\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 222, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/222\hfil Energy decay] {Energy decay for degenerate Kirchhoff equations with weakly nonlinear dissipation} \author[M. Abdelli, S. A. Messaoudi \hfil EJDE-2013/222\hfilneg] {Mama Abdelli, Salim A. Messaoudi} % in alphabetical order \address{Mama Abdelli \newline Universit\'e Djillali Liab\'es, Laboratoire de Math\'ematique, B.P. 89. Sidi Bel Abb\'es 22000, Algeria} \email{abdelli\_mama@yahoo.fr} \address{Salim A. Messaoudi \newline King Fahd University of Petroleum and Minerals\\ Department of Mathematics and Statistics \\ Dhahran 31261, Saudi Arabia} \email{messaoud@kfupm.edu.sa} \thanks{Submitted September 18, 2013. Published October 11, 2013.} \subjclass[2000]{35B37, 35L55, 74D05, 93D15, 93D20} \keywords{Decay of solutions; nonlinear; degenerate; Kirchhoff equation} \begin{abstract} In this article we consider a degenerate Kirchhoff equation wave equation with a weak frictional damping, \[ (|u_t|^{l-2}u_t)_t-\Big( \int_{\Omega }|\nabla _xu|^{2}\,dx\Big)^{\gamma }\Delta _xu+\alpha (t)g(u_t)=0. \] We prove general stability estimates using some properties of convex functions, without imposing any growth condition at the frictional damping term. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} In this article, we consider the initial-boundary value problem for the nonlinear Kirchhoff equation \begin{gather} (|u_t|^{l-2}u_t)_t-\Big( \int_{\Omega }|\nabla u|^{2}\,dx \Big)^{\gamma }\Delta u+\alpha (t)g(u_t)=0,\quad \text{in }\Omega \times (0,\infty ) \label{p1} \\ u=0,\quad \text{on } \partial \Omega \times (0,\infty ) \label{p2} \\ u(x,0)=u^{0}(x),\quad u_t(x,0)=u^{1}(x),\quad x\in \Omega , \label{p3} \end{gather} where $l\geq 2$, $\gamma \geq 0$ are given constants, $\Omega $ is a bounded domain in $\mathbb{R}^{n}$ with a smooth boundary $\partial \Omega $, and $g$ and $\alpha $ are one-variable functions satisfying some conditions to be specified later. This problem has been studied by many authors and several existence, nonexistence, and decay results have appeared. For instance, when $l=2$ and $\gamma =0$, the problem was treated by Mustafa and Massaoudi \cite{MM}. By using some properties of convex functions, they established a general decay result without imposing any growth condition on $g$ at the origin. Abdelli and Benaissa \cite{AB} treated system \eqref{p1}-\eqref{p3} for $g$ having a polynomial growth near the origin and established energy decay results depending on $\alpha $ and $g$ under appropriate relations between $l $ and $\gamma $. In a realted work, Amroun and Benaissa \cite{AM} constructed an exact solution of \eqref{p1}-\eqref{p3} in the presence of a nonlinear source term and for $\alpha \equiv 0.$ They also proved a finite-time blow-up result for some specific initial data. Benaissa and Guesmia \cite{BG} proved the existence of global solution, as well as, a general stability result for the following equation \[ (|u'|^{l-2}u')'-\Delta _{\phi }u+\alpha (t)g(u')=0,\quad \text{in } \Omega \times \mathbb{R}_{+}, \] where $\Delta _{\phi }=\sum_{i=1}^{n}\partial _{x_i}(\phi (|\partial _{x_i}|^{2})\partial _{x_i})$. In this article, we use some technique from \cite{MM} to establish an explicit and general decay result, depending on $g$ and $\alpha $. The proof is based on the multiplier method and makes use of some properties of convex functions, the general Young inequality and Jensen's inequality. These convexity arguments were introduced and developed by Lasiecka and co-workers (\cite{L,LT1,LT2}) and used, with appropriate modifications, by Liu and Zuazua \cite{LZ}, Alabau-Boussouira \cite{FA} and others. The paper is organized as follows: in section $2$, we give our hypotheses and establish a useful lemma. In section $3$, we state and prove our main result. \section{Preliminaries} To state and prove our result, we need the following hypotheses: \begin{itemize} \item[(H1)] $\alpha :{\mathbb{R}_{+}}\to {\mathbb{R}_{+}}$ is a nonincreasing differentiable function. \item[(H2)] $g:\mathbb{R}\to \mathbb{R}$ is a nondecreasing $C^{0}$ function such that there exist $\varepsilon ,c_1,c_2>0$, and a convex and increasing function $G:{\mathbb{R}_{+}}\to {\mathbb{R}_{+}}$ of class $C^{1}(\mathbb{R}_{+})\cap C^{2}(]0,+\infty[)$ satisfying $G(0)=G'(0)=0$ or $G$ is linear on $[0,\varepsilon ]$ such that \begin{gather*} c_1|s|^{l-1}\leq |g(s)|\leq c_2|s|^{p},\quad \text{if }|s|\geq \varepsilon;\\ |s|^{l}+|g(s)|^{\frac{l}{l-1}}\leq G^{-1}(sg(s)),\quad \text{if } |s|\leq \varepsilon; \end{gather*} with $p$ satisfying \begin{gather*} l-1\leq p\leq \frac{n+2}{n-2}, \quad \text{if }n>2; \\ l-1\leq p<\infty,\quad \text{if }n\leq 2\,. \end{gather*} \end{itemize} Now we define the energy associated to the solution of the system \eqref{p1} -\eqref{p3} by \begin{equation} E(t)=\frac{l-1}{l}\Vert u_t\Vert _{l}^{l}+\frac{1}{1+\gamma }\Vert \nabla _xu\Vert _2^{2(\gamma +1)} \label{E1} \end{equation} \begin{lemma} \label{lem2.1} Let $u$ be the solution of \eqref{p1}-\eqref{p3}. Then \begin{equation} E'(t)=-\alpha (t) \int_{\Omega }u_tg(u_t)\,dx\leq 0. \label{E2} \end{equation} \end{lemma} \begin{proof} Multiplying \eqref{p1} by $u_t$ and integrating over $ \Omega $, using the boundary conditions, the assertion of the lemma follows. \end{proof} \section{Main Result} To prove our main result, first prove the following lemma. \begin{lemma} \label{lem3.1} Assume that {\rm (H1), (H2)} hold and that $l\geq 2(\gamma +1)$. Then the functional \[ F(t)=ME(t)+ \int_{\Omega }u|u_t|^{l-2}u_t\,dx, \] defined along the solution of \eqref{p1}-\eqref{p3}, satisfies the following estimate, for some positive constants $M,c,m$: \[ F'(t)\leq -mE(t)+c \int_{\Omega }(|u_t|^{l}+|ug(u_t)|^{\frac{l}{l-1}})\,dx \] and $F(t)\sim E(t)$. \end{lemma} \begin{proof} Using system \eqref{p1}-\eqref{p3}, \eqref{E1} and \eqref{E2}, we obtain \begin{align*} F'(t) &= ME'(t)+ \int_{\Omega }|u_t|^{l}\,dx+\int_{\Omega }u(|u_t|^{l}u_t)_t\,dx \\ &\leq \int_{\Omega }|u_t|^{l}\,dx+\Big(\int_{\Omega }|\nabla u|^{2}\,dx\Big)^{\gamma }\int_{\Omega }u\Delta u\,dx-\alpha (t)\int_{\Omega }ug(u_t)\,dx \\ &\leq \int_{\Omega }|u_t|^{l}\,dx-\int_{\Omega }|\nabla u|^{2(\gamma +1)}\,dx-\alpha (t)\int_{\Omega }ug(u_t)\,dx \\ &\leq -mE(t)+c \int_{\Omega }[|u_t|^{l}+|ug(u_t)|]\,dx \end{align*} To prove that $F(t)\sim E(t)$, we show that for some positive constants $\lambda _1$ and $\lambda _2$, \begin{equation} \lambda _1E(t)\leq E(t)\leq \lambda _2E(t)\,. \label{AM1} \end{equation} We use \eqref{E1}, Poincar\'e's and Young's inequalities with exponents $\frac{l}{l-1}$ and $\frac{1}{l}$ and recall that $2\leq l\leq p+1\leq \frac{2n}{n+2}$, to obtain \begin{align*} \int_{\Omega }u|u_t|^{l-2}u_t\,dx &\leq C_{\varepsilon }\int_{\Omega }|u|^{l}\,dx+\varepsilon \int_{\Omega }|u_t|^{l}\,dx \\ &\leq C_{\varepsilon }\Vert \nabla u\Vert _2^{l}+\varepsilon \Vert u_t||_{l}^{l} \\ &\leq C_{\varepsilon }E^{\frac{l}{2(\gamma +1)}}(t)+c\varepsilon E(t) \\ &\leq C_{\varepsilon }E^{\frac{l-2(\gamma +1)}{2(\gamma +1)} }(t)E(t)+c\varepsilon E(t). \end{align*} By noting that $l\geq 2(\gamma +1)$ and using \eqref{E2}, we have \[ \int_{\Omega }u|u_t|^{l-2}u_t\,dx\leq C_{\varepsilon }E^{\frac{ l-2(\gamma +1)}{2(\gamma +1)}}(0)E(t)+c\varepsilon E(t), \] and \begin{align*} \int_{\Omega }u|u_t|^{l-2}u_t\,dx &\geq -C_{\varepsilon }\int_{\Omega }|u|^{l}\,dx-\varepsilon \int_{\Omega }|u_t|^{l}\,dx \\ &\geq -C_{\varepsilon }E^{\frac{l-2(\gamma +1)}{2(\gamma +1)} }(t)E(t)-c\varepsilon E(t) \\ &\geq -C_{\varepsilon }E^{\frac{l-2(\gamma +1)}{2(\gamma +1)} }(0)E(t)-c\varepsilon E(t) \end{align*} Then, for $M$ large enough, we obtain \eqref{AM1}. This completes the proof. \end{proof} Taking $0<\varepsilon _1<\varepsilon $ such that \begin{equation} \label{e3.3} sg(s)\leq \min \{\varepsilon ,G(\varepsilon )\},\quad \text{if } |s|\leq \varepsilon _1, \end{equation} and \begin{equation} \label{e3.4} \begin{cases} c_1'|s|^{l-1}\leq |g(s)|\leq c_2'|s|^{p}, &\text{if } |s|\geq \varepsilon _1 \\ |s|^{l}+|g(s)|^{\frac{l}{l-1}}\leq G^{-1}(sg(s)), &\text{if } |s|\leq \varepsilon _1. \end{cases} \end{equation} Considering the following partition of $\Omega $, \[ \Omega _1=\{x\in \Omega :|u_t|\leq \varepsilon _1\},\quad \Omega _2=\{x\in \Omega : |u_t|>\varepsilon _1\} \] and using the embedding $H_0^{1}(\Omega )\hookrightarrow L^{p+1}(\Omega )$ and H\"{o}lder's inequality, we obtain \begin{align*} \int_{\Omega _2}|ug(u_t)|\,dx &\leq \Big( \int_{\Omega_2}|u|^{p+1}\,dx\Big)^{\frac{1}{p+1}} \Big( \int_{\Omega _2}|g(u_t)|^{1+\frac{1}{p}}\,dx\Big)^{p/(p+1)} \\ &\leq c\Vert u\Vert _{H_0^{1}(\Omega )}\Big( \int_{\Omega _2}|g(u_t)|^{1+\frac{1}{p}}\,dx\Big)^{p/(p+1)} \end{align*} Using Poincar\'e's inequality and \eqref{e3.4} yields \begin{align*} &\int_{\Omega _2}[|u_t|^{l}+|ug(u_t)|]\,dx \\ &\leq c \int_{\Omega _2}|u_t|^{l-1}|u_t|\,dx+c\Big( \int_{\Omega }|\nabla u|^{2}\,dx\Big)^{1/2}\Big( \int_{\Omega _2}|g(u_t)|^{1+\frac{1}{p}}\,dx\Big)^{p/(p+1)} \\ &\leq c \int_{\Omega _2}u_tg(u_t)\,dx+c\Big( \int_{\Omega }|\nabla u|^{2}\,dx\Big)^{1/2}\Big( \int_{\Omega _2}u_tg(u_t)\,dx\Big)^{p/(p+1)} \\ &\leq -cE'(t)+cE^{\frac{1}{2(\gamma +1)}}(-E'(t))^{p/(p+1)}. \end{align*} Then, we use Young's inequality and the fact that $p\geq l-1\geq 2\gamma +1$, for any $\delta >0$, we have \begin{equation} \label{e3.5} \begin{aligned} \int_{\Omega _2}[|u_t|^{l}+|ug(u_t)|]\,dx &\leq -cE'(t)+c\delta E^{\frac{p+1}{2(\gamma +1)}}(t)+C_{\delta }(-E'(t)) \\ &\leq c\delta E^{\frac{p+1}{2(\gamma +1)}}(t)-C_{\delta }E'(t) \\ &\leq c\delta E^{\frac{p-(2\gamma +1)}{2(\gamma +1)}}(0)E(t)-C_{\delta }E'(t) \end{aligned} \end{equation} Similarly, using \eqref{E1} and Young's inequality, we have, for any $\delta >0$, \begin{equation} \label{e3.6} \begin{aligned} \int_{\Omega _1}[|u_t|^{l}+|ug(u_t)|]\,dx &\leq \int_{\Omega _1}|u_t|^{l}\,dx+\delta \int_{\Omega _1}|u|^{l}\,dx+C_{\delta } \int_{\Omega _1}|g(u_t)|^{\frac{l}{l-1}}\,dx \\ &\leq \int_{\Omega _1}|u_t|^{l}\,dx+c\delta E^{\frac{l}{ 2(\gamma +1)}}(t)+C_{\delta } \int_{\Omega _1}|g(u_t)|^{ \frac{l}{l-1}}\,dx \end{aligned} \end{equation} By Lemma 3.1, \eqref{e3.5} and \eqref{e3.6}, for $\delta $ small enough, the function $ L=F+C_{\delta }E$ satisfies \begin{equation} \label{e3.7} \begin{aligned} L'(t) &\leq \Big(-m+c\delta E^{\frac{p-(2\gamma +1)}{2} }(0)+c\delta E^{\frac{l-2(\gamma +1)}{2(\gamma +1)}}(0)\Big)E(t) \\ &\quad+ \int_{\Omega _1}|u_t|^{l}\,dx+C_{\delta } \int_{\Omega _1}|g(u_t)|^{\frac{l}{l-1}}\,dx \\ &\leq -dE(t)+c \int_{\Omega _1}\Big(|u_t|^{l}+|g(u_t)|^{ \frac{l}{l-1}}\Big)\,dx \end{aligned} \end{equation} and \begin{equation} \label{e3.8} L(t)\sim E(t). \end{equation} \begin{theorem} \label{thm3.2} Assume that {\rm (H1), (H2)} hold and $l\geq 2(\gamma +1)$. Then there exist positive constants $k_1,k_2,k_3$ and $\varepsilon _0$ such that the solution of \eqref{p1}-\ref{p3} satisfies \begin{equation} E(t)\leq k_3G_1^{-1}\Big(k_1 \int_0^{t}\alpha (s)\,ds+k_2\Big)\quad \forall t\geq 0, \label{3B} \end{equation} where \begin{equation} \label{e3.10} G_1(t)= \int_t^{1}\frac{1}{G_2(s)}\,ds,\quad G_2(t)=tG'(\varepsilon _0t). \end{equation} Here, $G_1$ is strictly decreasing and convex on $(0,1]$ with $\lim_{t\to 0}G_1(t)=+\infty $. \end{theorem} \begin{proof} Multiplying \eqref{e3.7} by $\alpha (t)$, we have \begin{equation} \label{e3.11} \alpha (t)L'(t)\leq -d\alpha (t)E(t)+c\alpha (t)\int_{\Omega _1} \Big(|u_t|^{l}+|g(u_t)|^{\frac{l}{l-1}}\Big)\,dx \end{equation} \textbf{Case 1}. $G$ is linear on $[0,\varepsilon ]$, then we deduce that \[ \alpha (t)L'(t)\leq -d\alpha (t)E(t)+c\alpha (t)\int_{\Omega _1}u_tg(u_t)\,dx=-d\alpha (t)E(t)-cE'(t) \] Consequently, we arrive at \[ (\alpha L+cE)'(t)\leq -d\alpha (t)E(t). \] Recalling that \begin{equation} \alpha L+cE\sim E, \label{11} \end{equation} we obtain \[ E(t)\leq c'e^{-c''\int_0^{t}\alpha (s)\,ds} \] Thus, we have \[ E(t)\leq c'e^{-c''\int_0^{t}\alpha (s)\,ds}=c'G_1^{-1}(c''\int_0^{t}\alpha (s)\,ds) \] by a simple computation. \smallskip \noindent\textbf{Case 2}. $G$ is nonlinear on $[0,\varepsilon ]$. In this case, we define \[ I(t)=\frac{1}{|\Omega _1|}\int_{\Omega _1}u_tg(u_t)\,dx. \] and exploit Jensen's inequality and the concavity of $G^{-1}$ to obtain \[ G^{-1}(I(t))\geq c\int_{\Omega _1}G^{-1}(u_tg(u_t))\,dx. \] By using this inequality and \eqref{e3.4}, we obtain \begin{equation} \alpha (t)\int_{\Omega _1}[|u_t|^{l}+|g(u_t)|^{\frac{l}{l-1}}]\,dx \leq \alpha (t)\int_{\Omega _1}G^{-1}(u_tg(u_t))\,dx \leq c\alpha (t)G^{-1}(I(t)). \label{M} \end{equation} Let us set $H_0=\alpha L+E$ and exploit \eqref{E2}, \eqref{e3.11}, \eqref{M}, and $\alpha $ being nonincreasing, to obtain \begin{equation} \begin{aligned} H_0'(t) & \leq -d\alpha (t)E(t)+c\alpha (t)G^{-1}(I(t))+E'(t) \\ & \leq -d\alpha (t)E(t)+c\alpha (t)G^{-1}(I(t)), \end{aligned} \label{M1} \end{equation} and recall \eqref{e3.8}, to deduce that $H_0\sim E$. For $\varepsilon _0<\varepsilon $ and $c_0>0$, we define $H_1$ by \[ H_1(t)=G'(\varepsilon _0\frac{E(t)}{E(0)})H_0(t)+c_0E(t). \] Then, we see easily that, for $a_1,a_2>0$, \begin{equation} a_1H_1(t)\leq E(t)\leq a_2H_1(t), \label{e3.16} \end{equation} By recalling that $E'\leq 0$, $G'>0$, $G''>0$ on $(0,\varepsilon ]$ and making use of \eqref{E1} and \eqref{M1}, we obtain \begin{equation} \label{e3.17} \begin{aligned} H_1'(t) &= \varepsilon _0\frac{E'(t)}{E(0)} G''(\varepsilon _0\frac{E(t)}{E(0)})H_0(t)+G'(\varepsilon _0\frac{E(t)}{E(0)})H_0'(t)+c_0E'(t) \\ &\leq -d\alpha (t)E(t)G'(\varepsilon _0\frac{E(t)}{E(0)} )+c\alpha (t)G'(\varepsilon _0\frac{E(t)}{E(0)} )G^{-1}(I(t))+c_0E'(t). \end{aligned} \end{equation} Let $G^{*}$ be the convex conjugate of $G$ in the sense of Young (see Arnold \cite[p. 61-64]{AR}), then \begin{equation} \label{e3.19} G^{*}(s)=s(G')^{-1}(s)-G[(G')^{-1}(s)],\quad \text{if } s\in (0,G'(\varepsilon )], \end{equation} and $G^{*}$ satisfies the generalized Young's inequality \begin{equation} AB\leq G^{*}(A)+G(B),\quad\text{if }A\in (0,G'(\varepsilon)],\; B\in (0,\varepsilon ]. \end{equation} with $A=G'(\varepsilon _0 E(t)/E(0))$ and $ B=G^{-1}(I(t))$, using \eqref{E2}, \eqref{e3.3} and \eqref{e3.17}--\eqref{e3.19}, we obtain \begin{align*} H_1'(t) &\leq -d\alpha (t)E(t)G'(\varepsilon _0\frac{ E(t)}{E(0)})+c\alpha (t)G^{*}\Big(G'(\varepsilon _0\frac{E(t)}{ E(0)})\Big) +c\alpha (t)I(t)+c_0E'(t) \\ &\leq -d\alpha (t)E(t)G'(\varepsilon _0\frac{E(t)}{E(0)} )+c\varepsilon _0\alpha (t)\frac{E(t)}{E(0)}G'(\varepsilon _0 \frac{E(t)}{E(0)})-cE'(t)+c_0E'(t). \end{align*} Choosing $c_0>c$ and $\varepsilon _0$ small enough, we obtain \begin{equation} H_1'(t)\leq -k\alpha (t)\frac{E(t)}{E(0)}G'\Big( \varepsilon _0\frac{E(t)}{E(0)}\Big)=-k\alpha (t)G_2\Big(\frac{E(t)}{E(0) }\Big) \label{E23} \end{equation} where $G_2(t)=tG'(\varepsilon _0t)$. Since \[ G_2'(t)=G'(\varepsilon _0t)+\varepsilon _0tG''(\varepsilon _0t). \] and $G$ is convex on $(0,\varepsilon ]$, we find that $G_2'(t)>0$ and $G_2(t)>0$ on $(0,1]$. By setting $ H(t)=\frac{a_1H_1(t)}{E(0)}$ ($a_1$ is given in \eqref{e3.16}), we easily see that, by \eqref{e3.16}, we have \begin{equation} H(t)\sim E(t) \label{1B} \end{equation} Using \eqref{E23}, we arrive at \[ H'(t)\leq -k_1\alpha (t)G_2(H(t)) \] By recalling \eqref{e3.10}, we deduce $G_2(t)=-1/G_1'(t)$, hence \[ H'(t)\leq k_1\alpha (t)\frac{1}{G_1'(H(t))}, \] which gives \[ \lbrack G_1(H(t))]'=H'(t)G_1'(H(t))\leq k_1\alpha (t) \] A simple integration leads to \[ G_1(H(s))\leq k_1\int_0^{t}\alpha (s)\,ds+G_1(H(0)) \] Consequently, \begin{equation} H(t)\leq G_1^{-1}(k_1\int_0^{t}\alpha (s)\,ds+k_2) \label{2B} \end{equation} Using \eqref{1B} and \eqref{2B} we obtain \eqref{3B}. The proof is complete. \end{proof} \subsection*{Acknowledgments} The second author wants to thank KFUPM for its financial support. \begin{thebibliography}{99} \bibitem{AB} M. Abdelli, A. Benaissa; \emph{Energy decay of solutions of a degenerate Kirchhoff equation with a weak nonlinear dissipation}, Nonlinear Analysis \textbf{69} (2008), 1999-2008. \bibitem{FA} F. Alabau-Boussouira; \emph{Convexity and weighted intgral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems}, Appl. Math. Optim. \textbf{51 }(2005), 61-105. \bibitem{AM} N. D. Amroun, A. Benaissa; \emph{On exact solutions of a quasilinear wave equation with source term}, Electron. J. Differential Equations \textbf{31} (2006), 231-238. \bibitem{AR} V. I. Arnold; \emph{Mathematical methods of classical mechanics}, Springer-Verlag, New York 1989. \bibitem{BG} A. Benaissa, A. Guesmia; \emph{Energy decay for wave equations of $\phi $-Laplacian type with weakly nonlinear dissipation}, Electron. J. Differential Equations \textbf{2008} (2008), 1-22. \bibitem{MC} M. M. Cavalcanti, V. N. Domingos Cavalcanti, I. Lasiecka; \emph{Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction}, J. Differential Equations \textbf{236 }(2007), 407-459. \bibitem{L} I. Lasiecka; \emph{Stabilization of wave and plate-like equation with nonlinear dissipation on the boundary}, J. Differential Equations \textbf{79 }(1989), 340-381. \bibitem{LT1} I. Lasiecka, D. Toundykov; \emph{Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms}, Nonlinear Anal. \textbf{64 }(2006), 1757-1797. \bibitem{LT2} I. Lasiecka, D. Toundykov; \emph{Regularity of higher energies of wave equation with nonlinear localized damping and a nonlinear source}, Nonlinear Anal. \textbf{69 }(2008), 898-910. \bibitem{LZ} W. J. Liu, E. Zuazua; \emph{Decay rates for dissipative wave equations}, Ricerche Mat \textbf{48 }(1999), 61-75. \bibitem{MM} M. I. Mustafa, S. A. Messaoudi; \emph{General energy decay for a weakly damped wave equation}, Communications in Mathematical Analysis \textbf{9} (2010), 1938-9787. \end{thebibliography} \end{document}