\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 221, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/221\hfil Finite fractal dimensionality] {Finite fractal dimensionality of attractors for nonlocal evolution equations} \author[S. H. da Silva, F. D. M. Bezerra \hfil EJDE-2013/221\hfilneg] {Severino Hor\'acio da Silva, Flank D. M. Bezerra} % in alphabetical order \address{Severino Hor\'acio da Silva \newline Unidade Acad\^emica de Matem\'atica e Estat\'istica, UAME/CCT/UFCG \newline Rua Apr\'igio Veloso, 882, Bairro Universit\'ario, Campina Grande-PB 58429-900, Brazil} \email{horaciousp@gmail.com, horacio@dme.ufcg.edu.br} \address{Flank D. M. Bezerra \newline Departamento de Matem\'atica, UFPB, Cidade Universit\'aria, Campus I \newline Jo\~ao Pessoa-PB 58051-900, Brazil} \email{flank@mat.ufpb.br} \thanks{Submitted November 1, 2012. Published September 4, 2013.} \subjclass[2000]{34G20, 47H15} \keywords{Exponential attractor; global attractor; fractal dimension; \hfill\break\indent non local evolution equations} \begin{abstract} In this work we consider the Dirichlet problem governed by a non local evolution equation. We prove the existence of exponential attractors for the flow generated by this problem, and as a consequence we obtain the finite dimensionality of the global attractor whose existence was proved in \cite{severino}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Global attractors for dynamical systems generated by non local evolution equations in infinite dimensional Hilbert space have been considered in the literature within past few years, see \cite{severino, Pereira, severino2} and references therein. In the literature, there are some works on existence of exponential attractors for the flow governed by non local evolution equations and on the problem of determining upper bounds for the fractal dimension of these attractors (see for instance \cite{CCM, Xiao,T}). In this paper, we consider the non linear Dirichlet problem with non local terms \begin{equation}\label{e1.1} \begin{gathered} \partial_t u ( x , t ) = - u ( x , t ) + g \big( \beta (Ku) ( x , t ) \big), \quad x \in \Omega, t> 0 \\ u(x,0) = u_0 (x), \quad x \in \Omega\\ u (x,t) = 0, \quad x \not\in \Omega, \;t> 0 \end{gathered} \end{equation} where $\Omega\subset\mathbb{R}^N$ ($N\geq1$) is a bounded smooth domain, $ \beta>0$ and $K$ is an integral operator with symmetric kernel \[ (Ku)(x):=\int_{{\mathbb{R}^{N}}} J(x,y)u(y)dy. \] Here, $g:\mathbb{R}\to\mathbb{R} $ is a non linear real function of class $C^1$ with $g(0)=0$, $J$ is a non negative, symmetric bounded function with bounded derivative, satisfying $\int_{{\mathbb{R}^{N}}}J(x,y)dy=1$ and \[ %\label{norma-derivada-J} \sup_{x\in \mathbb{R}^{N}}\int_{\mathbb{R}^{N}}|\partial_{x}J(x,y)|dy\leq S,\quad \sup_{y\in \mathbb{R}^{N}}\int_{\mathbb{R}^{N}}|\partial_{ x}J(x,y)|dx\leq S, \] for some constant $00$ such that $|g(x)|< a<\infty$, for all $x\in \mathbb{R}$. \end{itemize} Note that if (H1) and (H2) hold then $$ |g'(x)|\leq k_1, \quad \forall x\in \mathbb{R}. $$ \begin{remark} \label{rmk1.1} \rm To prevent the flow generated by \eqref{e1.1} becomes a contraction (see Theorem \ref{estT}) and, hence, the global attractor be reduced to single point, we assume $k_1\beta > 1$. \end{remark} In this article, $\|\cdot\|=\langle\cdot,\cdot\rangle^{1/2}$ denotes the $L^2(\mathbb{R}^{N})$ norm. We use $\|J\|_\infty$ to denote $\|J\|_{L^\infty(\mathbb{R}^N\times\mathbb{R}^N;\mathbb{R})}$ and $\|J'\|_\infty$ to denote $\|J'\|_{L^\infty(\mathbb{R}^N\times\mathbb{R}^N;L (\mathbb{R}^N\times\mathbb{R}^N;\mathbb{R}))}$. Under hypothesis (H1)--(H3), it was proved in \cite{severino} that problem \eqref{e1.1} has a global compact attractor $\mathcal{A}$ which is contained in ball centered at the origin of radius $a\sqrt{|\Omega|}$ in $L^2(\mathbb{R}^N)$. Also, under some additional hypotheses on $g$, the continuity of the global attractors and the existence of nonhomogeneous equilibria for \eqref{e1.1} were proved in \cite{severino}. In \cite{CCM} bi-space global and exponential attractors for the time continuous dynamical systems are considered and the bounds on their fractal dimension are discussed in the context of the smoothing properties of the system between appropriately chosen function spaces and applications to the sample problems are given, but no remark is made on problems governed by operators of the type Hilbert-Schmidt, where the symmetry of the problem is an extra difficulty inherent in the evolution equations with non local terms. Our goal is to investigate, under the above conditions, the existence of an exponential attractor for the flow generated by \eqref{e1.1} and consequently to obtain bounds on the fractal dimension of the global attractor associated to problem \eqref{e1.1}. This article is organized as follows. In Section \ref{DynSys} we prove Lipschitz continuity of the dynamical system generated by \eqref{e1.1}, whose well posedness in $X=\{u\in L^{2}(\mathbb{R}^{N}):u(x)=0, \ if \ x\notin \Omega \}$ has been established in \cite{severino}. In Section \ref{existence} we prove that, in this phase space, the system has an exponential attractor and, as a consequence , we conclude that the global attractor has finite fractal dimension. \section{Dynamical system generated by \eqref{e1.1}}\label{DynSys} It is known from previous work, see \cite{severino}, that under hypotheses (H1) and (H2) the function \[ [F(u)](x)=\begin{cases} -u(x)+g(\beta (Ku)(x)), & x\in \Omega\\ 0, &x\notin \Omega, \end{cases} \] is globally Lipschitz and continuously Fr\'echet differentiable in $X=\{u\in L^{2}(\mathbb{R}^{N}):u(x)=0, \text{ if } x\notin \Omega \}$. Therefore, the autonomous problem \begin{equation} \partial_t u=F(u)\label{Prob} \end{equation} with initial condition $u(x,0)=u_0(x)$ generates a $C^1$ flow in $X$ which is given by $T(t)u_0=u(x,t)$ where $u(x,t)$ is given by the variation of constants formula by \[ u(x,t)=e^{-t}u(x,0)+\int_0^{t}e^{-(t-s)}g(\beta(Ku)(x,s))ds. \] Furthermore, as consequence from Lemma \ref{WPH1} below, the problem \eqref{Prob} is also well posed in $H^1$. \begin{lemma}\label{WPH1} Under hypotheses {\rm (H1), (H2)}, the subset $H^{1}$ of $X$ given by $H^{1}=\{u\in H^{1}(\mathbb{R}^{N}):u(x)=0, \text{ if } x\notin \Omega \}$ is invariant under the map $F$. \end{lemma} \begin{proof} If $u\in H^{1}$, from hypothesis (H2) it follows that $F(u)$ is differentiable and \begin{align*} \partial_{x_i} F(u)(x) &= -\partial_{x_i}u(x)+g'(\beta (Ku)(x)) \beta \partial_{x_i}(Ku)(x)\\ &= -\partial_{x_i}u(x)+g'(\beta (Ku)(x)) \beta \int_{\mathbb{R}^{N}}\partial_{x_i}J(x,y)u(y)dy. \end{align*} Using hypotheses (H1) and (H2) and Generalized Young's Inequality (see \cite{Folland}), we obtain \begin{align*} \|\partial_{x_i}F(u)\| &\leq \|\partial_{x_i}u\|+\|g'(\beta (Ku)) \beta \int_{\mathbb{R}^{N}}\partial_{x_i}J(x,y)u(y)dy\|\\ &\leq \|\partial_{x_i}u\|+ k_1\beta S\|u\|. \end{align*} It implies $F(u)\in H^{1}$, as claimed. \end{proof} In the next result we prove the Lipschitz continuity of the flow $T(t)$ generated by problem \eqref{Prob}. \begin{theorem}\label{estT} Assume hypothesis {\rm (H1)} holds. Then, for $u_1,u_2\in X$ and $t\geq 0$, we have \begin{equation}\label{Ineq1} \|T(t)u_1-T(t)u_2\| \leq e^{c t}\|u_1-u_2\|, \end{equation} for $c=k_1\beta -1>0$. \end{theorem} \begin{proof} Let $u_1,u_{2}\in X$. Suppose that $T(t)u_1(x)$ and $T(t)u_2(x)$ are solutions of \eqref{Prob} with initial conditions $u_1$ and $u_2$, respectively. Then \begin{equation}\label{EEE} \|T(t)u_1-T(t)u_2\|\leq e^{-t}\|u_1-u_2\|+\int_0^t e^{-(t-s)}\|g(\beta(KT(s)u_1))-g(\beta(KT(s)u_2))\|ds, \end{equation} for $t\geq0$. Using (H1) and Young's inequality, it follows that \begin{align*} \|g(\beta(KT(s)u_1))-g(\beta(KT(s)u_2))\| &\leq k_1\beta\|K(T(s)u_1-T(s)u_2)\|\\ &\leq k_1\beta\|T(s)u_1-T(s)u_2\|. \end{align*} Then \[ \|T(t)u_1-T(t)u_2\|\leq e^{-t}\|u_1 - u_2\|+\int_0^{t}e^{-(t-s)}k_1\beta \|T(s)u_1-T(s)u_2\|ds. \] Thus, using Gronwall's inequality, we obtain \[ \|T(t)u_1-T(t)u_2\|\leq e^{(k_1\beta -1)t}\|u_1 - u_2\|. \] Hence \eqref{Ineq1} is satisfied. \end{proof} \section{Existence of an exponential attractor}\label{existence} First we need to introduce some terminology. For a general introduction to theory of exponential attractors and fractal dimension see, for example \cite{CCM,Efendiev}. Recall that if $B\neq \emptyset$ is a precompact set in the Banach space ${\mathcal{X}}$ then its \textit{fractal dimension} is given by \[ d^{\mathcal{X}}_f(B)=\limsup_{\epsilon\to0}\log_{1/\epsilon}N_\epsilon(B), \] where $N_\epsilon(B)$ denotes the smallest number of $\epsilon$-balls in ${\mathcal{X}}$ needed to cover $B$. We recall that a set $B\subset {\mathcal{X}}$ is an absorbing set for the flow $T(t)$ if, for any bounded set $C$ in $\mathcal{X}$, there is a $t_1=t_1(C)$ such that $T(t)C \subset B$ for any $t\geq t_1$ (see \cite{T}). Let $\mathcal{Y}$ and $\mathcal{X}$ be Banach spaces such that $\mathcal{Y}$ is compactly embedded in $\mathcal{X}$. Recalling the generalization of the notion of an exponential attractor, see \cite{CCM}, we will say that a nonvoid set $\mathcal{M}\subset {\mathcal{Y}} $ is called an \textit{exponential (${\mathcal{Y}}-{\mathcal{X}}$) attractor} for $T(t)$ if $\mathcal{M}$ is \textit{positively invariant} under $T(t)$, closed in $\mathcal{Y}$, compact in $\mathcal{X}$, $d^{\mathcal{X}}_{f}(\mathcal{M})<\infty$ and there exists $\omega>0$ such that for all $B$ bounded in $\mathcal{Y}$, \[ \lim_{t\to \infty}e^{\omega t}\operatorname{dist}_{\mathcal{X}}(T(t)B,\mathcal{M})=0. \] \begin{remark} \label{rmk3.1} \rm If $u\in X$, proceeding as in \cite{severino1}, using H\"{o}lder's inequality, we obtain \begin{equation} \begin{aligned} |K(u)(x,s)| &\leq \int_{\mathbb{R}^{N}}J(x,y)|u(y,s)|dy \\ &\leq \int_{\mathbb{R}^{N}}\|J\|_{\infty}|u(y,s)|dy \\ &\leq \|J\|_{\infty}\sqrt{|\Omega|}\|u(\cdot,s)\|. \end{aligned}\label{EstKinf} \end{equation} \end{remark} \begin{theorem}\label{absorbing} % \label{teo 3.1} Assume that {\rm (H1)--(H3)} hold. Then , for any $\varepsilon >0$, the ball centered at origin and radius $\rho=(1+ k_1\beta \|J'\|_{\infty}|\Omega|)a\sqrt{|\Omega|} +\varepsilon$ in $H^{1}=\{u\in H^{1}(\mathbb{R}^{N}) : u(x)=0, \text{ if } x \neq \Omega\}$ absorbs bounded subsets of $H^{1}$. \end{theorem} \begin{proof} Let $u(x,t)$ be the solution of \eqref{Prob} with initial condition $u(\cdot,0)\in B$, where $B$ is a bounded subset of $H^1$. Then, if $x \not \in \Omega$ we have $u(x,t)=0$, and if $x \in \Omega$ we obtain, by the variation of constants formula, \begin{equation} \label{FVC} u(x,t)=e^{-t}u(x,0)+\int_0^{t}e^{-(t-s)}g(\beta(Ku)(x,s))ds. \end{equation} By (H3) we have \begin{equation}\label{Test1} \|u(\cdot,t)\|\leq e^{-t} \|u(\cdot,0)\| + a\sqrt{|\Omega|}. \end{equation} Hence, given $\varepsilon>0$ there exists $t_1=\ln(\frac{2\|u(\cdot,0)\|}{\varepsilon})$ such that, for $t>t_1$, we obtain \begin{equation}\label{In1} \|u(\cdot,t)\|< \frac{\varepsilon}{2}+ a\sqrt{|\Omega|}. \end{equation} Furthermore, using hypothesis (H2), from \eqref{FVC} we obtain \[ \partial_x u (x,t)=e^{-t}\partial_x u (x,0)+\int_0^{t}e^{-(t-s)}g'(\beta(Ku)(x,s))\beta \partial_x (Ku)(x,s)ds. \] From (H1) and (H2) it follows that $|g'(x)|\leq k_1$, for all $x\in \mathbb{R}$. Then \[ |\partial_x u (x,t)|\leq e^{-t}|\partial_x u (x,0)|+\int_0^{t}e^{-(t-s)}k_1\beta |\partial_{x} (Ku)(x,s)|ds. \] But, as in \eqref{EstKinf}, using H\"{o}lder's inequality, we obtain \begin{equation} \begin{aligned} |\partial_{x} K(u)(x,s)| &\leq \int_{\mathbb{R}^{N}} |\partial_{x} J(x,y)||u(y,s)|dy \\ &\leq \int_{\mathbb{R}^{N}}\|J'\|_{\infty}|u(y,s)|dy \\ &\leq \|J'\|_{\infty}\sqrt{|\Omega|}\|u(\cdot,s)\|. \end{aligned} \label{EstK'inf} \end{equation} Thus, using \eqref{Test1} and \eqref{EstK'inf}, we obtain \begin{align*} |\partial_x u (x,t)| &\leq e^{-t}|\partial_x u (x,0)|+k_1\beta \|J'\|_{\infty}\sqrt{|\Omega|}\int_0^{t}e^{-(t-s)}(e^{-s}\|u(\cdot,0)\| + a\sqrt{|\Omega|})ds\\ &\leq e^{-t}|\partial_x u (x,0)|+k_1\beta \|J'\|_{\infty}\sqrt{|\Omega|}\|u(\cdot,0)\| e^{-t}t + k_1\beta \|J'\|_{\infty}a|\Omega|. \end{align*} Hence \begin{equation}\label{In2} \|\partial_x u (\cdot,t)\| \leq e^{-t}\|\partial_x u (\cdot,0)\|+k_1\beta \|J'\|_{\infty}|\Omega|\|u(\cdot,0)\| e^{-t}t + k_1\beta \|J'\|_{\infty}|\Omega|a\sqrt{|\Omega|}. \end{equation} But, there exists $t_2=\ln(4\|\partial_x u(\cdot,0)\|/\varepsilon)$ such that for $t>t_2$ we have \begin{equation}\label{In4} e^{-t}\|\partial_x u(\cdot,0)\|<\frac{\varepsilon}{4}, \end{equation} and, since $\lim_{t \to \infty}e^{-t}t=0$, there exists $t_{3}>0$ such that, for $t>t_3$, we have \begin{equation}\label{In3} k_1\beta \|J'\|_{\infty}|\Omega|\|u(\cdot,0)\| e^{-t}t<\frac{\varepsilon}{4}. \end{equation} Then, using \eqref{In2}, \eqref{In4} and \eqref{In3}, we obtain \begin{align*} \|\partial_x u (\cdot,t)\| < \frac{\varepsilon}{2} + k_1\beta \|J'\|_{\infty}|\Omega|a\sqrt{|\Omega|}. \end{align*} for all $t> t^*:= \max\{t_2,t_3\}$. It follows that for $t> \max\{t_1,t^{*}\}$, \begin{align*} \|u(\cdot,t)\|+\|\partial_x u (\cdot,t)\| \leq (1+ k_1\beta \|J'\|_{\infty}|\Omega|)a\sqrt{|\Omega|} +\varepsilon. \end{align*} From this, the result follows immediately. \end{proof} For the rest of this article, we denote by $B_0$ the ball in $H^{1}$ centered at origin and radius $\rho=(1+ k_1\beta \|J'\|_{\infty}|\Omega|)a\sqrt{|\Omega|} +\varepsilon$, (with $\varepsilon > 0$ fixed arbitrarily). \begin{theorem}\label{estPM} Assume {\rm (H1)--(H3)}, and let $B_0$ be the set that absorbs bounded subsets of $H^{1}$, given in Theorem \ref{absorbing}. Then, there exists $t_0\geq t_1(B_0)$ such that the following conditions hold: $T(t_0)$ admits a decomposition $$ T(t_0)=P(t_0)+M(t_0) $$ where $P(t_0):B_0\to X\subset L^{2}(\mathbb{R}^{N})$ is a contraction on $B_0$; that is, \begin{equation} \|P(t_0)u_1-P(t_0)u_{2}\|\leq \delta\|u_1-u_{2}\|, \quad \forall u_1, u_{2} \in B_0, \label{estP} \end{equation} for some $0\leq \delta < 1/2$, and $M(t_0):B_0\to H^{1}$ satisfies \begin{equation} \|M(t_0)u_1-M(t_0)u_{2}\|_{H^{1}}\leq k\|u_1-u_{2}\|, \quad \forall u_1, u_{2} \in B_0, \label{estM} \end{equation} for some $k>0$. \end{theorem} \begin{proof} Let $u(x,t)$ be the solution of \eqref{Prob} with initial condition $u$, then $$ T(t)u=e^{-t}u+\int_0^{t}e^{-(t-s)}g(\beta (KT(s))u)ds. $$ Write $P(t)u=e^{-t}u$ and $M(t)u=\int_0^{t}e^{-(t-s)}g(\beta (KT(s))u)ds$. Note that, choosing $t_0> \ln 2$, it follows that $$ \|P(t_0)u_1-P(t_0)u_{2}\|\leq e^{-t_0}\|u_1-u_{2}\|, \quad \forall u_1, u_{2} \in B_0, $$ then \eqref{estP} is satisfied with $\delta=e^{-t_0}$. Now, from (H3), it follows that \[ \|M(t)u\| \leq \int_0^{t}e^{-(t-s)}\|g(\beta( K T(s)u)\|ds\\ \leq \int_0^{t}e^{-(t-s)}a\sqrt{|\Omega|}ds\\ \leq a\sqrt{|\Omega|}. \] Using (H1),(H2), and \eqref{EstK'inf}, we have \begin{align*} |\partial_{x} M(t)u(x)| &\leq \int_0^{t}e^{-(t-s)}\beta|g'(\beta (K T(s)u)(x))||\partial_{x} (K T(s)u)(x)|ds\\ &\leq \int_0^{t}e^{-(t-s)}k_1\beta \|J'\|_{\infty}\sqrt{|\Omega|}\| T(s)u\|ds. \end{align*} Since $u\in B(0,\rho)$, it follows that $\|T(s)u\|\leq \rho+a\sqrt{|\Omega|}$. Hence \[ |\partial_{x} M(t)u(x)| \leq k_1\beta \|J'\|_{\infty}\sqrt{|\Omega|}(\rho + a \sqrt{|\Omega|}). \] Therefore, $M(t):B_0\to H^{1}$ for all $t\geq 0$. Also, using (H1) and Theorem \ref{estT}, we obtain \begin{align*} \|M(t)u_1-M(t)u_{2}\| &\leq \int_0^{t}e^{-(t-s)}\|g(\beta K T(s)u_1)-g(\beta K T(s)u_{2})\|ds\\ &\leq \int_0^{t}e^{-(t-s)}\beta k_1 \| T(s)u_1- T(s)u_{2}\|ds\\ &\leq \int_0^{t}e^{-(t-s)}\beta k_1 e^{(k_1\beta -1)s}\| u_1- u_{2}\|ds\\ &= k_1\beta \| u_1- u_{2}\|\int_0^{t}e^{-(t-s)}e^{(k_1\beta -1)s}ds\\ &\leq \| u_1- u_{2}\|e^{(k_1\beta -1) t}. \end{align*} Using hypothesis (H1), (H2), \eqref{EstKinf} and \eqref{EstK'inf}, it follows that \begin{align*} &|\partial_{x}M(t)u_1(x)-\partial_{x} M(t)u_{2}(x)|\\ &\leq \int_0^{t}e^{-(t-s)}\beta|g'(\beta (K T(s)u_1)(x))-g'(\beta (K T(s)u_{2})(x))||\partial _{x}(KT(s)u_1)(x)|ds\\ &\quad + \int_0^{t}e^{-(t-s)}\beta|g'(\beta (K T(s)u_{2})(x)) ||\partial_{x}[ K(T(s)u_1 -T(s)u_{2})](x)|ds \\ &\leq \int_0^{t}e^{-(t-s)}k_{2}\beta^2 \|J\|_{\infty}\sqrt{|\Omega|}\|T(s)u_1-T(s)u_{2}\|\|J'\|_{\infty} \sqrt{|\Omega|}\| T(s)u_1\|ds\\ &\quad +\int_0^{t}e^{-(t-s)}k_1\beta \|J'\|_{\infty} \sqrt{|\Omega|}\|T(s)u_1 -T(s)u_{2}\|ds. \end{align*} Thus, using Theorem \ref{estT}, we have \begin{align*} &|\partial_{x}M(t)u_1(x)-\partial_{x} M(t)u_{2}(x)|\\ &\leq \int_0^{t}e^{-(t-s)}k_{2}\beta^{2}\|J\|_{\infty} |\Omega| \|J'\|_{\infty}(\rho+a\sqrt{|\Omega|}) e^{(k_1\beta -1)s}\|u_1-u_{2}\|ds\\ &\quad + \int_0^{t}e^{-(t-s)}k_1\beta \|J'\|_{\infty}\sqrt{|\Omega|} e^{(k_1\beta -1)s}\|u_1-u_{2}\|ds\\ &\leq \bigg[\frac{k_{2}\beta^{2} \|J\|_{\infty}|\Omega|\|J'\|_{\infty}(\rho+a\sqrt{|\Omega|})+k_1\beta \|J'\|_{\infty}\sqrt{|\Omega|}}{k_1\beta -1}\bigg] e^{(k_1\beta -1)t}\|u_1-u_{2}\|. \end{align*} Therefore, \eqref{estM} is satisfied with $t_0>\ln 2$ and \begin{equation} \begin{aligned} k=\max\Big\{&e^{(k_1\beta -1) t_0}, \big[\frac{k_{2}\beta^{2} \|J\|_{\infty}|\Omega|\|J'\|_{\infty} (\rho+a\sqrt{|\Omega|})+k_1\beta \|J'\|_{\infty} \sqrt{|\Omega|}}{k_1\beta -1}\big]\\ &\times \sqrt{|\Omega|}e^{(k_1\beta -1)t_0}\Big\}. \end{aligned}\label{constk} \end{equation} It completes the proof. \end{proof} The proof of the following lemma is very easy and it will be omitted. \begin{lemma} \label{lem3.4} For any bounded interval $I$, there exist $0<\theta<1$ and $c>0$ such that for $t,s\in I$ we have \begin{equation} |e^{-t}-e^{-s}|\leq c|t-s|^{\theta}. \label{estTheta} \end{equation} In particular, when $I=[t_0,2t_0]$ the inequality above is obtained with $c=1$. \end{lemma} \begin{theorem}\label{estFinal} Assume {\rm (H1)} and {\rm (H3)}. Then, for $t_1, t_{2}\in [t_0,2t_0]$ and $u_1,u_{2}\in B_0$, $T(t)$ satisfies \begin{equation} \|T(t_1)u_1-T(t_{2})u_{2}\| \leq \mu (|t_1-t_{2}|^{\theta}+\|u_1-u_{2}\|) \end{equation} with some $\mu>0$ and $0<\theta <1$. \end{theorem} \begin{proof} Note that \begin{align*} T(t_1)u_1 - T(t_{2})u_{2} &= (e^{-t_1}u_1 - e^{-t_2}u_2) + \Big( \int_0^{t_1}e^{-(t_1-s)}g(\beta KT(s)u_1)ds \\ &\quad - \int_0^{t_{2}}e^{-(t_{2}-s)}g(\beta KT(s)u_{2})ds\Big). \end{align*} Using Lemma \ref{lem3.4}, we obtain \begin{align*} \|e^{-t_1}u_1 - e^{-t_2}u_2 \| &\leq |e^{-t_1} - e^{-t_2}|\|u_1\|+e^{-t_{2}}\|u_1-u_{2}\|\\ &\leq \|u_1\||t_1-t_{2}|^{\theta}+\|u_1-u_{2}\|\\ &= \mu_1(|t_1-t_{2}|^{\theta}+\|u_1-u_{2}\|), \end{align*} where $\mu_1 =\max\{\rho,1\}$. Now, \begin{align*} &\|\int_0^{t_1}e^{-(t_1-s)}g(\beta KT(s)u_1)ds - \int_0^{t_{2}}e^{-(t_{2}-s)}g(\beta KT(s)u_{2})ds\|\\ &\leq \|\int_0^{t_1}e^{-(t_1-s)}g(\beta KT(s)u_1)ds - \int_0^{t_1}e^{-(t_{2}-s)}g(\beta KT(s)u_{2})ds\|\\ &\quad + \|\int_0^{t_1}e^{-(t_{2}-s)}g(\beta KT(s)u_{2})ds - \int_0^{t_{2}}e^{-(t_{2}-s)}g(\beta KT(s)u_{2})ds\|. \end{align*} Using (H1) and (H3), Young's inequality, Lemma \ref{estTheta} and Theorem \ref{lem3.4}, we have \begin{align*} &\|\int_0^{t_1}e^{-(t_1-s)}g(\beta K T(s)u_1)ds - \int_0^{t_1}e^{-(t_{2}-s)}g(\beta K T(s)u_{2})ds\|\\ &\leq \int_0^{t_1}\|e^{-(t_1-s)}g(\beta K T(s)u_1)-e^{-(t_{2}-s)}g(\beta K T(s)u_{2})\|ds\\ &\leq \int_0^{t_1}|e^{-(t_1-s)}-e^{-(t_{2}-s)}|\|g(\beta K T(s)u_1)\|ds \\ &\quad + \int_0^{t_1}e^{-(t_{2}-s)} \|g(\beta K T(s)u_1)- g(\beta K T(s)u_{2})\|ds\\ &\leq \int_0^{t_1}a \sqrt{|\Omega|}c|t_1-t_{2}|^{\theta}ds + \int_0^{t_1}e^{-(t_{2}-s)} k_1\beta e^{(k_1\beta -1)s}\|u_1- u_{2} \|ds\\ &\leq 2 t_0a\sqrt{|\Omega|} c|t_1-t_{2}|^{\theta} + \|u_1-u_{2} \| e^{k_1\beta 2t_0}\\ &= \mu_{2}(|t_1-t_{2}|^{\theta} + \|u_1-u_{2} \|), \end{align*} where $\mu_{2}=\max\{2t_0ac\sqrt{|\Omega|}, \, e^{k_1\beta 2t_0}\}$. Without loss of generality assuming that $t_10$ and $0<\theta <1$. \end{proof} Since $W^{1,2}(\Omega)\hookrightarrow L^{2}(\Omega)$ it follows that $H^{1}\hookrightarrow X$. Then, from Theorems \ref{absorbing}, \ref{estPM} and \ref{estFinal}, it follows that the assumptions in the Proposition 2.7 of \cite{CCM} are satisfied. Therefore, we have the following result. \begin{theorem}\label{exppp} Under the hypotheses {\rm (H1)-(H3)}, for any $\nu\in (0,\frac{1}{2}-\delta)$, there exists a nonvoid set $\mathcal{M}=\mathcal{M}_{\nu}\subset B(0,\rho)$, positively invariant under $T(t)$ and precompact in $X$, with the following properties: \begin{itemize} \item[(1)] there exists $\omega >0$ such that for any bounded set $B\subset H^1$ we have \[ \lim_{t\to \infty}e^{\omega t}\operatorname{dist}(T(t)B,\mathcal{M})=0 \] where $\operatorname{dist}(\cdot,\cdot)$ denotes the Hausdorff semi-distance in $X$ (see \cite{Hale}). \item[(2)] $\mathcal{M}$ possesses finite fractal dimension in $X$; more precisely, we have for any $\nu\in(0,\frac{1}{2}-\delta)$ \[ d^X_f(\mathcal{M})\leq\frac{1}{\theta} (1+\log_{\frac{1}{2(\delta+\nu)}}N_{\nu/k}(B(0,1)), \] where $d_f(\mathcal{M})$ denotes the fractal dimension of $\mathcal{M}$, $B(0,1)$ denotes the open ball centered at $0$ and radius $1$ in $H^1=\{u\in H^{1}(\mathbb{R}^{N}): u(x)=0, \text{ if } x\notin \Omega\}$, $N_{\nu/k}(B)$ denotes the smallest number of $\frac{\nu}{k}-$balls in $L^2(\mathbb{R}^N)$ needed to cover $B(0,1)$ and $k$ is the constant given in \eqref{constk}. \end{itemize} \end{theorem} Denoting by $\overline{\mathcal{M}_{\nu}}$ the closure in $X$ of the set $\mathcal{M}_{\nu}$, from \cite[Corollary 2.8]{CCM} we have the following result. \begin{corollary} \label{coro3.7} Under the hypotheses of Theorem \ref{exppp}, for any $\nu\in (0,\frac{1}{2}-\delta)$: \begin{itemize} \item[(1)] $\overline{\mathcal{M}_{\nu}}$ is an exponential ($H^{1}-X$) attractor bounded in $H^1$; \item[(2)] there exists a finite dimensional global ($H^{1}-X$) attractor $\mathcal{A}\subset \overline{\mathcal{M}_{\nu}}$. \end{itemize} \end{corollary} \subsection*{Acknowledgments} The authors would like to thank the anonymous referee for his/her reading of the manuscript and valuable suggestions that have improved the quality of our initial manuscript. Our gratitude goes also to professors Ant\^onio L. Pereira from USP and Jesualdo G. das Chagas from UFCG for your suggestions and discussions. S. H. da Silva was partially supported by CNPq-Brazil grants Casadinho/Procad-552.464/2012-2, INCTMat-5733523/2008-8. F. D. M. Bezerra was partially supported by grant FAPESP 11/04166-5. \begin{thebibliography}{00} \bibitem{severino} F. D. M. Bezerra, A. L. Pereira, S. H. da Silva; \emph{Existence and continuity of global attractors and nonhomogeneous equilibria for a class of evolution equation with non local terms}. J. Math. Anal. and Appl., \textbf{396} (2012), 590-600. \bibitem{CCM} J. Cholewa, R. Czaja, G. Mola; \emph{Remarks on the fractal dimension of bi-space global and exponential attractors}, Bollettino U.M.I. \textbf{9} I (2008), 121-145. \bibitem{Efendiev} M. Efendiev, A. Miranville, S. Zelik; \emph{Exponential attractors for nonlinear reaction-diffusion system in $\mathbb{R}^{3}$}, Proc. Amer. Math. Soc. 134 \textbf{1} (2005), 117-127. \bibitem{Folland} G. B. Folland; \emph{Introduction to partial differential equations}. Princeton University Press, 1995. \bibitem{Hale} J. K. Hale; \emph{Asymptotic Behavior of dissipative Systems}. American Surveys and Monographs, No. 25, 1988. \bibitem{Pereira} A. L. Pereira; \emph{Global attractor and nonhomogeneous equilibria for a non local evolution equation in an unbounded domain}. J. Diff. Equations \textbf{226} (2006), 352-372. \bibitem{severino1} A. L. Pereira, S. H. da Silva; \emph{Global attractors and gradient property for a class of non local evolution equations}, S\~ao Paulo Journal Mathematical Sciences, \textbf{2}, 1 (2008), 1-20. \bibitem{severino2} A. L. Pereira and S. H. da Silva; \emph{Continuity of global attractor for a class of non local evolution equation}, Discrete and continuous dynamical systems, \textbf{26}, 3 (2010), 1073-1100. \bibitem{T} R. Temam; \emph{Infinite-Dimensional Dynamical Systems in Mechanics and Physics}, Springer- Verlag, 1997. \bibitem{Xiao} H. B. Xiao; \emph{Regularity and finite dimensionality of attractor for plate equation on $\mathbb{R}^n$}, Appl. Math. Mech. -Engl. Ed. \textbf{31}(11), 1453-1462 (2010). \end{thebibliography} \end{document}