\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 205, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/205\hfil Periodic solutions] {Periodic solutions for fourth-order $p$-Laplacian functional differential equations with sign-variable coefficient} \author[J. Liu, W. Liu, B. Liu \hfil EJDE-2013/205\hfilneg] {Jiaying Liu, Wenbin Liu, Bingzhuo Liu} % in alphabetical order \address{Jiaying Liu \newline Department of Mathematics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China} \email{ relinaliu@163.com} \address{Wenbin Liu (corresponding author)\newline Department of Mathematics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China} \email{wblium@163.com} \address{Bingzhuo Liu \newline Department of Mathematics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China} \email{tuteng3839@163.com} \thanks{Submitted October 7, 2012. Published September 18, 2013.} \thanks{Supported by grant 11271364 from the NNSF of China} \subjclass[2000]{34A12, 34C25} \keywords{$p$-Laplacian equation; periodic solution; multiple deviating argument; \hfill\break\indent Mawhin continuation theorem} \begin{abstract} Using the theory of coincidence degree, we show the existence of periodic solutions to the fourth-order $p$-Laplacian differential equations of Li{\'{e}}nard-type \begin{align*} &\phi_p(x''))''+f(x(t))x'(t)+\alpha(t)g_1(x(t-\tau_1(t,x(t))))\\ &+\beta(t)g_2(x(t-\tau_1(t,x(t))))=p(t). \end{align*} The rate of growth of $g_1(u)$ with respect to the variable $u$ is allowed to be greater than $p-1$, and the coefficient $\beta (t)$ is allowed to change sign. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} The study of the fourth-order differential equations is of great practical significance, whose classical application is to describe the equilibrium of elastic beams. The study on periodic oscillations of the fourth-order differential equations has gained more and more attention by many researchers, and some profound results have been obtained (see \cite{g2,p1,p2,u1}). However, the results of periodic solutions to a fourth order $p$-Laplacian delay differential equation are relatively rare. In this article, we consider the existence of periodic solutions to the fourth-order $p$-Laplacian differential equations with multiple deviating arguments: \begin{equation}\label{1.1} \begin{aligned} &\phi_p(x''))''+f(x(t))x'(t)+\alpha(t)g_1\big(x(t-\tau_1(t,x(t)))\big)\\ &+\beta(t)g_2\big(x(t-\tau_2(t,x(t)))\big)=p(t) \end{aligned} \end{equation} where $p>1$, $\phi_p(s)=|s|^{p-2}s $ $(s \neq 0)$, $\phi_p(0)=0$, $\alpha(t),\beta(t),p(t) \in C(\mathbb{R}, \mathbb{R})$, $\int_0^T p(t)dt=0$, $\int_0^T \beta(t)dt\neq 0$, $\alpha(t)\geq 0$ $(\leq 0)$ for $t\in \mathbb{R}$, $ \int_0^T \alpha(t)dt> 0$ $(< 0)$, $\alpha(t+T)=\alpha(t)$, $\beta(t+T)=\beta(t)$, $p(t+T)=p(t)$ $\tau_i\in C(\mathbb{R}^2, \mathbb{R})$, $\tau_i(t+T,x)=\tau_i(t,x)$, $g_i \in C(\mathbb{R}, \mathbb{R})$, $i=1,2$, $T>0$. In recent years, there have been a number of results on the existence of periodic solutions of the second order $p$-Laplacian differential equations; see \cite{c1,g1,l1,m1,p3,z1} and the references therein. Cheung and Ren \cite{p3} studied the existence of periodic solutions for the $p$-Laplacian delay equation $$ \phi_p(x'))'+f(x'(t))+\beta g(x(t-\tau(t)))=e(t) $$ where $\beta>0$ is a constant. Gao and Lu \cite{g1} studied the periodic solutions for the $p$-Laplacian Rayleigh differential equation with a delay, $$ \phi_p(x'))'+f(x'(t))+\beta(t)g(x(t-\tau(t)))=e(t)\,. $$ In 2007, Cheung and Ren \cite{c1} discussed the solvability of periodic problems for the Lienard-type $p$-Laplacian delay differential equation $$ \phi_p(x'))'+f(x(t))x'(t)+g(t,x(t-\tau(t)))=e(t)\,, $$ under the assumption $$\lim_{|x|\to \infty}\frac{|g(x)|}{|x|^{p-1}}=r\geq 0. $$ Motivated by the above works, we will present the existence of periodic solutions for \eqref{1.1} by using Mawhin's continuation theorem. Our main results are different from those results in the literature. For instance, in our study we allow the growth rate of $g_1(u)$, with respect to $u$, to be greater than $p-1$. Also we allow the coefficient $\beta(t)$ to change sign $\mathbb{R}$. \section{Preliminaries} For simplicity, we use the following symbols in this article \begin{gather*} C_T=\{ x\in C(\mathbb{R},\mathbb{R}): x(t+T)=x(t) \},\quad |x|_\infty=\max_{t\in [0,T]}|x(t)|, \\ C_T^1=\{ x\in C^1(\mathbb{R},\mathbb{R}):x(t+T)=x(t) \},\quad \|x\|=\max\{|x|_\infty, |x'|_\infty \}, \\ |x|_p=\Big(\int_0^T|x(t)|^pdt\Big)^{1/p},\quad D_p= \begin{cases} 1, & 01. \end{cases} \end{gather*} To state our main results, we introduce several technical lemmas. \begin{lemma}[\cite{m1}] \label{lem1} Assume that $\Omega$ is an open bounded set in $ C_{T}^1 $ such that the following three conditions hold: \begin{itemize} \item[(1)] For each $\lambda \in (0,\,1)$, the equation \begin{equation}\label{2.1} (\phi_p(x''))''=\lambda f(t,x(t),x(t-\mu(t)),x'(t)), \end{equation} has no $T$-periodic solution on $\partial\Omega$, where $ f(t,x,y,z)\in C(\mathbb{R}^4,\mathbb{R})$ and $ f(t+T,\cdot,\cdot,\cdot))=f(t,\cdot,\cdot,\cdot))$. \item[(2)] The equation \begin{equation*} %\label{2.2} F(a)=\frac{1}{2\pi}\int_0^Tf(t,a,a,0)dt=0, \end{equation*} has no solution on $\partial\Omega\cap \mathbb{R}$. \item[(3)] The Brouwer degree satisfies $\deg_{B}(F,\Omega\cap\mathbb{R},0) \neq 0$. \end{itemize} Then \eqref{2.1} has a $T$-periodic solution in $ \bar{\Omega} $ when $\lambda=1$. \end{lemma} \begin{lemma}[\cite{z1}] \label{lem2} If $ \omega (t)\in c^1(\mathbb{R},\mathbb{R})$ and $ \omega(0)=\omega(T)=0$, then there holds $$ \int_0^T|\omega(t)|^pdt \leq \big(\frac{T}{\pi_p}\big)^p\int_0^T|\omega'(t)|^pdt, $$ where $$ \pi_p=\int_0^{(p-1)/p}\frac{ds}{(1-(p-1)^{-1}s^p)^{1/p}} =\frac{2\pi(p-1)^{1/p}}{p\sin(\pi/p)}. $$ \end{lemma} \begin{lemma}[\cite{h1}] \label{lem3} Let $ a, b, p>0 $, then there holds $$ (a+b)^p\leq D_p(a^p+b^p). $$ \end{lemma} For the sake of convenience, we list the following assumptions which will be used frequently in Section 3. \begin{itemize} \item[(H1)] For $i=1,2$, there are positive constants $r_i, r_i^\ast, m_i$ with $m_2\leq p-1 $ and $m_1>p-1 $ such that for $|u|>1$ there hold \begin{itemize} \item[(i)] $ r_1|u|^{m_1}\leq |g_1(u)|\leq r_2|u|^{m_1}$ and $ r_1^\ast|u|^{m_2}\leq |g_2(u)|\leq r_2^\ast|u|^{m_2}$. \item[(ii)] $ug_i(u)>0$. \end{itemize} \item[(H2)] $ A=D_{\frac{1}{m_1}} (\frac{r_2^\ast \bar \beta}{\bar \alpha r_1})^{1/m_1}<1$. \item[(H3)] There are constants $\gamma,r_3>0$ and $k_0\in Z $ such that $m_1=r_3+p-1$ and $$ 0\leq\tau_1(t,x(t))-k_0T\leq \max \{\frac{\gamma^q}{1+|x|_\infty^{r_3q}},T \}, \quad \forall t\in[0,T],\;x(t)\in C[0,T]. $$ where $q>1: \frac{1}{p}+\frac{1}{q}=1$ \end{itemize} \section{Main Results} \begin{theorem} \label{thm1} Suppose that {\rm (H1)--(H3)}. Then \eqref{1.1} has at least one $T$-periodic solution if one of the following two conditions holds \begin{itemize} \item[(1)] $m_2=p-1$, $\Delta_1+\Delta_2<1$, \item[(2)] $ m_20$, and $ \int_0^T\beta(t)dt>0$. Consider the homotopy equation \begin{equation} \label{3.1} \begin{aligned} &\phi_p(x''))''+\lambda f(x(t))x'(t)+\lambda \alpha(t)g_1(x(t-\tau_1(t,x(t)))) \\ &+\lambda \beta(t)g_2(x(t-\tau_2(t,x(t))))=\lambda p(t). \end{aligned} \end{equation} Suppose that $x(t)$ is an arbitrary $T$-periodic solution of \eqref{3.1}. Integrating both sides of equation \eqref{3.1} on $[0,T]$ we obtain $$ \int_0^T\alpha(t)g_1(x(t-\tau_1(t,x(t))))dt =-\int_0^T\beta(t)g_2(x(t-\tau_2(t,x(t))))dt. $$ Applying the mean value theorem, then there exists a constant $ \xi\in [0,T] $ such that \begin{equation}\label{3.2} g_1(x(\xi-\tau_1(\xi,x(\xi))))\int_0^T\alpha(t)dt =-\int_0^T\beta(t)g_2(x(t-\tau_2(t,x(t))))dt. \end{equation} Now, we claim that the inequality \begin{equation}\label{3.3} |x(\xi-\tau_1(\xi,x(\xi)))|\leq A|x|_\infty +B \end{equation} holds, where \begin{gather*} A=D_{\frac{1}{m_1}}(\frac{r_2^\ast \bar \beta}{\bar \alpha r_1})^{1/m_1}, \quad B=D_{\frac{1}{m_1}}(\frac{M_{g_2} \bar \beta}{\bar \alpha r_1})^{1/m_1}+1,\\ \bar{\alpha}=\int_0^T\alpha(t)dt,\quad \bar{\beta}=\int_0^T|\beta(t)|dt,\quad M_{g_2}=\max_{|u|\leq1}|g_2(u)|. \end{gather*} In fact, if $|x(\xi-\tau_1(\xi,x(\xi)))|\leq 1$, then inequality \eqref{3.3} holds. If $|x(\xi-\tau_1(\xi,x(\xi)))|> 1$, we define \begin{gather*} E_1=\{t\in [0,T]: |x(t-\tau_1(t,x(t)))|\leq 1 \}, \\ E_2=\{t\in [0,T]: |x(t-\tau_1(t,x(t)))|>1 \}. \end{gather*} It follows from (H1)(i) that \begin{align*} \bar\alpha r_1|x(\xi-\tau_1(\xi,x(\xi)))|^{m_1} &\leq \int_0^T\beta(t)g_2(x(t-\tau_2(t,x(t))))dt \\ &= \int_{E_1}+\int_{E_2}\beta(t)g_2(x(t-\tau_2(t,x(t))))dt \\ &\leq r_2^\ast \bar {\beta}|x|_\infty^{m_2}+M_{g_2} \bar {\beta}. \end{align*} This implies that \begin{align*}{} |x(\xi-\tau_1(\xi,x(\xi)))| &\leq [\frac{1}{\bar\alpha r_1}(r_2^\ast \bar {\beta}|x|_\infty^{m_2} +M_{g_2} \bar {\beta})]^{1/m_1}\\ &\leq D_{\frac{1}{m_1}}[(\frac{r_2^\ast \bar {\beta}}{\bar\alpha r_1})^{1/m_1}|x|_\infty^{\frac{m_2}{m_1}} +(\frac{M_{g_2}\bar {\beta}}{\bar\alpha r_1})^{1/m_1}]\\ &\leq D_{\frac{1}{m_1}}(\frac{r_2^\ast \bar {\beta}}{\bar\alpha r_1})^{1/m_1}|x|_\infty +D_{\frac{1}{m_1}}(\frac{M_{g_2}\bar {\beta}}{\bar\alpha r_1})^{1/m_1}. \end{align*} Thus, it can be easily seen that \eqref{3.3} holds. Let \begin{equation}\label{3.4} \xi-\tau_1(\xi,x(\xi))=kT+\bar \xi, \end{equation} where $ k $ is an integer and $\bar{\xi} \in [0,T]$, thus we have $$ x(\xi-\tau_1(\xi,x(\xi)))=x(kT+\bar {\xi})=x(\bar{\xi}). $$ Noting that $$ |x(t)|\leq |x(\bar{\xi})|+\frac{1}{2}\int_0^T|x'(s)|ds, $$ we have $$ |x|_\infty=\max\limits_{t\in[0,T]}|x(t)|\leq A|x|_\infty +B+\frac{1}{2}\int_0^T|x'(s)|ds, $$ which yields \begin{equation}\label{3.5} |x|_\infty \leq \frac{\int_0^T |x'(s)|ds}{2(1-A)}+\frac{B}{1-A}. \end{equation} On the other hand, multiplying both sides of \eqref{3.1} by $x(t)$, and integrating on $[0,T]$, we obtain \begin{equation} \label{3.6} \begin{aligned} \int_0^T|x''(t)|^pdt &=-\lambda \int_0^Tf(x(t))x'(t)x(t)dt -\lambda\int_0^T \alpha(t)g_1(x(t-\tau_1(t,x(t))))x(t)dt \\ &\quad -\lambda\int_0^T \beta(t)g_2(x(t-\tau_2(t,x(t))))x(t)dt +\lambda\int_0^T p(t)x(t)dt \\ &\leq \lambda\int_0^T \alpha(t)|g_1(x(t-\tau_1(t,x(t))))|\, |x(t)-x(t-\tau_1(t,x(t)))|dt \\ &\quad -\lambda\int_0^T \alpha(t)g_1(x(t-\tau_1(t,x(t))))x(t-\tau_1(t,x(t)))dt \\ &\quad +\int_0^T |\beta(t)g_2(x(t-\tau_2(t,x(t))))x(t)|dt+\bar{p}|x|_\infty, \end{aligned} \end{equation} where $\bar{p}=\int_0^T|p(t)|dt $. By the condition (H1)(ii), we have \begin{equation} \label{3.7} \begin{aligned} &-\lambda \int_0^T\alpha(t)g_1(x(t-\tau _1(t,x(t))))x(t-\tau _1(t,x(t)))dt \\ &= -\lambda \int_{E_1} -\lambda \int_{E_2}\alpha(t)g_1(x(t-\tau _1(t,x(t)))) x(t-\tau _1(t,x(t)))dt \\ &\leq \int_{E_1}\alpha(t)|g_1(x(t-\tau _1(t,x(t))))x(t-\tau _1(t,x(t)))|dt \\ &\leq \overline{\alpha}M_{g_1}, \end{aligned} \end{equation} where $M_{g_1}=\max _{|u|\leq 1}|g_1(u)|$. Using the condition (H1) again, we obtain \begin{align*} & \int_0^T\alpha(t)|g_1(x(t-\tau _1(t,x(t))))||x(t)-x(t-\tau _1(t,x(t)))|dt \\ &= \int_{E_1}+\int_{E_2}\alpha(t)|g_1(x(t-\tau _1(t,x(t))))| |x(t)-x(t-\tau _1(t,x(t)))|dt \\ &\leq \overline{\alpha}M_{g_1}+\overline{\alpha}M_{g_1}|x|_\infty +\overline{\alpha}r_2 \max_{t\in[0,T]} |x(t)-x(t-\tau _1(t,x(t)))|\times |x|_\infty^{m_1}, \end{align*} and \[ \int_0^T|\beta(t)||g_2(x(t-\tau _2(t,x(t))))x(t)|dt \leq \overline{\beta}r_2^*|x|_\infty^{m_2+1}+\overline{\beta}M_{g_2}|x|_\infty, \] where $M_{g_2}=\max _{|u|\leq 1}|g_2(u)|$ and $\overline{\beta}=\int_0^T|\beta(t)|dt$. So \eqref{3.6} yields \begin{equation} \label{3.8} \begin{aligned} \int_0^T|x''(t)|^p dt &\leq \overline{\alpha}r_2 \max_{t\in[0,T]} |x(t)-x(t-\tau _1(t,x(t)))|\times |x|_\infty^{m_1} +\overline{\beta}r_2^*|x|_\infty^{m_2+1}\\ &\quad +(\overline{\alpha}M_{g_1}+\overline{\beta}M_{g_2} +\overline{p})|x|_\infty+2\overline{\alpha}M_{g_1} \\ &= \overline{\alpha}r_2 \max_{t\in[0,T]} |x(t)-x(t-\tau _1(t,x(t)))|\times |x|_\infty^{m_1}+\overline{\beta}r_2^*|x|_\infty^{m_2+1}\\ &\quad +\theta|x|_\infty+K, \end{aligned} \end{equation} where $\theta=\overline{\alpha}M_{g_1}+\overline{\beta}M_{g_2}+\overline{p}$ and $K=2 \overline{\alpha}M_{g_1}$. Since $x(0)=x(T)$, there exists a constant $\zeta \in [0,T]$ such that $x'(\zeta)=0$. Let $\omega (t)=x'(t+\zeta)$, then $\omega(0)=\omega(T)=0$. By Lemma \ref{lem2}, we have \[ \int_0^T|x'(t)|^pdt\leq \big(\frac{T}{\pi _p}\big)^p \Big(\int_0^T|x''(t)|^pdt\Big). \] From (H3) and H\"{o}lder's inequality, we have \begin{equation} \label{3.9} \begin{aligned} & \max_{t\in[0,T]} |x(t)-x(t-\tau _1(t,x(t)))| \\ &= \max_{t\in[0,T]} |x(t)-x(t-\tau _1(t,x(t))+ k_0T)|\\ &= \max_{t\in[0,T]}|\int_{t-\tau _1(t,x(t))+k_0T}^{t}x'(s)ds|\\ &\leq \max_{t\in [0,T]} | \tau _1 {(t,x(t))-k_0T|^{1/q}} \Big(\int_{t-\tau_1 (t,x(t))+k_0T}^{t} |x'(s)| ^p ds\Big)^{1/p}\\ &\leq \max_{t\in [0,T]} | \tau _1 {(t,x(t))-k_0T|_\infty^{1/q}} \Big(\int_{0}^{T} |x'(s)| ^p ds\Big)^{1/p}. \end{aligned} \end{equation} Moreover, from \eqref{3.5} and by H\"{o}lder's inequality, we have \begin{equation} \label{3.10} \begin{aligned} r_2^*\overline{\beta}|x|_\infty^{m_2+1} &\leq r_2^*\overline{\beta}[\frac{\int_{0}^{T} |x'(s)| ds}{2(1-A)} +\frac{B}{1-A}]^{m_2+1}\\ &\leq \frac{r_2^*\overline{\beta}D_{m_2+1}}{2^{m_2+1}(1-A)^{m_2+1}} \Big(\int_{0}^{T} |x'(s)|ds\Big)^{m_2+1} +\frac{r_2^*\overline{\beta}D_{m_2+1}B^{m_2+1}}{(1-A)^{m_2+1}}\\ &\leq \frac{r_2^*\overline{\beta}D_{m_2+1}T^{\frac{m_2+1}{q}}} {2^{m_2+1}(1-A)^{m_2+1}}\big(\frac{T}{\pi _p}\big)^{m_2+1} \Big(\int_0^T|x''(s)|^pds\Big)^{\frac{m_2+1}{p}}\\ &\quad +\frac{r_2^*\overline{\beta}D_{m_2+1}B^{m_2+1}}{(1-A)^{m_2+1}}, \end{aligned} \end{equation} and \begin{equation} \label{3.11} \begin{aligned} \theta|x|_\infty &\leq \theta \big[\frac{\int_{0}^{T} |x'(s)| ds}{2(1-A)}+\frac{B}{1-A}\big] \\ &\leq \frac{\theta T^{1/q}}{2(1-A)}\big(\frac{T}{\pi _p}\big) \Big(\int_0^T|x''(s)|^pds\Big)^{1/p}+\frac{\theta B}{1-A}. \end{aligned} \end{equation} By of $m_1=r_3+p-1$ and the condition (H3), and combining \eqref{3.9}-\eqref{3.11}, we have \begin{align} &\int_0^T|x''(t)|^pdt \nonumber \\ &\leq \overline{\alpha}r_2 \max_{t\in[0,T]} |x(t) -x(t-\tau _1(t,x(t)))||x|_\infty^{r_3}|x|_\infty^{p-1} +\overline{\beta}r_2^*|x|_\infty^{m_2+1} +\theta|x|_\infty+K \nonumber\\ &\leq \overline{\alpha}r_2 \gamma (\int_0^T|x'(s)|^pds)^{1/p} [\frac{\int_{0}^{T} |x'(s)| ds}{2(1-A)}+\frac{B}{1-A}]^{p-1} +\overline{\beta}r_2^*|x|_\infty^{m_2+1} +\theta|x|_\infty+K \nonumber\\ &\leq \overline{\alpha}r_2 \gamma (\int_0^T|x'(s)|^pds)^{1/p}\frac{D_{p-1} \Big(\int_{0}^{T} |x'(s)| ds\Big)^{p-1}}{2^{p-1}(1-A)^{p-1}} \nonumber\\ &\quad + \overline{\alpha}r_2 \gamma D_{p-1} \Big(\int_0^T|x'(s)|^pds\Big)^{1/p}\frac{B^{p-1}}{(1-A)^{p-1}}\nonumber \\ &\quad +\frac{\theta T^{1/q}}{2(1-A)}\big(\frac{T}{\pi _p}\big) \Big(\int_0^T|x''(s)|^pds\Big)^{1/p} \nonumber\\ &\quad +\frac{r_2^*\overline{\beta}D_{m_2+1}T^{\frac{m_2+1}{q}}} {2^{m_2+1}(1-A)^{m_2+1}}\big(\frac{T}{\pi _p}\big)^{m_2+1}(\int_0^T|x''(s)|^pds) ^{\frac{m_2+1}{p}} \nonumber\\ &\quad +\frac{r_2^*\overline{\beta}D_{m_2+1}B^{m_2+1}}{(1-A)^{m_2+1}} +\frac{B\theta}{1-A}+K \nonumber\\ &\leq \frac{D_{p-1}\overline{\alpha}r_2 T^{\frac{p-1}{q}}\gamma} {2^{p-1}(1-A)^{p-1} }\Big(\int_0^T|x'(s)|^pds\Big) + \frac{D_{p-1}\overline{\alpha}r_2 B^{p-1}\gamma}{(1-A)^{p-1} } \Big(\int_0^T|x'(s)|^pds\Big)^{1/p} \nonumber\\ &\quad +\frac{r_2^*\overline{\beta}D_{m_2+1}T^{\frac{m_2+1}{q}}} {2^{m_2+1}(1-A)^{m_2+1}}\big(\frac{T}{\pi _p}\big)^{m_2+1}(\int_0^T|x''(s)|^pds) ^{\frac{m_2+1}{p}} \nonumber\\ &\quad +\frac{\theta T^{1/q}}{2(1-A)}\big(\frac{T}{\pi _p}\big) \Big(\int_0^T|x''(s)|^pds\Big)^{1/p}+C \nonumber\\ &\leq \frac{D_{p-1}\overline{\alpha}r_2 T^{\frac{p-1}{q}} \gamma}{2^{p-1}(1-A)^{p-1} }\big(\frac{T}{\pi _p}\big)^{p} \Big(\int_0^T|x''(s)|^pds\Big) \nonumber\\ &\quad + \frac{D_{p-1}\overline{\alpha}r_2 B^{p-1}\gamma}{(1-A)^{p-1} } \big(\frac{T}{\pi _p}\big)\Big(\int_0^T|x''(s)|^pds\Big)^{1/p} \nonumber\\ &\quad +\frac{r_2^*\overline{\beta}D_{m_2+1}T^{\frac{m_2+1}{q}}} {2^{m_2+1}(1-A)^{m_2+1}}\big(\frac{T}{\pi _p}\big)^{m_2+1}\Big(\int_0^T|x''(s)|^pds\Big) ^{\frac{m_2+1}{p}} \nonumber\\ &\quad +\frac{\theta T^{1/q}}{2(1-A)}\big(\frac{T}{\pi _p}\big) \Big(\int_0^T|x''(s)|^pds\Big)^{1/p}+C \nonumber\\ &= \Delta_1\Big(\int_0^T|x''(s)|^pds\Big)+ \Delta_2\Big(\int_0^T|x''(s)|^pds\Big) ^{\frac{m_2+1}{p}} \nonumber\\ &\quad + \frac{D_{p-1}\overline{\alpha}r_2 B^{p-1}\gamma}{(1-A)^{p-1} } \big(\frac{T}{\pi _p}\big)\Big(\int_0^T|x''(s)|^pds\Big)^{1/p} \nonumber \\ &\quad +\frac{\theta T^{1/q}}{2(1-A)}\big(\frac{T}{\pi _p}\big) \Big(\int_0^T|x''(s)|^pds\Big)^{1/p}+C, \label{3.12} \end{align} where \[ C=\frac{r_2^*\overline{\beta}D_{m_2+1}B^{m_2+1}}{(1-A)^{m_2+1}} +\frac{B\theta}{1-A}+K. \] If $m_2=p-1$ and $\Delta_1+\Delta_2<1$, then from \eqref{3.12} it follows that $\int_0^T|x''(t)|^pdt$ is bounded. If $m_20$ such that \begin{align*} \Big(\int_0^T|x''(t)|^pdt\Big)^{1/p}\leq M, \end{align*} which shows that there exist positive numbers $M_0$ and $M_1$ such that \[ |x|_\infty\leq M_0,\quad |x'|_\infty\leq M_1. \] Let \[ \Omega=\{ x(t)\in C_T^1:||x||<\rho \}, \] where $\rho>\max \{1,M_0,M_1\}$. Then the homotopy equation \eqref{3.1} has no $T$-periodic solution on $\partial\Omega$. In addition, \begin{align*} F(\rho) &= -\frac{1}{T}[\int_0^T\alpha(t)g_1(\rho)dt +\int_0^T\beta(t)g_2(\rho)dt-\int_0^Tp(t)dt]\\ &= -\frac{1}{T}g_1(\rho)\int_0^T\alpha(t)dt -\frac{1}{T}g_2(\rho)\int_0^T\beta(t)dt. \end{align*} It means that the second condition of Lemma \ref{lem1} is satisfied, and $F(\rho)F(-\rho)<0$ from (H1)(ii). Consequently, from Lemma \ref{lem1} the equation \eqref{1.1} has at least one $T$-periodic solution in $\overline {\Omega}$ . \end{proof} \begin{remark} \label{rmk1} \rm If we replace the conditions $\alpha(t)>0$, $\int_0^T\beta(t)dt>0$ with $\alpha(t)<0$, $\int_0^T\beta(t)dt<0$ or $\alpha(t)<0$, $\int_0^T\beta(t)dt>0$ or $\alpha(t)>0$, $\int_0^T\beta(t)dt<0$, we can obtain the same conclusion as Theorem \ref{thm1}. \end{remark} \begin{remark} \label{rmk2} \rm Condition (H1) can be replaced by \begin{itemize} \item[(H1')] For $i=1,2$, there are positive constants $r_i,r_i^*,m_i,d$ with $m_2\leq p-1$ and $m_1> p-1$ such that \begin{itemize} \item[(i)] $r_1|u|^{m_1}\leq |g_1(u)|\leq r_2|u|^{m_1}$ and $r_1^*|u|^{m_2}\leq |g_2(u)|\leq r_2^*|u|^{m_2}$ for all $|u|>d \geq 1$, \item[(ii)] $g_i(u)(\operatorname{sgn}u)>0$ for all $|u|>d\geq1$; \end{itemize} \end{itemize} while the conclusion of Theorem \ref{thm1} is still true. \end{remark} \begin{thebibliography}{00} \bibitem{c1} Cheung, W. S.; Ren, J. L.; \emph{Periodic solutions for p-Laplacian Lienard equation with a deviating argument}, Nonlinear Anal., 59 (2007), 107-120. \bibitem{g1} Gao, F. B.; Lu, S.; \emph{Periodic solutions for a Rayleigh type equation with a variable coefficient ahead of the nonlinear term}, Nonlinear Anal., 10 (2009), 254-258. \bibitem{g2} Gupta, C. P.; \emph{Existence and uniqueness theorems for the elastic beam equation at resonance}, J. Math. Appl. Anal., 135 (1988), 208-225. \bibitem{h1} Hardy, G. H.; Littlewood, J. E.; Polya, G.; \emph{Inequalities}, Cambridge, 2nd Ed., 1952. \bibitem{l1} Lu, S.; Gui, Z.; \emph{On the existence of periodic solutions to p-Laplacian Rayleigh differential equation with a delay}, J. Math. Anal. Appl. 325 (2007), 685-702. \bibitem{m1} Manasevich, R.; Mawhin, J.; \emph{Periodic solutions for nonlinear systems with p-Laplacian-like operators}, J. Differential Equations, 145 (1998), 367-393. \bibitem{p1} Pao, C. V.; \emph{On fourth-order elliptic boundary value problems}, Proc. Amer. Math. Soc. 128 (2000), 1023-1030. \bibitem{p2} Pino, D. M.; Manasevich, R. F.; \emph{Existence for a fourth-order boundary value problem under a two-parameter nonresonance condition}, Proc. Amer. Math. Soc., 112 (1991), 81-86. \bibitem{p3} Pino, M. D.; Elgueta, M.; Man\'{a}sevich R.; \emph{A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u)'+f(t,u)=0$, $u(0)=u(T)$, $p>1$}, J. Differential Equations, 80 (1989), 1-13. \bibitem{u1} Usmari, R. A.; \emph{A uniqueness theorem for a class of boundary value problem}, Proc. Amer. Math. Soc., 77 (1979), 327-335. \bibitem{z1} Zhang, M. R.; \emph{Nonuniform nonresonance at the first eigenvalue of p-Laplacian}, Nonlinear Anal. 29 (1997), 41-51. \end{thebibliography} \end{document}