\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 235, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{8mm}} \begin{document} \title[\hfilneg EJDE-2013/235\hfil Non-existence of global solutions] {Non-existence of global solutions for a differential equation involving Hilfer fractional derivative} \author[K. M. Furati, M. D. Kassim, N.-e. Tatar \hfil EJDE-2013/235\hfilneg] {Khaled M. Furati, Mohammed D. Kassim, Nasser-eddine Tatar} % in alphabetical order \address{Khaled M. Furati \newline King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia} \email{kmfurati@kfupm.edu.sa} \address{Mohammed D. Kassim \newline King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia} \email{dahan@kfupm.edu.sa} \address{Nasser-eddine Tatar \newline King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia} \email{tatarn@kfupm.edu.sa} \thanks{Submitted September 3, 2013. Published October 22, 2013.} \subjclass[2000]{26D10, 42B20, 26A33, 35J05, 35J25} \keywords{Cauchy problem; critical exponent; fractional differential inequality; \hfill\break\indent Hilfer fractional derivative; test function method} \begin{abstract} We consider a basic fractional differential inequality with a fractional derivative named after Hilfer and a polynomial source. A non-existence of global solutions result is proved in an appropriate space and the critical exponent is shown to be optimal. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} We study the Cauchy problem of fractional order with a polynomial nonlinearity \begin{equation} \begin{gathered} ( D_{0^{+}}^{\alpha ,\beta }u) ( t) \geq t^{\delta}| u( t) | ^{m},\quad t>0,\;m>1,\;\delta \in \mathbb{R} \\ ( D_{0^{+}}^{\gamma -1}u) ( 0) =b>0, \end{gathered} \label{1} \end{equation} where \begin{equation} ( D_{0^{+}}^{\alpha ,\beta }y) ( x) =\big( I_{0^{+}}^{\beta ( 1-\alpha ) }\frac{d}{dx}I_{0^{+}}^{( 1-\beta ) ( 1-\alpha ) }f\big) ( x) \label{2} \end{equation} is the Hilfer fractional derivative (HFD) of order $0<\alpha <1$ and type $0\leq \beta \leq 1$, $\gamma =\alpha +\beta -\alpha \beta $ and $I_{0^{+}}^{\sigma }$, $\sigma >0$, is the usual Riemann-Liouville fractional integral of order $\sigma$. This type of derivatives were introduced by Hilfer in \cite{h1,h2}. These references provide information about the applications of this derivative and how it arises. It is easy to see that this derivative interpolates the Riemann-Liouville fractional derivative ($\beta =0$) and the Caputo fractional derivative ($\beta =1$) (see \cite{k5,p1}). The special case $\beta =0$ has been discussed in \cite{l1}. In this article we find the range of values of $m$ for which solutions do not exist globally and establish an optimal exponent (in some sense) by showing that solutions do exist beyond this bound in a certain space. The existence and uniqueness for the general problem \begin{gather*} ( D_{a^{+}}^{\alpha ,\beta }u) (t) =f(t,u),\quad 0<\alpha <1,\; 0<\beta <1,\; t>a, \\ ( D_{a^{+}}^{\gamma -1}u) ( a+) =c>0, \end{gather*} has been established in \cite{f1} in the space \[ C_{1-\gamma }^{\alpha ,\beta }[ a,b] =\{ y\in C_{1-\gamma }[ a,b] ,\;D_{a+}^{\alpha ,\beta }y\in C_{1-\gamma }[a,b] \} \] where $C_{1-\gamma }[ a,b] $ is the weighted space of continuous functions on $(a,b]$ \[ C_{1-\gamma }[ a,b] =\{ g:(a,b]\to \mathbb{R}:( x-a) ^{1-\gamma }g( x) \in C[ a,b]\} . \] The special cases $\beta =0$ and $\beta =1$ may be found in \cite{k1,k2,k3,k4,k5}. These cases correspond to the Riemann-Liouville derivative and the Caputo derivative cases, respectively. Problems with such derivatives have been treated in many papers, we cite a few of them \cite{b4,d1,d2,e1,e2,e3,e4,f3,f4,f5,f6,k7,k8,l1,z1}, and refer the reader to the books \cite{k5,p1,s1} for many other properties of such derivatives. The applications of these types of derivatives are numerous. Some of them may be found in \cite{b1,b2,b3,g2,k6,m1,m2,p1,p2,s1}. However, we cannot find much on Hilfer type derivatives. The next section contains some definitions, notation and some lemmas which will be useful later in our proof. In Section 3 we state and prove our non-existence result. Finally, in Section 4 we give an example showing the existence of solutions in case the exponent is higher than the critical one found in the previous section. \section{Preliminaries} In this section we present some definitions, lemmas, properties and notation which will be used in our results later. \begin{definition} \label{def1} \rm Let $\Omega =[ a,b] $ be a finite interval and $0\leq \gamma <1$, we introduce the weighted space $C_{\gamma }[ a,b] $ of continuous functions $f$ on $(a,b]$ \[ C_{\gamma }[ a,b] =\{ f:(a,b]\to \mathbb{R}:(x-a) ^{\gamma }f( x) \in C[ a,b] \} . \] In the space $C_{\gamma }[ a,b]$, we define the norm \[ \| f\| _{C_{\gamma }}=\| ( x-a) ^{\gamma }f(x) \| _{C},\quad C_0[ a,b] =C[ a,b] . \] \end{definition} \begin{definition} \label{def2} \rm The Riemann-Liouville left-sided fractional integral $I_{a+}^{\alpha }f$ of order $\alpha >0$ is defined by \[ ( I_{a^{+}}^{\alpha }f) (x):=\frac{1}{\Gamma (\alpha )} \int_a^x\frac{f(t)}{(x-t)^{1-\alpha }}dt,\quad (a0) \] provided that the integral exists. Here $\Gamma (\alpha )$ is the Gamma function. When $\alpha =0$, we define $I_{a^{+}}^{0}f=f$. In fact, one can prove that $I_{a^{+}}^{\alpha }f$ converges to $f$ when $\alpha \to 0$. \end{definition} \begin{definition} \label{def3} \rm The Riemann-Liouville right-sided fractional integral $I_{b^{\_}}^{\alpha }f$ of order $\alpha >0$ is defined by \[ ( I_{b^{-}}^{\alpha }f) (x):=\frac{1}{\Gamma (\alpha )} \int_{x}^{b}\frac{f(t)}{(t-x)^{1-\alpha }}dt,\quad ( a\leq x0) \] provided that the integral exists. When $\alpha =0$, we define $I_{b^{-}}^{0}f=f$. \end{definition} \begin{definition} \label{def4}\rm The Riemann-Liouville left-sided fractional derivative $D_{a+}^{\alpha }f$ of order $\alpha $ ($0\leq \alpha <1$) is defined by \[ ( D_{a+}^{\alpha }f) ( x) =\frac{d}{dx}(I_{a+}^{1-\alpha }f) (x); \] that is, \[ ( D_{a+}^{\alpha }f) =\frac{1}{\Gamma (1-\alpha )}\frac{d}{dx} \int_a^x\frac{f(t)}{(x-t)^{\alpha }}dt\quad ( x>a,\;0<\alpha <1) , \] when $\alpha =1$ we have $D_{a+}^{\alpha }f=Df$. In particular, when $\alpha =0$, $D_{a+}^{0}f=f$. \end{definition} \begin{definition} \label{def5} \rm The Riemann-Liouville right-sided fractional derivative $ D_{b^{-}}^{\alpha }f$ of order $\alpha $ ($0\leq \alpha <1$) is defined by \[ ( D_{b^{-}}^{\alpha }f) ( x) =-\frac{d}{dx}(I_{a+}^{1-\alpha }f) (x); \] that is, \[ ( D_{b^{-}}^{\alpha }f) =-\frac{1}{\Gamma (1-\alpha )}\frac{d}{dx} \int_{x}^{b}\frac{f(t)}{(t-x)^{\alpha }}dt\quad ( a\leq x0$, $\beta >0$ and $0\leq \gamma <1$. If $f\in L_{p}(a,b)$, $1\leq p\leq \infty $ then the equation \[ I_{a+}^{\alpha }I_{a+}^{\beta }f=I_{a+}^{\alpha +\beta }f \] holds at almost every point $x\in [a,b)]$. When $\alpha +\beta >1$, this relation is valid at any point $x\in [a,b]$. \end{lemma} Next is the fractional integration by parts. \begin{lemma}[\cite{k5,s1}] \label{lem3} Let $\alpha>0$, $p\geq 1$, $q\geq 1$ and $\frac{1}{p}+ \frac{1}{q}\leq 1+\alpha $ ($p\neq 1$ and $q\neq 1$ in the case when $\frac{1}{p}+\frac{1}{q}=1+\alpha $). If $\varphi \in L_{p}( a,b) $ and $\psi \in L_{q}(a,b)$, then \[ \int_a^{b}\varphi ( x) ( I_{a+}^{\alpha }\psi) ( x) dx =\int_a^{b}\psi ( x) (I_{b-}^{\alpha }\varphi ) ( x) dx. \] \end{lemma} \begin{definition} \label{def7} \rm The fractional derivative $^{c}D_{a+}^{\alpha }f$ of order $\alpha \in \mathbb{R}$ $( 0<\alpha <1) $ on $[ a,b] $ defined by \[ ^{c}D_{a+}^{\alpha }f=I_{a+}^{1-\alpha }Df, \] where $D=\frac{d}{dx}$, is called the Caputo fractional derivative of $f$ of order $\alpha \in \mathbb{R}$. \end{definition} \begin{theorem}[Young's inequality] \label{thm1} If $a$ and $b$ are nonnegative real numbers and $p$ and $q$ are positive real numbers such that $1/p+1/q=1$ then we have \[ ab\leq \frac{a^{p}}{p}+\frac{b^{q}}{q}. \] \end{theorem} \section{Non-existence result} In this section we establish sufficient conditions ensuring non-existence of global solutions. In particular we find a range of values for the exponent $m $ for which solutions cannot be continued for all time. The proof is based mainly on the test function method developed by Mitidieri and Pohozaev \cite{m3} and some adequate manipulations of the fractional derivatives and integrals. In addition to the results stated in the Preliminaries Section we need the following lemma. \begin{lemma} \label{lem4} If $\alpha >0$ and $f\in C[ a,b] $, then \[ ( I_{a+}^{\alpha }f) ( a) =\lim_{t\to a}(I_{a+}^{\alpha }f) ( t) =0 \] and \[ ( I_{b^{-}}^{\alpha }f) ( b) =\lim_{t\to b}( I_{b^{-}}^{\alpha }f) ( t) =0. \] \end{lemma} \begin{proof} Since $f\in C[ a,b] $, on $[a,b]$, we have $ | f( t) | 0$ we see that \[ ( I_{a+}^{\alpha }f) ( a) =\lim_{t\to a}(I_{a+}^{\alpha }f) ( t) =0. \] The second part is proved similarly. \end{proof} \begin{theorem} \label{thm2} Assume that $\delta >-\alpha $ and $10$. \end{theorem} \begin{proof} Assume, on the contrary, that a nontrivial solution $u$ exists for all time $t>0$. Let $\varphi \in C^{1}( [0,\infty )) $ be a test function satisfying: $\varphi ( t) \geq 0$ and $\varphi $ is non-increasing such that \[ \varphi (t) := \begin{cases} 1, & t\in [ 0,T/2], \\ 0, & t\in [T,\infty ), \end{cases} \] for some $T>0$. Multiplying the inequality in \eqref{1} by $\varphi (t) $ and integrating we obtain \begin{equation} \int_0^T( D_{0^{+}}^{\alpha ,\beta }u) ( t) \varphi ( t) dt\geq \int_0^Tt^{\delta }| u( t) | ^{m}\varphi ( t) dt \label{3} \end{equation} and from the definition of $( D_{0^{+}}^{\alpha ,\beta }u) (t) $ (see \eqref{2}) we can write \begin{equation} \int_0^TI_{0^{+}}^{\beta ( 1-\alpha ) }\frac{d}{dt} ( I_{0^{+}}^{1-\gamma }u) ( t) \varphi ( t) dt\geq \int_0^Tt^{\delta }| u( t) | ^{m}\varphi ( t) dt. \label{4} \end{equation} By Lemma \ref{lem3}, we may deduce from \eqref{4} that \begin{equation} \int_0^T\frac{d}{dt}\big( I_{0^{+}}^{1-\gamma }u\big)(t) \big(I_{T-}^{\beta ( 1-\alpha ) }\varphi \big) ( t) dt\geq \int_0^Tt^{\delta }| u( t) | ^{m}\varphi ( t) dt. \label{5} \end{equation} An integration by parts yields \begin{align*} &[ ( I_{0^{+}}^{1-\gamma }u) ( t) ( I_{T-}^{\beta ( 1-\alpha ) }\varphi ) ( t) ] _{t=0}^T-\int_0^T( I_{0^{+}}^{1-\gamma }u) ( t) \frac{d}{dt}( I_{T-}^{\beta ( 1-\alpha ) }\varphi ) ( t) dt \\ &\geq \int_0^T t^{\delta }| u( t) | ^{m}\varphi ( t) dt. \end{align*} Using Lemma \ref{lem4} we see that $( I_{T-}^{\beta ( 1-\alpha ) }\varphi ) ( T) =0$ and $( I_{0^{+}}^{1-\gamma }u) ( 0) =( D_{0^{+}}^{\gamma -1}u) (0) =b$, so \[ -b( I_{T-}^{\beta ( 1-\alpha ) }\varphi ) ( 0) -\int_0^T( I_{0^{+}}^{1-\gamma }u) ( t) \frac{d}{dt}( I_{T-}^{\beta ( 1-\alpha ) }\varphi ) ( t) dt\geq \int_0^Tt^{\delta }| u( t) | ^{m}\varphi ( t) dt. \] From Definition \ref{def5}, it follows that \[ -b( I_{T-}^{\beta ( 1-\alpha ) }\varphi ) ( 0) +\int_0^T( I_{0^{+}}^{1-\gamma }u) ( t) ( D_{T-}^{1-\beta ( 1-\alpha ) }\varphi ) ( t) dt\geq \int_0^Tt^{\delta }| u(t) | ^{m}\varphi ( t) dt \] and from Lemma \ref{lem1} we see that \begin{equation} \begin{aligned} &-b( I_{T-}^{\beta ( 1-\alpha ) }\varphi ) (0) \\ &+\int_0^T( I_{0^{+}}^{1-\gamma }u) ( t) \Big[ \frac{1}{\Gamma [ \beta ( 1-\alpha ) ] }\Big( \frac{\varphi ( T) }{( T-t) ^{1-\beta (1-\alpha ) }} -\int_{t}^T\frac{\varphi '(s) ds}{( s-t) ^{1-\beta ( 1-\alpha ) }}\Big) \Big] \\ &\geq \int_0^Tt^{\delta }| u( t) | ^{m}\varphi ( t) dt. \end{aligned} \label{6} \end{equation} Since $\varphi ( T) =0$, relation (6) becomes \[ -b( I_{T-}^{\beta ( 1-\alpha ) }\varphi ) ( 0) -\int_0^T( I_{0^{+}}^{1-\gamma }u) ( t) ( I_{T^{-}}^{\beta ( 1-\alpha ) }\varphi ') ( t) dt\geq \int_0^Tt^{\delta }| u( t) | ^{m}\varphi ( t) dt. \] Lemma \ref{lem3} allows us to write \[ -b( I_{T-}^{\beta ( 1-\alpha ) }\varphi ) ( 0) -\int_0^T\varphi '( t) ( I_{0^{+}}^{\beta ( 1-\alpha ) }I_{0^{+}}^{1-\gamma }u) ( t) dt\geq \int_0^Tt^{\delta }| u( t) | ^{m}\varphi ( t) dt, \] and by Lemma \ref{lem2} \begin{equation} -b( I_{T-}^{\beta ( 1-\alpha ) }\varphi ) ( 0) -\int_0^T\varphi '( t) ( I_{0^{+}}^{1-\alpha }u) ( t) dt\geq \int_0^Tt^{\delta }| u( t) | ^{m}\varphi ( t) dt. \label{7} \end{equation} Notice that \begin{align*} &-\int_0^T\varphi '( t) ( I_{0^{+}}^{1-\alpha }u) ( t) dt=\frac{-1}{\Gamma ( 1-\alpha ) }\int_0^T\varphi '( t) \int_0^{t}\frac{u( s) }{( t-s) ^{\alpha }} ds\,dt \\ &\leq \frac{1}{\Gamma ( 1-\alpha ) }\int_0^T| \varphi '( t) | \int_0^{t}\frac{ | u( s) | }{( t-s) ^{\alpha }}dsdt. \end{align*} Since $\varphi ( t) $ is nonincreasing, $\varphi ( s) \geq \varphi ( t) $ for all $t\geq s$, and \[ \frac{1}{\varphi ( s) ^{1/m}}\leq \frac{1}{\varphi ( t) ^{1/m}},\quad 0\leq s\leq t1. \] Also we have \[ \varphi '( t) =0,\quad t\in [ 0,T/2] . \] Therefore, \begin{align*} -\int_0^T\varphi '( t) ( I_{0^{+}}^{1-\alpha }u) ( t) dt & \leq \frac{1}{\Gamma ( 1-\alpha ) }\int_0^T| \varphi '( t) | \int_0^{t}\frac{| u( s) | }{( t-s) ^{\alpha }}\frac{\varphi ( s) ^{1/m}}{ \varphi ( s) ^{1/m}}dsdt \\ & \leq \frac{1}{\Gamma ( 1-\alpha ) }\int_0^T\frac{ | \varphi '( t) | }{\varphi ( t) ^{1/m}}\int_0^{t}\frac{| u( s) | }{ ( t-s) ^{\alpha }}\varphi ( s) ^{1/m}dsdt \\ & \leq \frac{1}{\Gamma ( 1-\alpha ) }\int_{T/2}^T \frac{| \varphi '( t) | }{\varphi ( t) ^{1/m}}\int_0^{t}\frac{| u( s) | }{ ( t-s) ^{\alpha }}\varphi ( s) ^{1/m}dsdt. \end{align*} Hence, \[ -\int_0^T\varphi '( t) ( I_{0^{+}}^{1-\alpha }u) ( t) dt \leq \int_{T/2}^T \frac{| \varphi '( t) | }{\varphi ( t) ^{1/m}}( I_{0^{+}}^{1-\alpha }\varphi ^{1/m}| u| ) ( t) dt\,. \] By Lemma \ref{lem3}, \begin{equation} -\int_0^T\varphi '( t) (I_{0^{+}}^{1-\alpha }u) ( t) dt \leq \int_{T/2}^T\Big( I_{T-}^{1-\alpha }\frac{| \varphi '| }{\varphi ^{1/m}}\Big) ( t) \varphi ( t) ^{1/m}| u( t) | dt. \label{8} \end{equation} (Note that we may assume that $| \varphi '( t) | \varphi ( t) ^{-1/m}$ is summable even though $\varphi ( t) \to 0$ as $t\to T$, for otherwise we consider $\varphi ^{\lambda }( t) $ with sufficiently large exponent $\lambda $). Next, we multiply by $t^{\delta /m}.t^{-\delta /m}$ inside the integral in the right hand side of (8) \[ -\int_0^T\varphi '( t) (I_{0^{+}}^{1-\alpha }u) ( t) dt \leq \int_{T/2}^T \Big( I_{T-}^{1-\alpha }\frac{| \varphi '| }{\varphi ^{1/m}}\Big) ( t) \varphi ( t) ^{1/m}\frac{t^{\delta /m}}{t^{\delta /m}}| u( t) | dt. \] For $-\alpha <\delta <0$ we have $t^{-\delta /m}0$ we obtain $t^{-\delta /m}<2^{\delta /m}T^{-\delta /m}$ (because $T/20$, \[ \frac{1}{m'}\int_0^Tt^{\delta }| u( t) | ^{m}\varphi ( t) dt\leq \frac{( \max \{ 1,2^{\delta /m}\} ) ^{m'}}{m'} T^{-\frac{\delta m'}{m}}\int_{T/2}^T\Big( I_{T-}^{1-\alpha }\frac{| \varphi '| }{\varphi ^{1/m}} \Big) ^{m'}( t) dt. \] Therefore, by Definition \ref{def3} we have \begin{align*} &\int_0^Tt^{\delta }| u( t) | ^{m}\varphi ( t) dt \\ &\leq ( \max \{ 1,2^{\delta /m}\} ) ^{m'}T^{-\frac{\delta m'}{m}} \int_{T/2}^T\Big( \frac{1 }{\Gamma ( 1-\alpha ) }\int_{t}^T( s-t) ^{-\alpha }\frac{| \varphi '( s) | }{ \varphi ( s) ^{1/m}}ds\Big) ^{m'}dt. \end{align*} The change of variable $\sigma T=t$ yields \begin{align*} &\int_0^Tt^{\delta }| u( t) | ^{m}\varphi ( t) dt \\ &\leq ( \max \{ 1,2^{\delta /m}\} ) ^{m'}T^{-\frac{\delta m'}{m}}\int_{1/2}^{1} ( \frac{1}{\Gamma ( 1-\alpha ) } \int_{\sigma T}^T\Big(s-\sigma T\Big) ^{-\alpha } \frac{| \varphi '(s) | }{\varphi ( s) ^{1/m}}ds) ^{m'}Td\sigma . \end{align*} Another change of variable $s=rT$ gives \begin{align*} &\int_0^Tt^{\delta }| u( t) | ^{m}\varphi ( t) dt \\ &\leq ( \max \{ 1,2^{\delta /m}\} ) ^{m'}T^{-\frac{\delta m'}{m}} \int_{1/2}^{1}\Big( \frac{1 }{\Gamma ( 1-\alpha ) }\int_{\sigma }^{1}( rT-\sigma T) ^{-\alpha }\frac{| \varphi '( r) | }{\varphi ( r) ^{1/m}}dr\Big) ^{m'}Td\sigma , \end{align*} or \begin{equation} \begin{aligned} &\int_0^Tt^{\delta }| u( t) | ^{m}\varphi ( t) dt \\ &\leq \frac{( \max \{ 1,2^{\delta /m}\} ) ^{m'}}{\Gamma ^{m'} ( 1-\alpha ) }T^{1-\alpha m'-\delta m'/m}\int_{1/2}^{1} \Big(\int_{\sigma }^{1}( r-\sigma ) ^{-\alpha }\frac{| \varphi '( r) | }{\varphi ( r) ^{1/m} }dr\Big) ^{m'}d\sigma . \end{aligned}\label{11} \end{equation} It is clear that we may assume that the integral term in the right-hand side of \eqref{11} is bounded; that is, \[ \int_{1/2}^{1}\Big( \int_{\sigma }^{1}( r-\sigma ) ^{-\alpha }\frac{| \varphi '( r) | }{\varphi ( r) ^{1/m}}dr\Big) ^{m'}d\sigma \leq K_{1}, \] for some positive constant $K_{1}$, otherwise we consider $\varphi^{\lambda }( r) $ with some sufficiently large $\lambda $. Therefore, \begin{equation} \int_0^Tt^{\delta }| u( t) | ^{m}\varphi ( t) dt\leq K_{2}T^{1-\alpha m'-\delta m'/m}, \label{12} \end{equation} with \[ K_{2}:=\frac{( \max \{ 1,2^{\delta /m}\} ) ^{m'}}{\Gamma ^{m'}( 1-\alpha ) }K_{1}. \] If $m<\frac{\delta +1}{1-\alpha }$ we see that $1-\alpha m'-\delta m'/m<0$ and consequently $T^{1-\alpha m'-\delta m'/m}\to 0$ as $T\to \infty $. Then from \eqref{12} we obtain \[ \lim_{T\to \infty }\int_0^Tt^{\delta }| u(t) | ^{m}\varphi ( t) dt=0. \] This is a contradiction since the solution is supposed to be nontrivial. In the case $m=\frac{\delta +1}{1-\alpha }$ we have $1-\alpha m'-\delta m'/m=0$ and the relation \eqref{12} ensures that \begin{equation} \lim_{T\to \infty }\int_0^Tt^{\delta }| u(t) | ^{m}\varphi ( t) dt\leq K_{2}. \label{13} \end{equation} Moreover, it is clear that \begin{align*} &\int_{T/2}^T( I_{T-}^{1-\alpha }\frac{| \varphi '| }{\varphi ^{1/m}}) ( t) t^{\delta /m}\varphi ( t) ^{1/m}| u( t) | dt \\ &\leq \Big[ \int_{T/2}^T\Big( I_{T-}^{1-\alpha }\frac{| \varphi '| }{\varphi ^{1/m}}\Big) ^{m'}( t) dt\Big] ^{1/m'}\Big[ \int_{T/2}^Tt^{\delta }\varphi ( t) | u( t) | ^{m}dt\big] ^{1/m}. \end{align*} This relation, together with \eqref{7} and \eqref{9}, implies that \[ \int_0^Tt^{\delta }\varphi ( t) | u( t) | ^{m}dt\leq K_{3}\Big[ \int_{T/2}^Tt^{\delta }\varphi ( t) | u( t) | ^{m}dt\Big] ^{1/m} \] for some positive constant $K_{3}$, with \[ \lim_{T\to \infty }\int_{T/2}^Tt^{\delta }\varphi (t) | u( t) | ^{m}dt=0 \] due to the convergence of the integral in \eqref{13}. This leads again to a contradiction. The proof is complete. \end{proof} \section{Sharpness of the bound} In this section we want to prove that the exponent $\frac{\delta +1}{ 1-\alpha }$ is sharp in some sense. We will show that solutions exist for exponents strictly bigger than $\frac{\delta +1}{1-\alpha }$. For that we need the following lemma \begin{lemma} \label{lem5} The following identity holds \[ ( D_{a^{+}}^{\alpha ,\beta }[ ( s-a) ^{\sigma -1}] ) ( t) =\frac{\Gamma ( \sigma ) }{ \Gamma ( \sigma -\alpha ) }( t-a) ^{\sigma -\alpha -1},\quad t>a,\;\sigma >0, \] where $0<\alpha <1$ and $0\leq \beta \leq 1$. \end{lemma} \begin{example} \label{examp1} \rm Consider the following differential equation with Hilfer fractional derivative of order $0<\alpha <1$ and $0\leq \beta \leq 1$, \begin{equation} ( D_{a^{+}}^{\alpha ,\beta }y) ( t) =\lambda ( t-a) ^{\delta }[ y( t) ] ^{m},\quad t>a,\;m>1 \label{14} \end{equation} with $\lambda $, $\delta \in \mathbb{R}$ ($\lambda \neq 0$). Look for a solution of the form $y(t) =c(t-a) ^{\nu }$ for some $\nu \in \mathbb{R}$. Let us find the values of $c$ and $\nu $. By using Lemma \ref{lem5} we have \[ ( D_{a^{+}}^{\alpha ,\beta }[ c( s-a) ^{\nu }] ) ( t) =\frac{c\Gamma ( \nu +1) }{\Gamma ( \nu -\alpha +1) }( t-a) ^{\nu -\alpha },\quad \nu>-1,\; t>a. \] Plugging this expression in \eqref{14} yields \[ \frac{c\Gamma ( \nu +1) }{\Gamma ( \nu -\alpha +1) } ( t-a) ^{\nu -\alpha }=\lambda ( t-a) ^{\delta }[ c( t-a) ^{\nu }] ^{m}. \] We obtain $\nu =\frac{\alpha +\delta }{1-m}$ and $c=[ \frac{\Gamma ( \frac{\alpha +\delta }{1-m}+1) }{\lambda \Gamma ( \frac{ m\alpha +\delta }{1-m}+1) }] ^{1/( m-1) }$. That is, \[ y( t) =\Big[ \frac{\Gamma ( \frac{\alpha +\delta }{1-m} +1) }{\lambda \Gamma ( \frac{m\alpha +\delta }{1-m}+1) } \Big] ^{1/( m-1) }( t-a) ^{( \alpha +\delta) /( 1-m) } \] is a solution of \eqref{14}. One can easily check that $y\in C_{1-\gamma }$ with $ m=1+\frac{\alpha +\delta }{1-\gamma }$ which is clearly bigger than the critical exponent $\frac{\delta +1}{1-\alpha }$ if $\delta >-\alpha $. Moreover, the condition $( D_{a^{+}}^{\gamma -1}u) (0) =b$ is satisfied with \[ b=\Big[ \frac{\Gamma ( \frac{\alpha +\delta }{1-m}+1) }{\lambda \Gamma ( \frac{m\alpha +\delta }{1-m}+1) }\Big] ^{1/(m-1) }. \] \end{example} \subsection*{Acknowledgments} The authors are very grateful for the financial support and the facilities provided by King Fahd University of Petroleum and Minerals through Project No. 101003. \begin{thebibliography}{99} \bibitem{b1} R. L. Bagley, P. J. Torvik; \emph{A theoretical basis for the application of fractional calculus to viscoelasticity}, J. Rheology 27, (1983), 201-210. \bibitem{b2} R. L. Bagley, P. J. Torvik; \emph{A different approach to the analysis of viscoelastically damped structures}, AIAA Journal 21, (1983), 741-748. \bibitem{b3} R. L. Bagley, P. J. Torvik; \emph{On the appearance of the fractional derivative in the behavior of real material}, J. Appl. Mechanics 51, (1983), 294-298. \bibitem{b4} M. Benchohra, S. Hamani, S. K. Ntouyas; \emph{Boundary value problems for differential equations with fractional order}, Surv. Math. Appl., 3, (2008), 1-12. \bibitem{d1} D. Delbosco, L. Rodino; \emph{Existence and uniqueness for a nonlinear fractional differential equation}, J. Math. Anal. Appl., 204, No. 2, (1996), 609-625. \bibitem{d2} K. Diethelm, N. J. Ford; \emph{Analysis of fractional differential equations}, J. Math. Anal. Appl. 265 (2002), 229-248. \bibitem{e1} A. M. A. El-Sayed; \emph{Fractional differential equations}, Kyungpook Math. J., 28, N. 2, (1988), 119-122. \bibitem{e2} A. M. A. El-Sayed; \emph{On the fractional differential equations}, Appl. Math. Comput., 49, n. 2-3, (1992), 205-213. \bibitem{e3} A. M. A. El-Sayed, Sh. A. Abd El-Salam; \emph{Weighted Cauchy-type problem of a functional differ-integral equation}, Electron. J. Qual. Theory Differ. Equ, No. 30, (2007), 1-9. \bibitem{e4} A. M. A. El-Sayed, Sh. A. Abd El-Salam; \emph{Solution of weighted Cauchy-type problem of a differ-integral functional equation}, Int. J. Nonlinear Sci., Vol. 5, no. 3, (2008), 281-288. \bibitem{f1} K. M. Furati, M. D. Kassim, N- e. Tatar; \emph{Existence and uniqueness for a problem with Hilfer fractional derivative}, Computers Math. Appl. (2012). \bibitem{f2} K. M. Furati, N.-e. Tatar; \emph{Power type estimates for a nonlinear fractional differential equation}, Nonlinear Anal. 62 (2005), 1025-1036. \bibitem{f3} K. M. Furati, N.-e. Tatar; \emph{An existence result for a nonlocal fractional differential problem}, J. Fract. Calc. Vol. 26 (2004), 43-51. \bibitem{f4} K. M. Furati, N.-e. Tatar; \emph{Behavior of solutions for a weighted Cauchy-type fractional differential problem}, J. Fract. Calc. 28 (2005), 23-42. \bibitem{f5} K. M. Furati, N.-e. Tatar; \emph{Long time behaviour for a nonlinear fractional model}, J. Math. Anal. Appl, Vol. 332, Issue 1 (2007), 441-454. \bibitem{f6} K. M. Furati, N.- e. Tatar; \emph{Some fractional differential inequalities and their applications}, Math. Inequal. Appl., Vol. 9, Issue 4 (2006), 577-598. \bibitem{g1} L. Gaul, P. Klein, S. Kempfle; \emph{Damping description involving fractional operators}, Mech. Systems Signal Processing 5 (1991), 81-88. \bibitem{g2} W. G. Gl\"{o}ckle, T. F. Nonnenmacher; \emph{A fractional calculus approach of selfsimilar protein dynamics}, Biophys. J. 68 (1995), 46-53. \bibitem{h1} R. Hilfer; \emph{Applications of Fractional Calculus in Physics}, World Scientific, Singapore, 200, p. 87 and p. 429. \bibitem{h2} R. Hilfer; \emph{Experimental evidence for fractional time evolution in glass materials}, Chem. Physics 284 (2002), 399-408. \bibitem{k1} A. A. Kilbas, B. Bonilla, J. J. Trujillo; \emph{Existence and uniqueness theorems for nonlinear fractional differential equations}, Demonstratio Math., 33, n. 3, (2000), 583-602. \bibitem{k2} A. A. Kilbas, B. Bonilla, J. J. Trujillo; \emph{Fractional integrals and derivatives and differential equations of fractional order in weighted spaces of continuous functions}. (Russian), Dokl. Nats. Akad. Nauk Belarusi, 44, N. 6, (2000). \bibitem{k3} A. A. Kilbas, S. A. Marzan; \emph{Cauchy problem for differential equation with Caputo derivative}, Fract. Calc. Anal. Appl., 7, n. 3, (2004), 297-320. \bibitem{k4} A. A. Kilbas, S. A. Marzan; \emph{Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions}, Differ. Equ., Vol. 41, No. 1, (2005), 84-89. \bibitem{k5} A. A. Kilbas, H. M. Srivastava, J. J. Trujillo; \emph{Theory and Applications of Fractional Differential Equations}, North-Holland Mathematics Studies 204, Editor: Jan van Mill, Elsevier, Amsterdam, The Netherlands 2006. \bibitem{k6} R. C. Koeller; \emph{Application of fractional calculus to the theory of viscoelasticity}, J. Appl. Mechanics 51, (1984), 299-307. \bibitem{k7} N. Kosmatov; \emph{Integral equations and initial value problems for nonlinear differential equations of fractional order}, Nonlinear Anal., 70, (2009), 2521-2529. \bibitem{k8} C. Kou, J. Liu, Y. Ye; \emph{Existence and uniqueness of solutions for the Cauchy-type problems of fractional differential equations}, Discrete Dyn. Nat. Soc., Volume 2010, Article ID 142175, 2010, 1-15. \bibitem{l1} Y. Laskri, N.-e. Tatar; \emph{The critical exponent for an ordinary fractional differential problem}, Comput. Math. Appl., 59, (2010), 1266-1270. \bibitem{m1} F. Mainardi; \emph{Fractional calculus: Some basic problems in continuum and statistical mechanis}, in Fractals and Fractional Calculus in Continuum Mechanics (A. Carpinteri and F. Mainardi, Eds), pp. 291-348, Springer-Verlag, Wien, 1997. \bibitem{m2} F. Mainardi; \emph{Fractional Calculus and Waves in Linear Viscoelastsity, an Introduction to Mathematical Model}, Imperial College Press. World Scientific Publishing, London 2010. \bibitem{m3} E. Mitidieri, S. I. Pohozaev; \emph{A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities}. Proc. Steklov Inst. Math., 234, (2001), 1-383. \bibitem{p1} I. Podlubny; \emph{Fractional Differential Equations}, Mathematics in Sciences and Engineering. 198, Academic Press, San-Diego, 1999. \bibitem{p2} I. Podlubny, I. Petra\v{s}, B. M. Vinagre, P. O'Leary L. Dor\v{c}k; \emph{Analogue realizations of fractional-order controllers. Fractional order calculus and its applications}, Nonlinear Dynam. 29 (2002), 281-296. \bibitem{s1} S. G. Samko, A. A. Kilbas, O. I. Marichev; \emph{Fractional Integrals and Derivatives: Theory and Applications}, Gordon and Breach, 1987. (Trans. from Russian 1993). \bibitem{z1} Y. Zhou; \emph{Existence and uniqueness of solutions for a system of fractional differential equations}, Fract. Calc. Anal. Appl., 12, n.2, (2009), 195-204. \end{thebibliography} \end{document}