\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 208, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/208\hfil Existence and asymptotic behavior] {Existence and asymptotic behavior of solutions for H\'enon equations in hyperbolic spaces} \author[H. He, W. Wang \hfil EJDE-2013/208\hfilneg] {Haiyang He, Wei Wang} % in alphabetical order \address{Haiyang He \newline College of Mathematics and Computer Science, Key Laboratory of High Performance Computing and Stochastic Information Processing, Ministry of Education, Hunan Normal University, Changsha, Hunan 410081, China} \email{hehy917@hotmail.com} \address{Wei Wang \newline College of Mathematics and Computer Science, Key Laboratory of High Performance Computing and Stochastic Information Processing, Ministry of Education, Hunan Normal University, Changsha, Hunan 410081, China} \email{ww224182255@sina.com} \thanks{Submitted May 29, 2013. Published September 19, 2013.} \subjclass[2000]{35J20, 35J60} \keywords{H\'enon equation; hyperbolic space; asymptotic behavior; blow up} \begin{abstract} In this article, we consider the existence and asymptotic behavior of solutions for the H\'{e}non equation \begin{gather*} -\Delta_{\mathbb{B}^N}u=(d(x))^{\alpha}|u|^{p-2}u, \quad x\in \Omega\\ u=0 \quad x\in \partial \Omega, \end{gather*} where $\Delta_{\mathbb{B}^N}$ denotes the Laplace Beltrami operator on the disc model of the Hyperbolic space $\mathbb{B}^N$, $d(x)=d_{\mathbb{B}^N}(0,x)$, $\Omega \subset \mathbb{B}^N$ is geodesic ball with radius $1$, $\alpha>0, N\geq 3$. We study the existence of hyperbolic symmetric solutions when $2
0, N\geq 3$. When posed in Euclidean space $\mathbb{R}^N$, problem \eqref{eq:1.1} becomes \begin{equation}\label{eq:1.2} \begin{gathered} -\Delta u=|x|^{\alpha}|u|^{p-2}u, \quad x\in \Omega\\ u=0 \quad x\in \partial \Omega, \end{gathered} \end{equation} where $\Omega$ is the unit ball in $\mathbb{R}^N$ with $N\geq 3$, $\alpha>0$ and $p >2$, which stems from the study of rotating stellar structures and is called H\'{e}non equation \cite{H}. Such a problem has been extensively studied, see for instance \cite{CP,N,S} etc. Interesting phenomenon concerning with problem \eqref{eq:1.2} was revealed recently that the exponent $\alpha$ affects the critical exponent for the existence of solutions. Precisely, it was shown in \cite{N} that for $p\in( 2, \frac{2N+2\alpha}{N-2})$, problem \eqref{eq:1.2} admits at least one radial solution. One also notices that the moving plane method in \cite{GNN} can not be applied to \eqref{eq:1.2} since the weight function $r\mapsto r^\alpha$ is increasing. So it can be expected that problem \eqref{eq:1.2} possesses non-radial solutions. Such solutions were found in \cite{SSW} for $2 < p <\frac{2N}{N-2}$ and in \cite{S} for $ p = \frac{2N}{N-2}$. Furthermore, in \cite{CP}, the limiting behavior of the ground state solutions of \eqref{eq:1.2} was considered as $p\to 2^*=\frac {2N}{N-2}$. The authors showed that the maximum point of ground state solutions of \eqref{eq:1.2} concentrate on a boundary point of the domain as $p\to 2^*$. In their arguments, one of the key ingredients is to show that the ground state solutions $\{u_p\}$, $2
0$, problem \eqref{eq:1.1} possesses a ground solution $u_p$ which belongs to $H_0^1(\mathbb{B}^N)$ when $p\in (2,\frac{2N}{N-2})$. Moreover, there is a hyperbolic symmetry positive solution $u_p^{rad}$ for problem \eqref{eq:1.1} provided that $p\in (2,\frac{2N+2\alpha}{N-2})$. \end{theorem} \begin{theorem}\label{thm:1.2} Suppose $p\in(2,2^{*}),\alpha>0$, then the ground state solution $u_p$ satisfies (after passing to subsequence) for some $x_{0}\in\partial \Omega$, \begin{itemize} \item[(i)] $|\nabla_{\mathbb{B}^N} u_p|^2\to \mu\delta_{x_{0}}$ as $p\to 2^{*}$ in the sense of measure. \item[(ii)] $|u_p|^{2^{*}}\to \nu\delta_{x_{0}}$ as $p\to 2^{*}$ in the sense of measure, \end{itemize} where $\mu>0$, $\nu>0$ satisfy $\mu\geq S \nu^{2/2^*}$, $\delta_x$ is the Dirac mass at $x$. \end{theorem} \begin{theorem}\label{thm:1.3} Let $u_p$ be as in Theorem \ref{thm:1.2} and $x_p\in \bar{\Omega}$ be such $M_p'=u_p(x_p)=max_{x\in \bar{\Omega}}u_p(x)$, $\lambda'_p={M'_p}^{-2/(N-2)}$. Then, as $p\to 2^{*},M'_p\to +\infty$ and \begin{itemize} \item[(i)] $x_p$ is unique when $p$ close to $2^{*}$. Moreover, as $p\to 2^{*},dist_{\mathbb{B}^N}(x_p,\partial \Omega)\to 0$, $\operatorname{dist}_{\mathbb{B}^N}(x_p,\partial \Omega)/\lambda'_p \to \infty$, \item[(ii)] $\lim_{p\to 2^{*}}\int_{\Omega}|\nabla_{\mathbb{B}^N} (u_p-(\frac{1-|x|^2}{2})^\frac{N-2}{2}U_{\lambda_p,x_p})|^2 \,dV_{\mathbb{B}^N}=0$, where $\lambda_p$ is defined in Section 4. \end{itemize} \end{theorem} This paper is organized as follows. In section 2, we give some basic facts about hyperbolic space and the proof of Theorem \ref{thm:1.1}. In section 3, we show that $u_p$ is a minimizing sequence of $S $ as $p\to 2^*$, and then prove Theorem \ref{thm:1.2} by the concentration compactness principle. In section 4, we prove Theorem \ref{thm:1.3} mainly by a blow-up technique. \section{Preliminaries} Hyperbolic space $\mathbb{H}^N$ is a complete simple connected Riemannian manifold which has constant sectional curvature equal to $-1$. There are several models for $\mathbb{H}^N$ and we will use the Poincar\'{e} ball model $\mathbb{B}^N$ in this article. The Poincar\'{e} ball model for the hyperbolic space is \[ \mathbb{B}^N=\{x=(x_1, x_2,\dots, x_n)\in \mathbb{R}^N| \ |x|<1\} \] endowed with Riemannian metric $g$ given by $g_{ij}=(p(x))^2\delta_{ij}$ where $p(x)=\frac{2}{1-|x|^2}$. We denote the hyperbolic volume by $dV_{\mathbb{B}^N}$ and is given by $dV_{\mathbb{B}^N}=(p(x))^N \,dx$. The hyperbolic gradient and the Laplace Beltrami operator are: \[ \Delta_{\mathbb{B}^N}=(p(x))^{-N}\operatorname{div}((p(x))^{N-2} \nabla u)),\quad \nabla_{\mathbb{B}^N} u=\frac{\nabla u}{p(x)} \] where $\nabla$ and div denote the Euclidean gradient and divergence in $\mathbb{R}^N$, respectively. The hyperbolic distance $d_{\mathbb{B}^N}(x,y)$ between $x, y\in \mathbb{B}^N$ in the Poincar\'{e} ball model is given by the formula: \begin{equation}\label{1.3} d_{\mathbb{B}^N}(x,y) =\operatorname{Arccosh}(1+\frac{2|x-y|^2}{(1-|x|^2)(1-|y|^2)}). \end{equation} From this we immediately obtain for $x\in \mathbb{B}^N$, \[ d(x)=d_{\mathbb{B}^N}(0,x)=\log(\frac{1+|x|}{1-|x|}). \] Let us denote the energy functional corresponding to \eqref{eq:1.1} by \begin{equation}\label{eq:2.1} I(u)= \frac{1}{2}\int_{\Omega}|\nabla_{\mathbb{B}^N}u|^2dV_{\mathbb{B}^N}- \frac{1}{p}\int_{\Omega}|d(x)|^{\alpha}|u|^pdV_{\mathbb{B}^N} \end{equation} defined on $H_0^1(\Omega)$, where $H_0^{1}(\Omega)$ is the Sobolev space on $\mathbb{B}^N$ with the above metric $g$. We see that $u\in H_0^1(\Omega)$ is a solution of problem \eqref{eq:1.1} if and only if $v=(\frac{2}{1-|x|^2})^{\frac{N-2}{2}}u$ solves the following equation \begin{equation}\label{eq:2.1'} -\Delta{v}+\frac{N(N-2)}{4}(\frac{2}{1-|x|^2})^2 v=({\ln{\frac{1+|x|}{1-|x|}}})^{\alpha}(\frac{1-|x|^2}{2}) ^{\frac{(N-2)p-2N}{2}}|v|^{p-2}v, \end{equation} for $v\in H_{0}^{1}(\Omega')$, where $\Omega'$ is a ball in $\mathbb{R}^N$ centered at origin with radius $r=(e-1)/(e+1)$, $\alpha>0, p>2$. Let us define the energy functional corresponding to \eqref{eq:2.1'} by \begin{equation}\label{eq:2.3'} \begin{aligned} J(v) &=\frac{1}{2} \int_{\Omega'} |\nabla v|^2+\frac{N(N-2)}{4}) (\frac{2}{1-|x|^2})^2 v^2\,dx\\ &\quad -\frac{1}{p}\int_{\Omega'}(\ln\frac{1+|x|}{1-|x|})^{\alpha} (\frac{1-|x|^2}{2})^{\frac{(N-2)p-2N}{2}}|v|^p \,dx. \end{aligned} \end{equation} Thus for any $u\in H_0^1(\Omega)$ if $\tilde{u}$ is defined as $\tilde{u}=(\frac{2}{1-|x|^2})^\frac{N-2}{2} u$, then $I(u)=J(\tilde{u})$. Moreover $\langle I'(u), v\rangle=\langle J'(\tilde{u}), \tilde{v}\rangle$ where $\tilde{v}$ is defined in the same way. \begin{proof}[Proof Theorem \ref{thm:1.1}] As $\ln\frac{1+|x|}{1-|x|}\leq \frac{2|x|}{1-|x|^2}$, $|x|\leq\frac{e-1}{e+1}$ and $\frac{2e}{(e+1)^2}\leq \frac{1-|x|^2}{2}\leq \frac{1}{2}$, firstly, for $\alpha\geq0,2
0, p>2$. \begin{lemma}\label{lm:3.1} The solution of \eqref{eq:3.1} satisfies \begin{equation}\label{3.2} \begin{split} &\frac{\int_{\Omega'}(|\nabla v_p|^2 +\frac{N(N-2)}{4}(\frac{2}{1-|x|^2})^2|v_p|^2)dx} {(\int_{\Omega'}|v_p|^pdx)^{2/p}}\\ &\geq\frac{\int_{\Omega'}(|\nabla v_p|^2 +\frac{N(N-2)}{4}(\frac{2}{1-|x|^2})^2|v_p|^2)dx} {(\int_{\Omega'}|v_p|^{2^{*}}dx)^{2/2^*}}+O_{(2^{*}-p)}(1) \end{split} \end{equation} for $ p$ near $ 2^{*}$. \end{lemma} \begin{proof} By H\"{o}lder inequality $$ \Big(\int_{\Omega'}|v_p|^pdx\Big)^{1/p} \leq(\int_{\Omega'}|v_p|^{2^{*}}dx)^{1/2^*} \Big(\operatorname{meas}\Omega'\Big)^{\frac{2^{*}-p}{2^{*}p}}, $$ then Lemma \ref{lm:3.1} follows immediately. \end{proof} For $\varepsilon>0$ small enough, let $x_{0}=(\frac{e-1}{e+1}-\frac{1}{|\ln \varepsilon|},0,\dots ,0)\in R^N$, $$ U_{\varepsilon}(x)=\frac{1}{(\varepsilon+|x-x_{0}|^2)^{\frac{N-2}{2}}}, $$ $\varphi\in C_{0}^{\infty}(\Omega)$ be a cut-off function satisfying \[ \varphi(x)=\begin{cases} 1, & x\in B(x_{0},\frac{1}{2|\ln\varepsilon|})\\ 0, & x\in R^{n}\backslash B(x_{0},\frac{1}{|\ln\varepsilon|}) \end{cases} \] and $0\leq\varphi(x)\leq1$, $|\nabla\varphi(x)|\leq C|\ln\varepsilon|$ for all $x\in \mathbb{R}^N$, where $C$ is independent of $\varepsilon$, $B(x,r)$ denotes a ball centered $x$ with radius $r$. Set $v_{\varepsilon}=\varphi U_{\varepsilon}$, then $v_{\varepsilon}\in H_{0}^{1}(\Omega')$. \begin{lemma}\label{lm:3.1'} Let $v_{\varepsilon}$ be defined as above, then \[ \lim_{\varepsilon\to 0}\lim_{p\to 2^{*}} \frac{\int_{\Omega'}\big(|\nabla v_{\varepsilon}|^{2} +\frac{N(N-2)}{4}(\frac{2}{1-|x|^{2}})^2|v_{\varepsilon}|^{2}\big)dx} {\big(\int_{\Omega'}(\ln\frac{1+|x|}{1-|x|})^{\alpha} (\frac{1-|x|^{2}}{2})^{\frac{(N-2)p-2N}{2}}|v_{\varepsilon}|^{p}dx \big)^{2/p}}=S\,. \] \end{lemma} \begin{proof} On the one hand, from \cite{CP}\cite{S1}, we have \begin{equation}\label{3.3} |v_{\varepsilon}|_p^2=|U|_p^2\varepsilon^{\frac{N}{p}-(N-2)}+CK_{1} (\varepsilon)|U|_p^{2-p}\varepsilon^{\frac{(N-2)p}{2}-\frac{N}{2} +\frac{N}{p}-(N-2)}, \end{equation} \begin{equation}\label{3.4} |\nabla v_{\varepsilon}|^2_{2}=|\nabla U|_{2}^2 \varepsilon^{-\frac{(N-2)}{2}}+ \begin{cases} C|\ln \varepsilon|^{N-2}+o(|\ln\varepsilon|^{N-2}), &N\geq5,\\ C|\ln\varepsilon|^2(\ln(2|2\ln\varepsilon|))+O(|\ln\varepsilon|^2), & N=4,\\ C|\ln\varepsilon|^2, & N=3, \end{cases} \end{equation} and \begin{equation}\label{3.5} |v_{\varepsilon}|^2_{2}=O(\frac{1}{|\ln\varepsilon|^2}). \end{equation} On the other hand, we have \begin{align*} &\int_{\Omega'}(\ln\frac{1+|x|}{1-|x|})^{\alpha} (\frac{1-|x|^2}{2})^{\frac{(N-2)p-2N}{2}}|v_{\varepsilon}|^pdx\\ &\geq(\ln\frac{e-\frac{e+1}{|\ln\varepsilon|}}{1+\frac{e+1} {|\ln\varepsilon|}})^{\alpha} (\frac{1}{2})^{\frac{(N-2)p-2N}{2}} \int_{\Omega'}|v_{\varepsilon}|^p dx, \end{align*} and \[ \int_{\Omega'}\frac{N(N-2)}{4}(\frac{2}{1-|x|^2})^2|v_{\varepsilon}|^{ 2} \,dx \leq \frac{N(N-2)}{4}\frac{(e+1)^2}{2e}\int_{\Omega'} |v_{\varepsilon}|^{2} \,dx. \] By\eqref{3.3}--\eqref{3.5}, for $N\geq5$, we have \begin{align} &\lim_{\varepsilon\to 0}\lim_{p\to 2^{*}} \frac{\int_{\Omega'}(\nabla v_{\varepsilon}|^2+\frac{N(N-2)}{4} \frac{2}{1-|x|^2}|v_{\varepsilon}|^{2})dx} {(\int_{\Omega'}(\ln\frac{1+|x|}{1-|x|})^{\alpha} (\frac{1-|x|^2}{2})^{\frac{(N-2)p-2N}{2}}|v_{\varepsilon}|^pdx)^{2/p}} \nonumber \\ &\leq \lim_{\varepsilon\to 0}\lim_{p\to 2^{*}} \frac{1}{(\ln\frac{e-\frac{e+1}{|\ln\varepsilon|}} {1+\frac{e+1}{|\ln\varepsilon|}})^{\frac{2\alpha}{p}}} \times\frac{1}{(\frac{1}{2})^{\frac{(N-2)p-2N}{2}}} \nonumber\\ &\quad\times\frac{|\nabla U|_{2}^2 \varepsilon^{-\frac{N-2}{2}} +C|\ln\varepsilon|^{N-2}+o( |\ln\varepsilon|^{N-2}) +O(\frac{1}{|\ln\varepsilon|^2})} {|U|_p^2\varepsilon^{\frac{N}{p}-(N-2)} +C K_{1}(\varepsilon)|U|_p^{2-p}\varepsilon^{\frac{(N-2)p}{2} -\frac{N}{2}+\frac{N}{p}-(N-2)}} \nonumber\\ &=\lim_{\varepsilon\to 0}(\ln\frac{e-\frac{e+1}{|\ln\varepsilon|}} {1+\frac{e+1}{|\ln\varepsilon|}})^{\frac{2\alpha}{2^{*}}} \times\frac{|\nabla U|_{2}^2\varepsilon^{-\frac{N-2}{2}} +C|\ln\varepsilon|^{N-2}+o(|\ln\varepsilon|^{N-2}) +O(\frac{1}{|\ln\varepsilon|^2})}{|U|_{2}^{2^{*}}\varepsilon^{-\frac{N-2}{2} }+C |\ln\varepsilon|^N\varepsilon} \nonumber\\ &=\lim_{\varepsilon\to 0}(\ln\frac{e-\frac{e+1}{|\ln\varepsilon|}} {1+\frac{e+1}{|\ln\varepsilon|}})^{\frac{2\alpha}{2^{*}}} \times \frac{|\nabla U|_{2}^2 +C(\varepsilon^{\frac{1}{2}}|\ln\varepsilon|)^{N-2}}{|U|_{2^{*}}^2 +C(\varepsilon^{\frac{1}{2}} |\ln\varepsilon|)^{N-2}} =\frac{|\nabla U|_{2}^2}{|U|_{2^{*}}^2}. \label{3.6} \end{align} Moreover, $$ \frac{\int_{\Omega'}\big(|\nabla v_{\varepsilon}|^2 +\frac{N(N-2)}{4}\frac{2}{1-|x|^2}|v_{\varepsilon}|^{ 2}\big)dx} {\big(\int_{\Omega'}(\ln\frac{1+|x|}{1-|x|})^{\alpha} (\frac{1-|x|^2}{2})^{\frac{(N-2)p-2N}{2}}|v_{\varepsilon}|^pdx\big)^{2/p}} \geq \frac{\int_{\Omega'} \big(|\nabla v_{\varepsilon}|^2+\frac{N(N-2)}{4}\frac{2} {1-|x|^2}|v_{\varepsilon}|^{2}\big)dx} {(\frac{e}{(1+e)^2})^{\frac{(N-1)p-2N}{p}} \big(\int_{\Omega'}|v_{\varepsilon}|^pdx\big)^{2/p}}. $$ Similarly, we have \begin{equation}\label{3.7} \lim_{\varepsilon\to 0}\lim_{p\to 2^{*}} \frac{\int_{\Omega}(|\nabla v_{\varepsilon}|^2 +\frac{N(N-2)}{4}\frac{2}{1-|x|^2}|v_{\varepsilon}|^{2})dx} {(\int_{\Omega}(\ln\frac{1+|x|}{1-|x|})^{\alpha} (\frac{1-|x|^2}{2}dx)^{\frac{(N-2)p-2N}{2}}|v_{\varepsilon}|^p)^{2/p}} \geq\frac{|\nabla U|_{2}^2}{|U|_{2^{*}}^2}. \end{equation} Combining \eqref{3.6} and \eqref{3.7}, we can complete the proof for $N\geq5$. The case $N=3,4$ can been proved similarly. \end{proof} \begin{lemma}\label{lm:3.1''} There holds \begin{gather}\label{3.8} \lim_{p\to 2^{*}}\frac{\int_{\Omega'}(|\nabla v_p|^2 +\frac{N(N-2)}{4}(\frac{2}{1-|x|^2})^2|v_p|^2)dx}{(\int_{\Omega'} (\ln\frac{1+|x|}{1-|x|})^{\alpha}(\frac{1-|x|^2}{2}) ^{\frac{(N-2)(p-1)-N-2}{2}}|v_p|^pdx)^{2/p}}= S, \\ \label{3.9} \lim_{p\to 2^{*}}\frac{\int_{\Omega'}|\nabla v_p|^2dx}{(\int_{\Omega'} |v_p|^pdx)^{2/p}}=\lim_{p\to 2^{*}} \frac{\int_{\Omega'}(|\nabla v_p|^2+\frac{N(N-2)}{4} (\frac{2}{1-|x|^2})^2|v_p|^2)dx}{(\int_{\Omega'} |v_p|^pdx)^{2/p}}= S. \end{gather} \end{lemma} \begin{proof} By the definition of $\{v_p\}$ and Lemma \ref{lm:3.1'}, noting $\ln\frac{1+|x|}{1-|x|}\leq1$, $\frac{2e}{(e+1)^2}\leq \frac{1-|x|^2}{2}\leq \frac{1}{2}$, and $(\frac{1-|x|^2}{2})^{\frac{(N-2)p-2N}{2}}\to 1$ as $p\to 2^{*}$, we have \begin{equation} \label{3.10} \begin{split} &\frac{\int_{\Omega'}(|\nabla v_p|^2+\frac{N(N-2)}{4} (\frac{2}{1-|x|^2})^2|v_p|^2)dx}{(\int_{\Omega'}|v_p|^pdx)^{2/p}}\\ &\leq\frac{\int_{\Omega'}(|\nabla v_p|^2+\frac{N(N-2)}{4}(\frac{2}{1-|x|^2})^2|v_p|^2)dx}{(\int_{\Omega'}(\ln\frac{1+|x|}{1-|x|})^{\alpha} (\frac{1-|x|^2}{2})^{\frac{(N-2)p-2N}{2}}|v_p|^pdx)^{2/p}}\\ &\leq\frac{\int_{\Omega'}(|\nabla v_{\varepsilon}|^2+\frac{N(N-2)}{4} (\frac{2}{1-|x|^2})^2|v_{\varepsilon}|^2)dx}{(\int_{\Omega'} (\ln\frac{1+|x|}{1-|x|})^{\alpha}(\frac{1-|x|^2}{2}) ^{\frac{(N-2)p-2N}{2}}|v_{\varepsilon}|^pdx)^{2/p}} =S+o(\varepsilon). \end{split} \end{equation} In addition, for any $p$, $2
0$. As \cite{CP}, using the
concentration-compactness principle, we can prove that
the ground state solution $v_p$ of problem \eqref{eq:3.1} satisfies
(after passing to subsequence) for some $x_{0}\in\partial \Omega'$,
\begin{itemize}
\item[(i)] $|\nabla v_p|^2\rightharpoonup\mu\delta_{x_{0}}$ as
$p\to 2^{*}$ in the sense of measure.
\item[(ii)] $|v_p|^{2^{*}}\rightharpoonup\nu\delta_{x_{0}}$ as
$p\to 2^{*}$ in the sense of measure,
\end{itemize}
where $\mu>0$, $\nu>0$ satisfy $\mu\geq S \nu^{2/2^*}$, $\delta_x$
is the Dirac mass at $x$.
Given that $\frac{2e}{(e+1)^2}\leq \frac{1-|x|^2}{2}\leq \frac{1}{2}$,
$u_p=(\frac{1-|x|^2}{2})^\frac{N-2}{2}v_p$ and
$v_p\rightharpoonup 0$ in $H_0^1(\Omega')$, we have
\begin{itemize}
\item[(i)] $|\nabla_{\mathbb{B}^N} u_p|^2\rightharpoonup\mu\delta_{x_{0}}$ as
$p\to 2^{*}$ in the sense of measure.
\item[(ii)] $|u_p|^{2^{*}}\rightharpoonup\nu\delta_{x_{0}}$ as
$p\to 2^{*}$ in the sense of measure,
\end{itemize}
where $\mu>0$, $\nu>0$ satisfy $\mu\geq S \nu^{2/2^*}$, $\delta_x$
is the Dirac mass at $x$.
\end{proof}
\section{Proof of Theorem \ref{thm:1.3}}
In this section, we shall study the asymptotic of the ground state
solution and prove Theorem \ref{thm:1.3}. Set
$$
M_p=\sup_{x\in\bar{\Omega'}}v_p(x)=v_p(x_p),x_p\in \bar{\Omega'}.
$$
\begin{proposition}\label{pro:4.1}
$M_p\to +\infty$ as $p\to 2^{*}$.
\end{proposition}
\begin{proof}
We need only to prove this proposition for any subsequence ${p_{k}}$,
such that $p_{k}\to 2^{*}$ as $k\to +\infty$.
Assume by contradiction that there exists a positive constant $c$ such
that $M_{p_{k}}\leq c$ for all $k$.
For Theorem \ref{thm:1.2}, $v_{p_{k}}\to 0$ a.e. $\Omega'$.
By Fatou's Lemma, Egoroff Theorem and the fact that
$\int_{\Omega'}|v_{p_{k}}|^{2^{*}}=1$,
we have $u_{p_{k}}\to 0$ weakly in $L^{2^{*}}(\Omega')$.
So, for $\sigma>0$ small, due to the compactness of
$L^{2^{*}}(\Omega')\hookrightarrow L^{2^{*}-\sigma}(\Omega')$,
we have a subsequence(still denoted by $\{v_{p_{k}}\}$) such that
$$
1=\int_{\Omega'}|v_{p_{k}}|^{2^{*}}dx
\leq|v_{p_{k}}|^{\sigma}_{L^{\infty}(\Omega')}
\int_{\Omega'}|v_{p_{k}}|^{2^{*}-\sigma}dx\leq c^{\sigma}\int_{\Omega'}
|v_{p_{k}}|^{2^{*}-\sigma}dx\to 0
$$
as $k\to \infty$, which is impossible.
\end{proof}
\textbf{Proof of Theorem \ref{thm:1.3}}
We follow the blow up technique used by Gidas and Spruck in\cite{GS}.
Suppose that for a subsequence of $p$ as
$p\to 2^{*}, x_p\to x_{0}\in \bar{\Omega'}$. Let $\lambda_p$ be a
sequence of positive numbers defined by $\lambda_p^{\frac{N-2}{2}}M_p=1$
and $y=\frac{x-x_p}{\lambda_p}$. Define the scaled function
\begin{equation}\label{4.1}
w_p(y)=\lambda_p^{\frac{N-2}{2}}v_p(x)
\end{equation}
and the domain
\begin{equation}\label{4.2}
\Omega'_p=\{y\in R^N:\lambda_py+x_p\in\Omega'\}.
\end{equation}
Since $M_p\to +\infty$, we have $\lambda_p\to 0$ as $p\to 2^{*}$.
It is easy to see that $w_p(y)$ satisfies
\begin{equation}\label{4.3}
\begin{gathered}
\begin{aligned}
&-\Delta w_p+\frac{N(N-2)}{4}(\frac{2\lambda_p}{1-|\lambda_py+x_p|^2})^2w_p\\
&=(\ln\frac{1+|y\lambda_p+x_p|}{1-|y_p+x_p|})^{\alpha}
\lambda_p^{\frac{(N-2)(2^{*}-p)}{2}}(\frac{1-|\lambda_py+x_p|^2}{2})
^{\frac{(N-2)p-2N}{2}}w^{p-1}_p,
\quad y\in\Omega'_p,
\end{aligned}\\
w_p=0,\quad y\in\partial\Omega'_p,\\
0