\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 229, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/229\hfil Oscillation of solutions ] {Oscillation of solutions to second-order half-linear differential equations with \\ neutral terms} \author[T. Li, M. T. \c{S}enel, C. Zhang \hfil EJDE-2013/229\hfilneg] {Tongxing Li, Mehmet Tamer \c{S}enel, Chenghui Zhang} % in alphabetical order \address{Tongxing Li \newline School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China} \email{litongx2007@163.com} \address{Mehmet Tamer \c{S}enel \newline Department of Mathematics, Faculty of Sciences, Erciyes University, Kayseri 38039, Turkey} \email{senel@erciyes.edu.tr} \address{Chenghui Zhang \newline School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China} \email{zchui@sdu.edu.cn} \thanks{Submitted September 6, 2013. Published October 16, 2013.} \subjclass[2000]{34C10, 34K11} \keywords{Oscillation; neutral differential equation; comparison theorem} \begin{abstract} This article studies the oscillatory behavior of second-order half-linear differential equations with several neutral terms. Some criteria are presented that include those reported in \cite{TLi4}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Neutral differential equations are used for modeling many problems arising in astrophysics, atomic physics, gas and fluid mechanics, etc. Therefore, analysis of qualitative behavior of solutions to such equations is important for applications. In particular, oscillatory and nonoscillatory behavior of solutions to various classes of neutral differential equations has always attracted attention of researchers; see, e.g., the references in this article and their references. In this article, we are concerned with the oscillation of the second-order neutral differential equation \begin{equation}\label{E} \big(r(t)|z'(t)|^{\alpha-1}z'(t)\big)' +q(t)|x(\sigma(t))|^{\alpha-1}x(\sigma(t))=0, \end{equation} where $z(t):=x(t)+\sum_{i=1}^mp_i(t)x(\tau_i(t))$, and \begin{itemize} \item[(H1)] $m>0$ is an integer, $q\in {\rm C}[t_{0},\infty)$, $r, p_i, \tau_i, \sigma\in {\rm C}^{1}[t_{0},\infty)$; \item[(H2)] $\alpha\geq1$, $r(t)> 0$, $q(t)>0,$ $0\leq p_i(t)\leq a_{i}<\infty$ for $i=1,2,\ldots,m$; \item[(H3)] $\lim_{t\to\infty}\sigma(t)=\infty$, $\tau_i\circ\sigma=\sigma\circ\tau_i$, $\tau_i'(t)\geq \lambda_{i}>0$ for $i=1,2,\ldots,m$. \end{itemize} Also we assume that \begin{equation}\label{R} \lim_{t\to\infty}R(t)<\infty, \quad R(t):=\int_{t_{0}}^{t}\frac{1}{r^{1/\alpha}(s)}\,\mathrm{d}s. \end{equation} By a solution to \eqref{E}, we mean a function $x\in {\rm C}[T_{x},\infty),$ $T_{x}\geq t_{0},$ which has the property $r|z'|^{\alpha-1}z'\in {\rm C}^{1}[T_{x},\infty)$ and satisfies \eqref{E} on $[T_{x},\infty)$. We consider only those solutions $x$ of \eqref{E} which satisfy $\sup \{|x(t)|:t \geq T\}>0$ for all $T\geq T_{x}$ and tacitly assume that \eqref{E} possesses such solutions. A solution of \eqref{E} is said to be oscillatory if it does not have the largest zero on $[T_{x},\infty)$; otherwise, it is called nonoscillatory. Equation \eqref{E} is said to be oscillatory if all its solutions are oscillatory. Below, we present some background details that motivate our study. Bacul\'{i}kov\'{a} and D\v{z}urina \cite{BDz}, Li et al. \cite{TLi,TLi4}, and Zhang et al. \cite{Zhang} studied the neutral differential equation \[ (r(t)(x(t)+p(t)x(\tau(t)))')'+q(t)x(\sigma(t))=0, \] and established some oscillation criteria under the conditions that \[ 0\leq p(t)\leq p_0<\infty \quad \text{and} \quad \tau\circ\sigma=\sigma\circ\tau. \] Agarwal et al. \cite{agarwal18}, Bacul\'{i}kov\'{a} and D\v{z}urina \cite{BDz2}, Bacul\'{i}kov\'{a} et al. \cite{BDz3}, and Li et al. \cite{TLi5, TLi7} considered oscillation of \eqref{E} in the case where $m=1$. Assuming \[ \lim_{t\to\infty} \int_{t_{0}}^{t}\frac{1}{r^{1/\alpha}(s)}\,\mathrm{d}s =\infty, \] Zhang et al. \cite{Zhang2} extended results of \cite{BDz} to equation \eqref{E}. We stress that results in \cite{agarwal18,BDz2,BDz3,TLi5,TLi7,Zhang2} cannot be applied to \eqref{E} in the case where \eqref{R} holds and $m\neq1$. Our objective in this work is to define a method for the analysis of oscillatory properties of \eqref{E} via the comparison principles suggested by Zhang et al. \cite{Zhang2}, under assumption \eqref{R}. In what follows, all functional inequalities are assumed to hold eventually, that is, for all $t$ large enough. \section{Oscillation criteria} In what follows, we use the notation \[ Q(t):=\min\{q(t),q(\tau_1(t)),q(\tau_2(t)),\ldots,q(\tau_m(t))\} \] and \[ \tilde{Q}(t,t_1):=Q(t)(R(\eta(t))-R(t_1))^\alpha, \quad \delta(t):=\int_{t}^{\infty}r^{-1/\alpha}(s)\,\mathrm{d}s, \] for $t\geq t_1$, $t_1\geq t_0$ is sufficiently large, where $\eta$ will be specified later. \begin{theorem}\label{thm1} Assume {\rm (H1)--(H3)} and \eqref{R}. Suppose that there exist two functions $\eta,\xi\in {\rm C}[t_0,\infty)$ such that $\eta(t)\leq\sigma(t)\leq\xi(t)$ and $\lim_{t\to\infty}\eta(t)=\infty$. If the first-order neutral differential inequalities \begin{equation}\label{E1} \Big(y(t)+\sum_{i=1}^m\frac{{a_i}^\alpha}{\lambda_i}\,y(\tau_i(t))\Big)' +\frac{\tilde{Q}(t,t_1)}{(m+1)^{\alpha-1}}y(\eta(t)) \leq0 \end{equation} and \begin{equation}\label{e1} \Big(u(t)+\sum_{i=1}^m\frac{{a_i}^\alpha}{\lambda_i}\,u(\tau_i(t))\Big)' -\frac{Q(t)\delta^\alpha(\xi(t))}{(m+1)^{\alpha-1}}u(\xi(t)) \geq0 \end{equation} have no positive solutions, then \eqref{E} is oscillatory. \end{theorem} \begin{proof} Let $x$ be an eventually positive solution of \eqref{E}. Using that $x\mapsto x^{\alpha}$ is convex for $\alpha\geq 1$ and $x>0$, we obtain the following inequality that corresponds to (2.7) in \cite[Theorem 1]{Zhang2}, \begin{equation}\label{txe2} \begin{aligned} &(r(t)|z'(t)|^{\alpha-1}z'(t))' +\sum_{i=1}^m\frac{{a_i}^\alpha}{\lambda_i} (r(\tau_i(t))|z'(\tau_i(t))|^{\alpha-1}z'(\tau_i(t)))'\\ &+\frac{Q(t)}{(m+1)^{\alpha-1}}z^\alpha(\sigma(t))\leq0. \end{aligned} \end{equation} Assuming that $x(t)>0$, Equation \eqref{E} implies that, for some $t_1$ large enough and for all $t\geq t_1$, either \begin{equation}\label{case1} z'(t)>0, \quad (r(t)|z'(t)|^{\alpha-1}z'(t))'<0, \end{equation} or \begin{equation}\label{case2} z'(t)<0, \quad (r(t)|z'(t)|^{\alpha-1}z'(t))'<0. \end{equation} Assume first that \eqref{case1} holds. Inequality \eqref{txe2} reduces to \begin{equation}\label{txe2i} (r(t)(z'(t))^\alpha)'+\sum_{i=1}^m\frac{{a_i}^\alpha}{\lambda_i}(r(\tau_i(t))(z'(\tau_i(t)))^\alpha)' +\frac{Q(t)}{(m+1)^{\alpha-1}}z^\alpha(\sigma(t))\leq0. \end{equation} The fact that $z'(t)>0$ and $z(t)>0$ imply that $z^{\alpha}$ is increasing. Then, \eqref{txe2i} and $\eta(t)\leq\sigma(t)$ yield \begin{equation}\label{txe2ii} (r(t)(z'(t))^\alpha)'+\sum_{i=1}^m\frac{{a_i}^\alpha}{\lambda_i}(r(\tau_i(t))(z'(\tau_i(t)))^\alpha)' +\frac{Q(t)}{(m+1)^{\alpha-1}}z^\alpha(\eta(t))\leq0. \end{equation} It follows from \eqref{case1} that $y:=(z')^\alpha r$ is positive and decreasing. Using that $z(t)>0$, we have \begin{equation}\label{zy} \begin{aligned} z(t)&\geq \int_{t_1}^{t}\frac{(r(s)(z'(s))^\alpha)^{1/\alpha}}{r^{1/\alpha}(s)} \,\mathrm{d}s\\ &\geq y^{1/\alpha}(t)\int_{t_1}^{t}\frac{\mathrm{d}s}{r^{1/\alpha}(s)}\\ &=y^{1/\alpha}(t)(R(t)-R(t_1)). \end{aligned} \end{equation} Therefore, setting $y:=(z')^\alpha r$ in \eqref{txe2ii} and using \eqref{zy}, one can see that $y$ is a positive solution of \eqref{E1}. This contradicts our assumption that inequality \eqref{E1} has no positive solutions. Consider now the second case. It follows from \eqref{case2} that $(r(t)(-z'(t))^\alpha)'>0$, and hence \[ z'(s)\leq\frac{r^{1/\alpha}(t)z'(t)}{r^{1/\alpha}(s)} \quad \text{for all} \quad s\geq t, \] which, upon integration, leads to \[ z(l)\leq z(t)+r^{1/\alpha}(t)z'(t)\int_{t}^{l}\frac{\mathrm{d}s}{r^{1/\alpha}(s)}. \] Since $z(t)> 0$, passing to the limit as $l\to\infty$, \[ 0\leq z(t)+r^{1/\alpha}(t)z'(t)\int_{t}^{\infty} \frac{\mathrm{d}s}{r^{1/\alpha}(s)}. \] Therefore, \begin{equation}\label{litx123} z(t)\geq-r^{1/\alpha}(t)z'(t)\delta(t). \end{equation} Since $z'(t)<0$, inequality \eqref{txe2} reduces to \begin{equation}\label{txe2ik} (r(t)(-z'(t))^\alpha)'+\sum_{i=1}^m \frac{{a_i}^\alpha}{\lambda_i}(r(\tau_i(t))(-z'(\tau_i(t)))^\alpha)' -\frac{Q(t)}{(m+1)^{\alpha-1}}z^\alpha(\sigma(t))\geq0. \end{equation} Note that $z(t)>0$ and $z'(t)<0$, thus $z^{\alpha}$ is decreasing. It follows from $\sigma(t)\leq\xi(t)$ that $z^{\alpha}(\sigma(t))\geq z^{\alpha}(\xi(t))$ and \begin{equation}\label{txe2ik2} (r(t)(-z'(t))^\alpha)'+\sum_{i=1}^m\frac{{a_i}^\alpha}{\lambda_i} (r(\tau_i(t))(-z'(\tau_i(t)))^\alpha)' -\frac{Q(t)}{(m+1)^{\alpha-1}}z^\alpha(\xi(t))\geq0. \end{equation} Therefore, setting $u:=(-z')^\alpha r$ and using \eqref{litx123}, we have that $u$ is a positive solution of \eqref{e1}. This contradicts our assumption and the proof is complete. \end{proof} \begin{remark}\label{rmk1} \rm When $m=1$ and $\alpha=1$, Theorem \ref{thm1} reduces to \cite[Theorem 1]{TLi4}. \end{remark} Using additional assumptions on the coefficients of \eqref{E}, one can deduce from Theorem~\ref{thm1} a number of oscillation criteria applicable to different classes of equations. In what follows, we use the notation $\tau_*(t):=\max\{\tau_i(t):i=1,2,\ldots,m\}$ and $\tau(t):=\min\{\tau_i(t):i=1,2,\ldots,m\}$, the notation $\tau_*^{-1}$ and $\tau^{-1}$ stand for the inverse of the functions $\tau_*$ and $\tau$, respectively. \begin{theorem}\label{thm2} Assume {\rm (H1)--(H3)} and \eqref{R}. Suppose that there exist two functions $\eta,\xi\in {\rm C}[t_0,\infty)$ such that $\eta(t)\leq\sigma(t)\leq\xi(t)$ and $\lim_{t\to\infty}\eta(t)=\infty$. Assume also that \begin{equation}\label{assum1} \tau_i(t)\geq t \quad \text{for } i=1,2,\ldots,m. \end{equation} If the first-order functional differential inequalities \begin{equation}\label{E2} w'(t)+\frac{\tilde{Q}(t,t_1)}{(m+1)^{\alpha-1}(1+\sum_{i=1}^m\frac{{a_i}^\alpha}{\lambda_i})}\,w(\eta(t))\leq0 \end{equation} and \begin{equation}\label{e2} h'(t)-\frac{Q(t)\delta^\alpha(\xi(t))}{(m+1)^{\alpha-1}(1+\sum_{i=1}^m\frac{{a_i}^\alpha}{\lambda_i})}\,h(\tau_*^{-1}(\xi(t)))\geq0 \end{equation} have no positive solutions, then equation \eqref{E} is oscillatory. \end{theorem} \begin{proof} Let $x$ be an eventually positive solution of \eqref{E}. As in the proof of Theorem \ref{thm1}, there exist two possible cases \eqref{case1} and \eqref{case2} for all $t\geq t_1$. Assume first that \eqref{case1} holds. Along the same lines as in \cite[Theorem 2]{Zhang2}, we deduce that the inequality \eqref{E2} has a positive solution, which contradicts our assumption. Consider now the second case. It has been established in Theorem~\ref{thm1} that the function $u:=(-z')^\alpha r$ is positive, increasing, and satisfies the inequality \eqref{e1}. We now define \begin{equation}\label{zeru} h(t):=u(t)+\sum_{i=1}^m\frac{{a_i}^\alpha}{\lambda_i}\,u(\tau_i(t)). \end{equation} Then, we have $$ h(t)\leq u(\tau_*(t))\Big(1+\sum_{i=1}^m\frac{{a_i}^\alpha}{\lambda_i}\Big). $$ Substituting the latter inequality into \eqref{e1}, we see that $h$ is a positive solution of \eqref{e2}. This contradiction completes the proof. \end{proof} \begin{remark}\label{rmk2} \rm Theorem \ref{thm2} includes \cite[Theorem 2]{TLi4} in the case where $m=1$ and $\alpha=1$. \end{remark} Combining Theorem \ref{thm2} with the oscillation criteria presented in Ladde et al. \cite[Theorems 2.1.1 and 2.4.1]{Lad}, we obtain the following result. \begin{corollary}\label{Co2d} Assume {\rm (H1)--(H3)}, \eqref{R}, and \eqref{assum1}. Suppose further that there exist two functions $\eta,\xi\in {\rm C}[t_0,\infty)$ such that $\eta(t)\tau_*(t)$, $\eta(t)\leq\sigma(t)\leq\xi(t)$, and $\lim_{t\to\infty}\eta(t)=\infty$. If \begin{equation}\label{Con1a} \liminf_{t\to\infty} \int_{\eta(t)}^t Q(s)R^\alpha(\eta(s))\,\mathrm{d}s>\frac{(m+1)^{\alpha-1}(1+\sum_{i=1}^m\frac{{a_i}^\alpha}{\lambda_i})}{\rm{e}} \end{equation} and \begin{equation}\label{zhcon1} \liminf_{t\to\infty} \int_{t}^{\tau_*^{-1}(\xi(t))} Q(s)\delta^\alpha(\xi(s))\,\mathrm{d}s >\frac{(m+1)^{\alpha-1}(1+\sum_{i=1}^m\frac{{a_i}^\alpha}{\lambda_i})}{\rm{e}}, \end{equation} then \eqref{E} is oscillatory. \end{corollary} \begin{proof} By \cite[Theorem 2.1.1]{Lad}, assumption \eqref{Con1a} ensures that the differential inequality \eqref{E2} has no positive solutions. On the other hand, by \cite[Theorem 2.4.1]{Lad}, condition \eqref{zhcon1} guarantees that the differential inequality \eqref{e2} has no positive solutions. Application of Theorem \ref{thm2} yields the result. \end{proof} \begin{remark}\label{rmrk3} \rm When $\alpha=1$ and $m=1$, Corollary \ref{Co2d} includes \cite[Corollary 3]{TLi4}. \end{remark} \begin{theorem}\label{thm3} Assume {\rm (H1)--(H3)}, \eqref{R}, and let $\tau_*(t)\leq t$. Suppose that there exist two functions $\eta,\xi\in {\rm C}[t_0,\infty)$ such that $\eta(t)\leq\sigma(t)\leq\xi(t)$ and $\lim_{t\to\infty}\eta(t)=\infty$. If the first-order functional differential inequalities \begin{equation}\label{E71} w'(t)+\frac{\tilde{Q}(t,t_1)}{(m+1)^{\alpha-1}(1+\sum_{i=1}^m\frac{{a_i}^\alpha}{\lambda_i})}\, w(\tau^{-1}(\eta(t)))\leq0 \end{equation} and \begin{equation}\label{litxE71} h'(t)-\frac{Q(t)\delta^\alpha(\xi(t))}{(m+1)^{\alpha-1}(1+\sum_{i=1}^m\frac{{a_i}^\alpha}{\lambda_i})}\, h(\xi(t))\leq0 \end{equation} have no positive solutions, then \eqref{E} is oscillatory. \end{theorem} \begin{proof} Let $x$ be an eventually positive solution of \eqref{E}. By the proof of Theorem \ref{thm1}, there exist two possible cases \eqref{case1} and \eqref{case2} for all $t\geq t_1$. Assume first that \eqref{case1} holds. Following the same lines as in \cite[Theorem 3]{Zhang2}, we conclude that the inequality \eqref{E71} has a positive solution, which contradicts our assumption. Consider now the second case. We have shown in Theorem~\ref{thm1} that the function $u:=r(-z')^\alpha$ is positive, increasing, and satisfies the inequality \eqref{e1}. By virtue of $\tau_*(t)\leq t$, the inequality $$ h(t)\leq u(t)\Big(1+\sum_{i=1}^m\frac{{a_i}^\alpha}{\lambda_i}\Big) $$ holds for the function $h$ defined by \eqref{zeru}. Substituting this inequality into \eqref{e1}, we conclude that $h$ is a positive solution of \eqref{litxE71}. This contradiction completes the proof. \end{proof} \begin{remark}\label{rmk4} \rm Theorem \ref{thm3} includes \cite[Theorem 4]{TLi4} when $\alpha=1$ and $m=1$. \end{remark} \begin{corollary}\label{Co3} Assume {\rm (H1)--(H3)}, \eqref{R}, and let $\tau_*(t)\leq t$. Suppose also that there exist two functions $\eta,\xi\in {\rm C}[t_0,\infty)$ such that $\eta(t)<\tau(t)$, $\xi(t)>t$, $\eta(t)\leq\sigma(t)\leq\xi(t)$, and $\lim_{t\to\infty}\eta(t)=\infty$. If \begin{equation}\label{Con1a3} \liminf_{t\to\infty} \int_{\tau^{-1}(\eta(t))}^tQ(s)R^\alpha(\eta(s))\,\mathrm{d}s >\frac{(m+1)^{\alpha-1}(1+\sum_{i=1}^m\frac{{a_i}^\alpha}{\lambda_i})}{\rm{e}} \end{equation} and \begin{equation}\label{litxCon1a3} \liminf_{t\to\infty} \int_{t}^{\xi(t)}Q(s)\delta^\alpha(\xi(s))\,\mathrm{d}s>\frac{(m+1)^{\alpha-1}(1+\sum_{i=1}^m\frac{{a_i}^\alpha}{\lambda_i})}{\rm{e}}, \end{equation} then \eqref{E} is oscillatory. \end{corollary} \begin{proof} As in \cite[Theorem 2.1.1]{Lad}, condition \eqref{Con1a3} ensures that the differential inequality \eqref{E71} has no positive solutions. On the other hand, it follows from \cite[Theorem 2.4.1]{Lad} that condition \eqref{litxCon1a3} guarantees that the differential inequality \eqref{litxE71} has no positive solutions. Application of Theorem \ref{thm3} completes the proof. \end{proof} \begin{remark}\label{rmrk5} \rm When $m=1$ and $\alpha=1$, Corollary \ref{Co3} reduces to \cite[Corollary 5]{TLi4}. \end{remark} The following example illustrates possible applications of the theoretical results obtained. \begin{example}\label{examp1} \rm For $t\geq1$, consider a second-order neutral differential equation \begin{equation}\label{exe1} \begin{aligned} &\Big({\rm e}^t\Big(x(t)+\frac{1}{4}x\big(t-\frac{\pi}{4}\big)+\frac{1}{4} x\big(t-\frac{\pi}{2}\big)\Big)'\Big)'\\ &+12\sqrt{65}{\rm e}^tx\Big(t-\frac{1}{8}\arcsin \frac{\sqrt{65}}{65}\Big)=0. \end{aligned} \end{equation} Let $\eta(t)=t-\pi$ and $\xi(t)=t+\pi/4$. It is not difficult to verify that all assumptions of Corollary \ref{Co3} are satisfied. Hence, equation \eqref{exe1} is oscillatory. As a matter of fact, one such solution is $x(t)=\sin (8t)$. \end{example} \subsection*{Acknowledgements} The authors want to express their sincere gratitude to Professor Julio G. Dix for the careful reading of the original manuscript and the useful comments that helped us improve this article. This research is supported by National Key Basic Research Program of China (grant 2013CB035604) and NNSF of China (grants 61034007, 51277116, 51107069). \begin{thebibliography}{99} \bibitem{agarwal} R. P. Agarwal, M. Bohner, T. Li, C. Zhang; \newblock Oscillation of second-order differential equations with a sublinear neutral term. \newblock \emph{Carpathian J. Math.}, (2013, in press). \bibitem{agarwal18} R. P. Agarwal, M. Bohner, T. Li, C. Zhang; \newblock Oscillation of second-order Emden--Fowler neutral delay differential equations. \newblock \emph{Ann. Math. Pura Appl.}, (2013, in press). \bibitem{BDz} B. Bacul\'{i}kov\'{a}, J. D\v{z}urina; \newblock Oscillation theorems for second order neutral differential equations. \newblock \emph{Comput. Math. Appl.}, 61 (2011) 94--99. \bibitem{BDz2} B. Bacul\'{i}kov\'{a}, J. D\v{z}urina; \newblock Oscillation theorems for second-order nonlinear neutral differential equations. \newblock \emph{Comput. Math. Appl.}, 62 (2011) 4472--4478. \bibitem{BDz3} B. Bacul\'{i}kov\'{a}, T. Li, J. D\v{z}urina; \newblock Oscillation theorems for second-order superlinear neutral differential equations. \newblock \emph{Math. Slovaca}, 63 (2013) 123--134. \bibitem{candan} T. Candan; \newblock The existence of nonoscillatory solutions of higher order nonlinear neutral equations. \newblock \emph{Appl. Math. Lett.}, 25 (2012) 412--416. \bibitem{dix2} J. G. Dix; \newblock Oscillation of solutions to a neutral differential equation involving an $n$-order operator with variable coefficients and a forcing term. \newblock \emph{Differ. Equ. Dyn. Syst.}, (2013, in press). \bibitem{dix1} J. G. Dix, B. Karpuz, R. Rath; \newblock Necessary and sufficient conditions for the oscillation of differential equations involving distributed arguments. \newblock \emph{Electron. J. Qual. Theory Differ. Equ.}, 2011 (2011) 1--15. \bibitem{dix} J. G. Dix, Ch. G. Philos, I. K. Purnaras; \newblock Asymptotic properties of solutions to linear non-autonomous neutral differential equations. \newblock \emph{J. Math. Anal. Appl.}, 318 (2006) 296--304. \bibitem{Erbe} L. H. Erbe, Q. Kong, B. G. Zhang; \newblock \emph{Oscillation Theory for Functional Differential Equations}. \newblock Marcel Dekker Inc., New York, 1995. \bibitem{GrL} S. R. Grace, B. S. Lalli; \newblock Oscillation of nonlinear second order neutral delay differential equations. \newblock \emph{Rat. Math.}, 3 (1987) 77--84. \bibitem{Gra} M. K. Grammatikopoulos, G. Ladas, A. Meimaridou; \newblock Oscillation of second order neutral delay differential equation. \newblock \emph{Rat. Math.}, 1 (1985) 267--274. \bibitem{Ro1} M. Hasanbulli, Yu. V. Rogovchenko; \newblock Oscillation criteria for second order nonlinear neutral differential equations. \newblock \emph{Appl. Math. Comput.}, 215 (2010) 4392--4399. \bibitem{karpuz1} B. Karpuz; \newblock Sufficient conditions for the oscillation and asymptotic behaviour of higher-order dynamic equations of neutral type. \newblock \emph{Appl. Math. Comput.}, 221 (2013) 453--462. \bibitem{basak} B. Karpuz, \"{O}. \"{O}calan, S. \"{O}zt\"{u}rk; \newblock Comparison theorems on the oscillation and asymptotic behaviour of higher-order neutral differential equations. \newblock \emph{Glasgow Math. J.}, 52 (2010) 107--114. \bibitem{Lad} G. S. Ladde, V. Lakshmikantham, B. G. Zhang; \newblock \emph{Oscillation Theory of Differential Equations with Deviating Arguments}. \newblock Marcel Dekker Inc., New York, 1987. \bibitem{TLi6} T. Li; \newblock Comparison theorems for second-order neutral differential equations of mixed type. \newblock \emph{Electron. J. Diff. Equ.}, 2010 (2010) no. 167, 1--7. \bibitem{TLi5} T. Li, R. P. Agarwal, M. Bohner; \newblock Some oscillation results for second-order neutral differential equations. \newblock \emph{J. Indian Math. Soc.}, 79 (2012) 97--106. \bibitem{TLi7} T. Li, Z. Han, C. Zhang, H. Li; \newblock Oscillation criteria for second-order superlinear neutral differential equations. \newblock \emph{Abstr. Appl. Anal.}, 2011 (2011), 1--17. \bibitem{TLi3} T. Li, Z. Han, C. Zhang, S. Sun; \newblock On the oscillation of second-order Emden--Fowler neutral differential equations. \newblock \emph{J. Appl. Math. Comput.}, 37 (2011), 601--610. \bibitem{TLi} T. Li, Z. Han, P. Zhao, S. Sun; \newblock Oscillation of even-order neutral delay differential equations. \newblock \emph{Adv. Difference Equ.}, 2010 (2010) 1--9. \bibitem{TLi4} T. Li, Yu. V. Rogovchenko, C. Zhang; \newblock Oscillation of second-order neutral differential equations. \newblock \emph{Funkc. Ekvacioj}, 56 (2013) 111--120. \bibitem{TLi2} T. Li, E. Thandapani, J. R. Graef, E. Tunc; \newblock Oscillation of second-order Emden--Fowler neutral differential equations. \newblock \emph{Nonlinear Stud.}, 20 (2013) 1--8. \bibitem{Zhang} C. Zhang, R. P. Agarwal, M. Bohner, T. Li; \newblock New oscillation results for second-order neutral delay dynamic equations. \newblock \emph{Adv. Difference Equ.}, 2012 (2012) 1--14. \bibitem{Zhang2} C. Zhang, M. T. \c{S}enel, T. Li; \newblock Oscillation of second-order half-linear differential equations with several neutral terms. \newblock \emph{J. Appl. Math. Comput.}, (2013, in press). \end{thebibliography} \end{document}