24(2011), 1539-1543. \bibitem{Hegyi} B. Hegyi, S.-M. Jung; \emph{On the stability of Laplace's equation}, Appl. Math. Lett., 26(2013), 549-552. \bibitem{Hyers41} D. H. Hyers; \emph{On the stability of the linear functional equation}, Proc. Nat. Acad. Sci., 27(1941), 222-224. \bibitem{Hyers} D. H. Hyers, G. Isac, Th. M. Rassias; \emph{Stability of functional equations in several variables}, Birkh\"{a}user, 1998. \bibitem{Jung1} S.-M. Jung; \emph{Hyers-Ulam-Rassias stability of functional equations in mathematical analysis}, Hadronic Press, Palm Harbor, 2001. \bibitem{Jung-aml1} S.-M. Jung; \emph{Hyers-Ulam stability of linear differential equations of first order}, Appl. Math. Lett., 17(2004), 1135-1140. \bibitem{Lungu} N. Lungu, D. Popa; \emph{Hyers-Ulam stability of a first order partial differential equation}, J. Math. Anal. Appl., 385(2012), 86-91. \bibitem{Miura1} T. Miura, S. Miyajima, S.-E. Takahasi; \emph{A characterization of Hyers-Ulam stability of first order linear differential operators}, J. Math. Anal. Appl., 286(2003), 136-146. \bibitem{Miura2} T. Miura, S. Miyajima, S.-E. Takahasi; \emph{Hyers-Ulam stability of linear differential operator with constant coefficients}, Math. Nachr., 258(2003), 90-96. \bibitem{Obloza1} M. Ob{\l}oza; \emph{Hyers stability of the linear differential equation}, Rocznik Nauk.-Dydakt. Prace Mat., 13(1993), 259-270. \bibitem{Obloza2} M. Ob{\l}oza; \emph{Connections between Hyers and Lyapunov stability of the ordinary differential equations}, Rocznik Nauk.-Dydakt. Prace Mat., 14(1997), 141-146. \bibitem{Rassias} Th. M. Rassias; \emph{On the stability of linear mappings in Banach spaces}, Proc. Amer. Math. Soc., 72(1978), 297-300. \bibitem{Rassias98} J. M. Rassias; \emph{On the stability of functional equations in Banach spaces}, J. Math. Anal. Appl., 251(2000), 264-284. \bibitem{Rassias00} J. M. Rassias; \emph{On the stability of functional equations and a problem of Ulam}, Acta Appl. Math., 62(2000), 23-130. \bibitem{Rus2009} I. A. Rus; \emph{Ulam stability of ordinary differential equations}, Studia Univ. ``Babe\c{s} Bolyai" Mathematica, 54(2009), 125-133. \bibitem{Rus2010} I. A. Rus; \emph{Ulam stabilities of ordinary differential equations in a Banach space}, Carpathian J. Math., 26(2010), 103-107. \bibitem{Takahasi} S.-E. Takahasi, T. Miura, S. Miyajima; \emph{On the Hyers-Ulam stability of the Banach spacevalued differential equation $y' = \lambda y$}, Bull. Korean Math. Soc., 39(2002), 309-315. \bibitem{Ulam} S. M. Ulam; \emph{A collection of mathematical problems}, Interscience Publishers, New York, 1968. \bibitem{Wang-JMAA} J. Wang, M. Fe\u{c}kan, Y. Zhou; \emph{Ulam's type stability of impulsive ordinary differential equations}, J. Math. Anal. Appl., 395(2012), 258-264. \end{thebibliography} \end{document}