\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 209, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/209\hfil Boundedness in a chemotaxis system] {Boundedness in a chemotaxis system with consumption of chemoattractant and \\ logistic source} \author[L. Wang, S. U.-D. Khan, S. U.-D. Khan \hfil EJDE-2013/209\hfilneg] {Liangchen Wang, Shahab Ud-Din Khan, Salah Ud-Din Khan} \address{Liangchen Wang \newline College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China} \email{liangchenwang324@126.com} \address{Shahab Ud-Din Khan \newline College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China} \email{sudkhan@163.com} \address{Salah Ud-Din Khan \newline College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia} \email{salahudkhan@126.com} \thanks{Submitted July 1, 2013. Published September 19, 2013.} \subjclass[2000]{35B35, 35K55, 92C17} \keywords{Chemotaxis; global existence; boundedness; logistic source} \begin{abstract} In this article, we consider a chemotaxis system with consumption of chemoattractant and logistic source \begin{gather*} u_t=\Delta u-\chi\nabla\cdot(u\nabla v)+f(u),\quad x\in \Omega,\; t>0,\\ v_t=\Delta v-uv,\quad x\in\Omega,\; t>0, \end{gather*} under homogeneous Neumann boundary conditions in a smooth bounded domain $\Omega\subset \mathbb{R}^n$, with non-negative initial data $u_0$ and $v_0$ satisfying $(u_0,v_0)\in (W^{1,\theta}{(\Omega)})^2$ (for some $\theta>n$). $\chi>0$ is a parameter referred to as chemosensitivity and $f(s)$ is assumed to generalize the logistic function \[ f(s)=as-bs^2,\quad s\geq0,\text{ with } a>0,\;b>0. \] It is proved that if $\|v_0\|_{L^\infty(\Omega)}>0$ is sufficiently small then the corresponding initial-boundary value problem possesses a unique global classical solution that is uniformly bounded. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} This article considers the following chemotaxis system with consumption of chemoattractant and logistic source \begin{equation} \label{e1.1} \begin{gathered} u_t=\Delta u-\chi\nabla\cdot(u\nabla v)+f(u),\quad x\in \Omega,\; t>0,\\ v_t=\Delta v-uv,\quad x\in \Omega,\; t>0,\\ \frac{\partial u}{\partial \nu}=\frac{\partial v}{\partial \nu}=0,\quad x\in \partial\Omega,\; t>0,\\ u(x,0)=u_0(x),\quad v(x,0)=v_0(x),\quad x\in \Omega, \end{gathered} \end{equation} where $\Omega\subset \mathbb{R}^n$ is a bounded domain with smooth boundary $\partial\Omega$, and $\partial/\partial\nu$ denotes the derivative with respect to the outer normal of $\partial\Omega$. The parameter $\chi>0$ is referred as chemosensitivity, and the function $f\in C^1([0,\infty))$ with $f(0)=0$. Moreover, we shall suppose that \begin{equation} \label{e1.2} f(u)\leq au-bu^p\quad \text{for all } u\geq0 \end{equation} with some $a>0$, $b>0$ and $p>1$. Equations \eqref{e1.1} is the well-known Keller-Segel model, and the origin of this fundamental model was introduced by Keller and Segel \cite{1} to describe the motion of cells which are diffusing and moving towards the concentration gradient of a chemical signal substance called chemoattractant, the latter being produced by the cells themselves. We refer the reader to the paper \cite{2} where a comprehensive information of further examples illustrating the outstanding biological relevance of chemotaxis can be found. In this paper, we consider a mathematical model for the motion of cells which towards the higher concentration of oxygen that is consumed by the cells, where $u=u(x, t)$ denotes the density of the cells and $v=v(x, t)$ represents the concentration of the oxygen. During the past four decades, the Keller-Segel models have become one of the best-study models in mathematical biology the Keller-Segel models have been studied extensively by many authors. For example, Keller and Segel \cite{1} proposed the following classical chemotaxis model \begin{equation} \label{e1.3} \begin{gathered} u_t=\Delta u-\nabla\cdot(u\nabla v),\quad x\in \Omega,\; t>0,\\ v_t=\Delta v-v+u,\quad x\in\Omega,\; t>0, \end{gathered} \end{equation} which has been investigated successfully up to now and the main issue of the investigation was the solutions of the model are bounded or blow-up. If $n=1$, in \cite{3}, it was shown all solutions of \eqref{e1.3} are global in time and bounded; if $n=2$, then all solutions of \eqref{e1.3} are global in time and bounded provided that $\|u_0\|_{L^1{(\Omega)}}<4\pi$ in \cite{4}, however, for almost every $\|u_0\|_{L^1{(\Omega)}}>4\pi$, then the corresponding solutions of \eqref{e1.3} blow up either in finite or infinite time in \cite{5} and that some radially symmetric solutions blow up in finite time in \cite{6,7}; if $n\geq3$, Winkler \cite{8} showed that $\|u_0\|_{L^{n/2+\epsilon}{(\Omega)}}$ and $\|\nabla v_0\|_{L^{n+\epsilon}{(\Omega)}}$ are small for all $\epsilon>0$, then the solution is global in time and bounded, however, for any $\|u_0\|_{L^1{(\Omega)}}>0$, then the radially symmetric solution of \eqref{e1.3} blows up either in finite or infinite time (see also \cite{7,9,10}). Involving a source term of logistic type in chemotaxis system have been studied \cite{2,11,12,13,14,h2}. The following initial-boundary value chemotaxis model with logistic source \begin{equation} \label{e1.4} \begin{gathered} u_t=\Delta u-\nabla\cdot(u\chi(v)\nabla v)+f(u),\quad x\in \Omega,\; t>0,\\ v_t=\Delta v-v+u,\quad x\in\Omega,\; t>0. \end{gathered} \end{equation} If $\chi(v)$ is a constant, Winkler \cite{11} studied proved that the solutions of problem \eqref{e1.4} are global and bounded provided that $f(0)\geq0$ as well as $f(u)\leq a-bu^2$ with some $a\geq0$ and $b$ is sufficiently large. If $\chi(v)\leq\frac{\chi_0}{(1+\beta v)^\delta}$ for all $v\geq0$ and some $\delta>1$, $\chi_0>0$ and $\beta>0$, the authors \cite{h2} shown that the model \eqref{e1.4} with logistic source $f(u)$ satisfies \eqref{e1.2} with $p=2$ then solutions are global and bounded provided that $\chi_0$ and $a$ are sufficiently small, the authors \cite{hh} recent obtain the same result for all positive values of $\chi_0$ and $a$, which improved the previous result. The model \eqref{e1.1} deals with the chemotaxis process where the signal is consumed by the cells, rather than produced by the cells. In the absence of the logistic source (i.e. $f(u)\equiv0$) for problem \eqref{e1.1}, Tao \cite {18} proved that the classical solution of model \eqref{e1.1} is uniformly bounded provided that $\|v_0\|_{L^\infty(\Omega)}$ is sufficiently small. In particular, if $\Omega\subset \mathbb{R}^3$ is a bounded convex domains, Tao and Winkler \cite {27} showed that there exists $T>0$ such that the problem has global weak solution which is bounded and smooth in $\Omega\times(T,+\infty)$. It is the goal of this paper to prove that model \eqref{e1.1} has global and bounded solutions provided that $\|v_0\|_{L^\infty(\Omega)}>0$ is sufficiently small (Theorem \ref{thm3.2}). \section{Preliminaries} We first state one result concerning local-in-time existence of a classical solution to problem \eqref{e1.1}. \begin{theorem} \label{thm2.1} Let the non-negative functions $u_0$ and $v_0$ satisfy $(u_0,v_0)$ belong to $(W^{1,\theta}{(\Omega)})^2$, for some $\theta>n$. Moreover, $f(s)$ with $s\geq0$ is smooth and $f(0)=0$. Then problem \eqref{e1.1} has a unique local-in-time non-negative classical solution \begin{equation} \label{e2.1} (u, v)\in (C([0,T_{\rm max}); W^{1,\theta}{(\Omega)}) \cap C^{2,1}(\overline{\Omega}\times(0,T_{\rm max})))^2, \end{equation} where $T_{\rm max}$ denotes the maximal existence time. If for every $T<+\infty$ both $u(\cdot,t)$ and $v(\cdot,t)$ are a priori bounded for all $00$ such that $u(x,t)$ and $v(x,t)$ satisfy \begin{gather} \label{e2.3} \|u(\cdot,t)\|_{L^1(\Omega)}\leq C_0, \\ \label{e2.4} 0\leq v\leq \|v_0\|_{L^\infty(\Omega)} \end{gather} for all $t\in(0,T_{\rm max})$. \end{theorem} \begin{proof} As in \cite{21,18,24}, let $V=(u,v)\in \mathbb{R}^2$. Then the initial-boundary value problem \eqref{e1.1} can be reformulated as \begin{gather*} V_t=\nabla\cdot(F(V)\nabla V)+H(V)\\ \frac{\partial V}{\partial \nu}=0,\quad x\in \partial\Omega,\; t>0,\\ V(x,0)=(u_0(x),v_0(x)),\quad x\in \Omega, \end{gather*} where \[ F(V)= \begin{pmatrix} 1 & -\chi u \\ 0 & 1 \\ \end{pmatrix}, \quad H(V)=\begin{pmatrix} f(u) \\ -uv\end{pmatrix}. \] Then applying \cite[Theorems 14.4, 14.6, 15.5]{d4}, statements \eqref{e2.1} and \eqref{e2.2} can be proved. Since the initial data $u_0\geq0$, $v_0\geq0$ and $f(0)=0$, the maximum principle ensures that both $u$ and $v$ are non-negative. By the maximum principle we have \eqref{e2.4}. Now, we prove \eqref{e2.3}. Integrating the first equation in \eqref{e1.1} and using \eqref{e1.2}, we obtain \begin{equation} \label{e2.5} \frac{d}{dt}\int_{\Omega}udx=\int_{\Omega}f(u)dx\leq\int_{\Omega}au-bu^pdx. \end{equation} By Young's inequality, since $b>0$ and $p>1$, we obtain \begin{equation} \label{e2.6} (a+1)\int_{\Omega}u\,dx =\int_{\Omega}b^{-1/p}(a+1)b^{1/p}u\,dx \leq \int_{\Omega}bu^pdx+(a+1)^\frac{p}{p-1}b^\frac{1}{1-p}|\Omega|. \end{equation} Combining \eqref{e2.5} and \eqref{e2.6}, we conclude \begin{equation} \label{e2.7} \frac{d}{dt}\int_{\Omega}udx+\int_{\Omega}u\,dx \leq (a+1)^\frac{p}{p-1}b^\frac{1}{1-p}|\Omega|. \end{equation} Integrating, we have \[ \int_{\Omega}udx\leq c_0, \quad c_0=\max \{\|u_0\|_{L^1(\Omega)}, (a+1)^\frac{p}{p-1}b^\frac{1}{1-p}|\Omega|\}>0. \] \end{proof} Let us collect some basic statements about the Gagliardo-Nirenberg inequality which will be used in forthcoming proofs. For details, we refer the reader to \cite{28,29,30} (see also \cite{9,10}).\ \begin{lemma} \label{lem2.2} Let \[ \alpha^*=\begin{cases} \frac{2n}{n-2}, &\text{if }n>2,\\ \infty, &\text{if }n=1,2. \end{cases} \] Then for all $l^*\in(2,\infty)$ satisfying $l^*\leq \alpha^*$ and $h\in(0,2)$, $\alpha\in[h,l^*]$, there exists a constant $c_{GN}>0$ such that \[ \|\psi\|_{L^\alpha(\Omega)}\leq c_{GN}(\|\nabla \psi\|_{L^2(\Omega)}^{\lambda^*} \|\psi\|_{L^h(\Omega)}^{1-\lambda^*}+\|\psi\|_{L^h(\Omega)}) \] holds for any $\psi\in W^{1,2}(\Omega)$, where $\lambda^*=\frac{\frac{n}{h}-\frac{n}{\alpha}}{1-\frac{n}{2}+\frac{n}{h}}$. \end{lemma} \section{Global bounded solutions} The main step towards the existence and boundedness of a global solution is to establish uniform bound of the cells population density $u(x,t)$ in the space $L^{n+1}(\Omega)$. This is accomplished by providing some associated weighted bounds involving weight functions $\phi(v)$ which are uniformly bounded both from above and below by positive constants. This approach was developed by Winkler in \cite{16} (see also \cite{h2,18}). \begin{lemma} \label{lem3.1} Let $f(u)$ satisfy \eqref{e1.2}, $\|v_0\|_{L^\infty(\Omega)}>0$ and $\chi>0$. Then there exists a constant $C>0$ such that the first component of the solution of \eqref{e1.1} satisfies \begin{equation} \label{e3.1} \|u(\cdot,t)\|_{L^{n+1}(\Omega)}\leq C\quad \text{for all } t\in(0,T_{\rm max}). \end{equation} \end{lemma} \begin{proof} Set $k:=n+1$ and fix $\|v_0\|_{L^\infty(\Omega)}>0$ small such that \begin{equation} \label{e3.2} \|v_0\|_{L^\infty(\Omega)}\leq\frac{1}{6(n+1)\chi}. \end{equation} Define $$ \phi(s):=e^{(\alpha s)^2}\quad \text{for all } 0\leq s\leq \|v_0\|_{L^\infty(\Omega)}, $$ where \[ \alpha=\sqrt{\frac{n}{24(n+1)}}\frac{1}{\|v_0\|_{L^\infty(\Omega)}}. \] By direct calculation, from \eqref{e1.1}, we obtain \begin{align} &\frac{1}{k}\frac{d}{dt}\int_{\Omega}u^k \phi(v)dx \nonumber \\ &=\int_{\Omega}u^{k-1}\phi(v)u_t dx+\frac{1}{k}\int_{\Omega}u^k \phi'(v)v_t\,dx \nonumber\\ &=\int_{\Omega}u^{k-1}\phi(v)\Delta u dx -\int_{\Omega}u^{k-1}\phi(v)\chi\nabla\cdot(u\nabla v)dx +\int_{\Omega}u^{k-1}\phi(v)f(u)dx \nonumber \\ &\quad +\frac{1}{k}\int_{\Omega}u^k \phi'(v)\Delta v\,dx -\frac{1}{k}\int_{\Omega}u^{k+1}v \phi'(v)dx \nonumber \\ &=-(k-1)\int_{\Omega}u^{k-2}\phi(v)|\nabla u|^2dx -\int_{\Omega}u^{k-1} \phi'(v)\nabla u\cdot\nabla v\,dx \nonumber \\ &\quad+\chi(k-1)\int_{\Omega}u^{k-1}\phi(v)\nabla u\cdot\nabla v\,dx +\chi\int_{\Omega}u^k\phi'(v)|\nabla v|^2dx \nonumber \\ &\quad +\int_{\Omega}u^{k-1}\phi(v)f(u)dx-\int_{\Omega}u^{k-1} \phi'(v)\nabla u\cdot\nabla v\,dx \nonumber \\ &\quad -\frac{1}{k}\int_{\Omega}u^k \phi''(v)|\nabla v|^2dx -\frac{1}{k}\int_{\Omega}u^{k+1}v \phi'(v)dx. \label{e3.3} \end{align} Since $f(s)\leq as-bs^p$ and $\phi'(s)\geq0$ for all $s\geq0$, we have \begin{equation} \label{e3.4} \begin{split} &\frac{1}{k}\frac{d}{dt}\int_{\Omega}u^k \phi(v)dx +(k-1) \int_{\Omega}u^{k-2}\phi(v)|\nabla u|^2dx +\frac{1}{k} \int_{\Omega}u^k \phi''(v)|\nabla v|^2dx\\ &\leq -2\int_{\Omega}u^{k-1} \phi'(v)\nabla u\cdot\nabla v\,dx +\chi(k-1)\int_{\Omega}u^{k-1}\phi(v)\nabla u\cdot\nabla v\,dx\\ &\quad +\chi\int_{\Omega}u^k\phi'(v)|\nabla v|^2dx +a\int_{\Omega}u^k\phi(v)dx-b\int_{\Omega}u^{k+p-1}\phi(v)dx. \end{split} \end{equation} By Young's inequality, we obtain \begin{equation} \label{e3.5} \begin{split} -2\int_{\Omega}u^{k-1} \phi'(v)\nabla u\cdot\nabla v\,dx &\leq\frac{k-1}{4}\int_{\Omega}u^{k-2}\phi(v)|\nabla u|^2dx\\ &+\frac{4}{k-1}\int_{\Omega}u^k\frac{\phi'^2(v)}{\phi(v)}|\nabla v|^2dx \end{split} \end{equation} and \begin{equation} \label{e3.6} \begin{split} \chi(k-1)\int_{\Omega}u^{k-1}\phi(v)\nabla u\cdot\nabla v\,dx &\leq\frac{k-1}{4}\int_{\Omega}u^{k-2}\phi(v)|\nabla u|^2dx\\ & +\chi^2(k-1)\int_{\Omega}u^k\phi(v)|\nabla v|^2dx. \end{split} \end{equation} Thus, from \eqref{e3.4}--\eqref{e3.6} we obtain \begin{equation} \label{e3.7} \begin{split} &\frac{1}{k}\frac{d}{dt}\int_{\Omega}u^k \phi(v)dx +\frac{k-1}{2}\int_{\Omega}u^{k-2}\phi(v)|\nabla u|^2dx +\frac{1}{k}\int_{\Omega}u^k \phi''(v)|\nabla v|^2dx\\ &\leq \frac{4}{k-1}\int_{\Omega}u^k\frac{\phi'^2(v)}{\phi(v)}|\nabla v|^2dx +\chi^2(k-1)\int_{\Omega}u^k\phi(v)|\nabla v|^2dx\\ &\quad +\chi\int_{\Omega}u^k\phi'(v)|\nabla v|^2dx +a\int_{\Omega}u^k\phi(v)dx-b\int_{\Omega}u^{k+p-1}\phi(v)dx. \end{split} \end{equation} Next we show that the three terms on the right-hand side of \eqref{e3.7} are dominated by $\frac{1}{k}\int_{\Omega}u^k \phi''(v)|\nabla v|^2dx$. To this end, for $s\geq0$, we compute \begin{gather*} y_1(s):=\frac{\phi''(s)}{k}=\frac{2}{k}\alpha^2e^{(\alpha s)^2}+\frac{4}{k}\alpha^4s^2e^{(\alpha s)^2},\\ y_2(s):=\frac{4}{k-1}\frac{\phi'^2(s)}{\phi(s)}=\frac{16}{k-1}\alpha^4s^2e^{(\alpha s)^2},\\ y_3(s):=\chi^2(k-1)\phi(s)=\chi^2(k-1)e^{(\alpha s)^2},\\ y_4(s):=\chi\phi'(s)=2\chi\alpha^2se^{(\alpha s)^2}. \end{gather*} By a direct calculation, we obtain \begin{equation} \label{e3.8} \frac{y_2(s)}{\frac{1}{3}y_1(s)} \leq \frac{\frac{16}{k-1}\alpha^4s^2e^{(\alpha s)^2}}{\frac{2}{3k} \alpha^2e^{(\alpha s)^2}} = \frac{24k}{k-1}(\alpha s)^2 \leq \frac{24(n+1)}{n}(\alpha \|v_0\|_{L^\infty(\Omega)})^2 =1, \end{equation} where we have used that $\alpha=\sqrt{\frac{n}{24(n+1)}}\frac{1}{\|v_0\|_{L^\infty(\Omega)}}$. Using \eqref{e3.2}, \begin{equation} \label{e3.9} \frac{y_3(s)}{\frac{1}{3}y_1(s)} \leq \frac{\chi^2(k-1)e^{(\alpha s)^2}}{\frac{2}{3k}\alpha^2e^{(\alpha s)^2}} \leq \frac{3k(k-1)\chi^2}{2\alpha^2} =36(n+1)^2\|v_0\|^2_{L^\infty(\Omega)}\chi^2 \leq 1 \end{equation} and \begin{equation} \label{e3.10} \frac{y_4(s)}{\frac{1}{3}y_1(s)} \leq \frac{2\chi\alpha^2se^{(\alpha s)^2}}{\frac{2}{3k}\alpha^2e^{(\alpha s)^2}} \leq 3k\chi s \leq 3(n+1)\chi\|v_0\|_{L^\infty(\Omega)} \leq \frac{1}{2}. \end{equation} Therefore, from \eqref{e3.7}-\eqref{e3.10}, it follows easily that \begin{equation} \label{e3.11} \begin{split} &\frac{d}{dt}\int_{\Omega}u^k \phi(v)dx +kb\int_{\Omega}u^{k+p-1}\phi(v)dx +\frac{2(k-1)}{k}\int_{\Omega}|\nabla u^{k/2}|^2\phi(v)dx\\ &\leq ka\int_{\Omega}u^k\phi(v)dx. \end{split} \end{equation} Since $ 0\leq s\leq \|v_0\|_{L^\infty(\Omega)}$, we have $1\leq\phi(s)\leq e^{(\alpha\|v_0\|_{L^\infty(\Omega)})^2}:=d$, it is not difficult to obtain \begin{equation} \label{e3.12} kb\int_{\Omega}u^k\phi(v)dx\leq kb\int_{\Omega}u^{k+p-1}\phi(v)dx+kbd|\Omega|. \end{equation} Combining \eqref{e3.11} with \eqref{e3.12} yields \begin{equation} \label{e3.13} \begin{split} &\frac{d}{dt}\int_{\Omega}u^k \phi(v)dx +kb\int_{\Omega}u^k\phi(v)dx +\frac{2(k-1)}{k}\int_{\Omega}|\nabla u^{k/2}|^2\phi(v)dx\\ &\leq ka\int_{\Omega}u^k\phi(v)dx+kbd|\Omega|. \end{split} \end{equation} Using Lemma \ref{lem2.2} and $(x+y)^\gamma\leq2^\gamma(x^\gamma+y^\gamma)$ for all $x,y\geq0$ and $\gamma>0$, we obtain \begin{equation} \label{e3.14} \begin{split} ka\int_{\Omega}u^k\phi(v)dx &\leq kad\int_{\Omega}u^kdx\\ &=kad\|u^{k/2}\|_{L^2(\Omega)}^2\\ &\leq kad(c_{GN}\|\nabla u^{k/2}\|_{L^2(\Omega)}^\lambda \|u^{k/2}\|_{L^{2/k}(\Omega)}^{1-\lambda} +c_{GN}\|u^{k/2}\|_{L^{2/k}(\Omega)})^2\\ &\leq 4kad(c^2_{GN}c_0^{k(1-\lambda)} \|\nabla u^{k/2}\|_{L^2(\Omega)}^{2\lambda}+c^2_{GN}c_0^k) \end{split} \end{equation} holds with some constant $c_{GN}>0$ and $$ \lambda=\frac{\frac{kn}{2}-\frac{n}{2}}{1-\frac{n}{2}+\frac{kn}{2}}\in(0,1). $$ By Young's inequality, we derive \begin{equation} \label{e3.15} \begin{split} ka\int_{\Omega}u^k\phi(v)dx &\leq 4kadc^2_{GN}c_0^{k(1-\lambda)}\|\nabla u^{k/2}\|_{L^2(\Omega)} ^{2\lambda}+4kadc^2_{GN}c_0^k\\ &\leq \frac{2(k-1)}{k}\int_{\Omega}|\nabla u^{k/2}|^2dx+c_1\\ &\leq \frac{2(k-1)}{k}\int_{\Omega}|\nabla u^{k/2}|^2\phi(v)dx+c_1, \end{split} \end{equation} where \[ c_1=c_0^k(4kadc^2_{GN}(\frac{2k-2}{k})^{-\lambda})^{\frac{1}{1-\lambda}} +4kadc^2_{GN}c_0^k>0. \] Hence, substituting \eqref{e3.15} into \eqref{e3.13} yields \begin{equation} \label{e3.16} \frac{d}{dt}\int_{\Omega}u^k \phi(v)dx+kb\int_{\Omega}u^k\phi(v)dx \leq c_1+kbd|\Omega|. \end{equation} Integrating \eqref{e3.16}, we have \begin{equation*} \int_{\Omega}u^kdx\leq\int_{\Omega}u^k \phi(v)dx \leq \max \big\{d\int_{\Omega}u_0^k, \frac{c_1+kbd|\Omega|}{kb}\big\}, \end{equation*} we arrive at the desired result. \end{proof} \begin{remark} \label{rmk1} \rm To prove that the three terms on the right-hand side of \eqref{e3.7} are dominated by $\frac{1}{k}\int_{\Omega}u^k \phi''(v)|\nabla v|^2dx$, we need $\frac{y_i(s)}{\frac{1}{3}y_1(s)}\leq1$ $(i=2,3,4)$, so we have $0<\|v_0\|_{L^\infty(\Omega)}\leq\frac{1}{6k\chi}$, in such a way that $\frac{1}{6k\chi}\to 0$ as $k\to \infty$. In fact, in the proof of Theorem \ref{thm3.2} is only applied to one fixed $k>n$. So to avoid this situation, we choose $k:=n+1$ in Lemma \ref{lem3.1}. \end{remark} We are now in a position to prove our main results, which are as follows. \begin{theorem} \label{thm3.2} Assume that $u_0(x)$ and $v_0(x)$ are non-negative functions and that $(u_0,v_0)$ belongs to $(W^{1,\theta}{(\Omega)})^2$ for some $\theta>n$, $\chi>0$, $f(u)$ satisfies \eqref{e1.2}. Then problem \eqref{e1.1} possesses a unique global classical solution $(u,v)$ for which both $u$ and $v$ are non-negative and uniformly bounded in $\Omega\times(0,\infty)$ provided that $$ 0<\|v_0\|_{L^\infty(\Omega)}\leq\frac{1}{6(n+1)\chi}. $$ \end{theorem} \begin{proof} With the aid of Lemma \ref{lem3.1} and its proof, based on a Moser-Alikakos-type iterative procedure \cite{19,20} (for detailed calculations we refer to \cite{h2,18,26}), we can establish a uniform bound on the solution $u$ in time $(0,T_{\rm max})$. Combining \eqref{e2.4} and \eqref{e2.2} we obtain the desired result of Theorem \ref{thm3.2}. \end{proof} \subsection*{Acknowledgments} We would like to thank the anonymous reviewers for their valuable suggestions and fruitful comments which led to significant improvement of this work. The third author would like to extend his sincere appreciation to deanship of scientific research at King Saud University for its funding of this research through the research group project no. RGP-VPP-255. \begin{thebibliography}{00} \bibitem{19} N. D. Alikakos; \emph{$L^p$ bounds of solutions of reaction-diffusion equations}, Comm. Partial Differential Equations 4 (1979) 827-868. \bibitem{d4} H. Amann; \emph{Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems}, in: H. J. Schmeisser, H. Triebel (Eds.), Functi on Spaces, Differential Operators and Nonlinear Analysis, in: Teubner-Texte Math., vol. 133, Teubner, Stuttgart, Leipzig, 1993, pp. 9-126. \bibitem{hh} K. Baghaei, M. Hesaaraki; \emph{Global existence and boundedness of classical solutions for a chemotaxis model with logistic source}, C. R. Acad. Sci. Paris, Ser. I (2013), http: //dx.doi.org/10.1016/j.crma.2013.07.027. \bibitem{21} Y. S. Choi, Z. A. Wang; \emph{Prevention of blow-up by fast diffusion in chemotaxis}, J. Math. Anal. Appl. 362 (2010) 553-564. \bibitem{10} T. Cie\'{s}lak, C. Stinner; \emph{Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions}, J. Differential Equations 252 (2012) 5832-5851. \bibitem{20} L. Corrias, B. Perthame, H. Zaag; \emph{$L^p$ and $L^\infty$ a priori estimates for some chemotaxis models and applications to the Cauchy problem (dynamics of spatio-temporal patterns for the system of reaction-diffusion equations)}, Kyoto Univ., RIMS 1416 (2005) 105-119. \bibitem{24} M. Delgado, I. Gayte, C. Morales-Rodrigo, A. Su\'{a}rez; \emph{An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundary}, Nonlinear Anal. 72 (2010) 330-347. \bibitem{29} A. Friedman; \emph{Partial Differential Equations}, Holt, Rinehart and Winston, New York, 1969. \bibitem{6} M. A. Herrero, J. J. L. Vel\'{a}zquez; \emph{A blow-up mechanism for a chemotaxis model}, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 24 (1997) 633-683. \bibitem{2} T. Hillen, K. J. Painter; \emph{A user's guide to PDE models for chemotaxis}, J. Math. Biol. 58 (2009) 183-217. \bibitem{5} D. Horstmann, G. Wang; \emph{Blow-up in a chemotaxis model without symmetry assumptions}, European J. Appl. Math. 12 (2001) 159-177. \bibitem{15} D. Horstmann, M. Winkler; \emph{Boundedness vs. blow-up in a chemotaxis system}, J. Differential Equations 215 (2005) 52-107. \bibitem{1} E. F. Keller, L. A. Segel; \emph{Initiation of slime mold aggregation viewed as an instability}, J. Theoret. Biol. 26 (1970) 399-415. \bibitem{h2} C. L. Mu, L. C. Wang, P. Zheng, Q. N. Zhang; \emph{Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system}, Nonlinear Anal. Real World Appl. 14 (2013) 1634-1642. \bibitem{4} T. Nagai, T. Senba, K. Yoshida; \emph{Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis}, Funkcial. Ekvac. Ser. Int. 40 (1997) 411-433. \bibitem{14} E. Nakaguchi, K. Osaki; \emph{Global existence of solutions to a parabolic-parabolic system for chemotaxis with weak degradation}, Nonlinear Anal. 74 (2011) 286-297. \bibitem{30} L. Nirenberg; \emph{An extended interpolation inequality}, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3) 20 (1966) 733-737. \bibitem{12} K. Osaki, T. Tsujikawa, A. Yagi, M. Mimura; \emph{Exponential attractor for a chemotaxis-growth system of equations}, Nonlinear Anal. 51 (2002) 119-144. \bibitem{3} K. Osaki, A. Yagi; \emph{Finite dimensional attractors for one-dimensional Keller-Segel equations}, Funkcial. Ekvac. 44 (2001) 441-469. \bibitem{18} Y. Tao; \emph{Boundedness in a chemotaxis model with oxygen consumption by bacteria}, J. Math. Anal. Appl. 381 (2011) 521-529. \bibitem{26} Y. Tao, M. Winkler; \emph{Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity}, J. Differential Equations 252 (2012) 692-715. \bibitem{27} Y. Tao, M. Winkler; \emph{Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant}, J. Differential Equations 252 (2012) 2520-2543. \bibitem{13} J. I. Tello, M. Winkler; \emph{A chemotaxis system with logistic source}, Comm. Partial Differential Equations 32 (6) (2007) 849-877. \bibitem{7} M. Winkler; \emph{Does a `volume-filling effect' always prevent chemotactic collapse?}, Math. Methods Appl. Sci. 33 (2010) 12-24. \bibitem{8} M. Winkler; \emph{Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model}, J. Differential Equations 248 (2010) 2889-2905. \bibitem{9} M. Winkler; \emph{Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system}, J. Math. Pures Appl.(2013), http://dx.doi.org/10.1016/j.matpur.2013.01.020. \bibitem{16} M. Winkler; \emph{Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity}, Math. Nachr. 283 (2010) 1664-1673. \bibitem{11} M. Winkler; \emph{Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic Source}, Comm. Partial Differential Equations 35 (2010) 1516-1537. \bibitem{28} M. Winkler, K. C. Djie; \emph{Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect}, Nonlinear Anal. 72 (2010) 1044-1064. \end{thebibliography} \end{document}