\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 247, pp. 1--21.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/247\hfil Well-posedness of discontinuous BVPs] {Well-posedness of discontinuous boundary-value problems for nonlinear elliptic complex equations in multiply connected domains} \author[G.-C. Wen \hfil EJDE-2013/247\hfilneg] {Guo-Chun Wen} \address{Guo-Chun Wen \newline LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China} \email{Wengc@math.pku.edu.cn} \thanks{Submitted November 1, 2013. Published November 15, 2013.} \subjclass[2000]{35J56, 35J25, 35J60, 35B45.} \keywords{Well-posedness; discontinuous boundary value problem; \hfill\break\indent nonlinear elliptic complex equation; A priori estimate; existence of solutions} \begin{abstract} In the first part of this article, we study a discontinuous Riemann-Hilbert problem for nonlinear uniformly elliptic complex equations of first order in multiply connected domains. First we show its well-posedness. Then we give the representation of solutions for a modified Riemann-Hilbert problem for the complex equations. Then we obtain a priori estimates of the solutions and verify the solvability of the modified problem by using the Leray-Schauder theorem. Then the solvability of the original discontinuous Riemann-Hilbert boundary-value problem is obtained. In the second part, we study a discontinuous Poincar\'e boundary-value problem for nonlinear elliptic equations of second order in multiply connected domains. First we formulate the boundary-value problem and show its new well-posedness. Next we obtain the representation of solutions and obtain a priori estimates for the solutions of a modified Poincar\'e problem. Then with estimates and the method of parameter extension, we obtain the solvability of the discontinuous Poincar\'e problem. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \allowdisplaybreaks \section{Formulation of discontinuous Riemann-Hilbert problem} Lavrent$'$ev and Shabat \cite{l1} introduced the Keldych-Sedov formula for analytic functions in the upper half-plane, namely the representation of solutions of the mixed boundary-value problem for analytic functions, which is a special case of discontinuous boundary value problems with the integer index. The authors also pointed out that this formula has very important applications. However, for many problems in mechanics and physics, for instance some free boundary problems and the Tricomi problem for some mixed equations \cite{b1,w1,w2,w3,w4,w7,w8,w9,w10}, one needs to apply more general discontinuous boundary-value problems of analytic functions and some elliptic equations in the simply and multiply connected domains. In \cite{w1} the author solved the general discontinuous Riemann-Hilbert problems for analytic functions in simply connected domains, but the general discontinuous boundary-value problems for elliptic equations in multiply connected domains have not been solved completely. In this article, we study the general discontinuous Riemann-Hilbert problem and discontinuous Poincar\'e problem and their new well-posedness for nonlinear elliptic equations in multiply connected domains. We study the nonlinear elliptic equations of first order \begin{equation} w_{\bar z}=F(z,w,w_{z}),\quad F=Q_1w_z+Q_2\overline w_{\bar z}+A_1w+A_2\overline w+A_3, \quad z\in D,\label{e1.1} \end{equation} where $z=x+iy$, $w_{\bar z}=[w_x+iw_y]/2$, $Q_j=Q_j(z,w,w_z)$, $j=1,2$, $A_j=A_j(z,w)$, $j=1,2,3$ and assume that equation \eqref{e1.1} satisfy the following conditions: \begin{itemize} \item[(C1)] $Q_j(z,w,U)$, $A_{j}(z,w)$ $(j=1,2,3)$ are measurable in $z\in D$ for all continuous functions $w(z)$ in $D^*=\overline D\backslash Z$ and all measurable functions $U(z)\in L_{p_0}(D^*)$, and satisfy \begin{equation} L_{p}[A_j,\overline D]\le k_0,\quad j=1,2,\;L_{p}[A_3,\overline D]\le k_1,\label{e1.2} \end{equation} where $Z=\{t_1,\dots ,t_m\}$, $t_1,\dots ,t_m$ are different points on the boundary $\partial D=\Gamma$ arranged according to the positive direction successively, and $p,p_0,k_0,k_1$ are non-negative constants, $2|\gamma_j|, \\ |\gamma_j|+\tau,&\text{if } \gamma_j<0,\;\beta_j\le |\gamma_j|, \end{cases} \end{gathered} \label{e1.7} \end{equation} in which $\gamma_j$ $(j=1,\dots ,m)$ are real constants as stated in \eqref{e1.6}, $\tau \le\min(\alpha,1-2/p_0)$ and $\delta <\min(\beta_1,\dots ,\beta_m$, $\tau)$ are small positive constants. When the index $K<0$, Problem A may not be solvable, when $K\ge 0$, the solution of Problem A is not necessarily unique. Hence we put forward a new concept of well-posedness of Problem A with modified boundary conditions as follows. \subsection*{Problem B} Find a continuous solution $w(z)$ of the complex equation \eqref{e1.1} in $D^*$ satisfying the boundary condition \begin{equation} \operatorname{Re} [\overline{\lambda(z)}w(z)]=r(z)+h(z)\overline{\lambda(z)}X(z),\quad z\in \Gamma^*,\label{e1.8} \end{equation} where $X(z)$ is as stated in \eqref{e1.9} below, and $$ h(z)=\begin{cases} 0, & z\in \Gamma_0, \; K\ge0 \\ h_j,& z\in\Gamma_{j},\;j=1,\dots ,N,\; K\ge0 \\ h_{j},& z\in\Gamma_j,\;j=1,\dots ,N,\; K<0\\ [1+(-1)^{2K}]h_{0} \\ +\operatorname{Re} \sum^{[|K|+1/2]-1}_{m=1}(h^{+}_{m} + i h^-_{m})z^{m}, & z\in \Gamma_{0},\; K<0 \end{cases} $$ in which $h_j$ $(j=[1-(-1)^{2K}]/2,\dots ,N)$, $h^+_m,h^-_m$, $(m=1,\dots ,[|K|+1/2]-1)$ are unknown real constants to be determined appropriately, and $h_{N+1}(=h_0)=0$, if $2|K|$ is an odd integer; and \begin{align*} Y(z) &=\prod_{j=1}^{m_0}(z-t_j)^{\gamma_j}\prod_{l=l}^{N}(z-z_l) ^{-[\tilde{K}_l]} \prod_{j=m_0+1}^{m_1}\Big(\frac{z-t_j}{z-z_1} \Big)^{\gamma_j}\Big(\frac{z-t'_1}{z-z_1}\Big) \\ &\quad \times\prod_{j=m_{N_0-1}+1}^{m_{N_0}} \Big(\frac{z-t_j}{z-z_{N_0}}\Big)^{\gamma_j}\Big(\frac{z-t'_{N_0}} {z-z_{N_0}}\Big) \prod_{j=m_{N_0}+1}^{m_{N_0+1}}\Big(\frac{z-t_j}{z-z_{N_0+1}} \Big)^{\gamma_j}\dots\\ &\quad\times \prod_{j=m_{N-1}+1}^m \Big(\frac{z-t_j}{z-z_N}\Big)^{\gamma_j}, \end{align*} where $\tilde{K}_l=\sum^{m_l}_{j=m_{l-1}+1}K_j$ denote the partial index on $\Gamma_l$ $(l=1,\dots ,N)$, $t'_l$ $(\in \Gamma_l,\,l=,\dots ,N_0)$ are fixed points, which are not the discontinuous points at $Z$; we must give the attention that the boundary circles $\Gamma_j$ $(j=0,1,\dots ,N)$ of the domain $D$ are moved round the positive direct. Similarly to \cite[(1.7)--(1.12) Chapter V]{w1}, we see that $$ \frac{\lambda(t_j-0)}{\lambda(t_j+0)}\overline{\Big[ \frac{Y(t_j-0)}{Y(t_j+0)}\Big]} =\frac{\lambda(t_j-0)}{\lambda(t_j+0)}e^{-i\pi\gamma_j}=\pm1,\quad j=1,\dots ,m, $$ it only needs to charge the symbol on some arcs on $\Gamma$, then $\lambda(z)\overline{Y(z)}/|Y(z)|$ on $\Gamma$ is continuous. In this case, its index $$ \kappa=\frac1{2\pi}\Delta_\Gamma[\lambda(z)\overline{Y(z)}]=K-\frac{N_0}2 $$ is an integer; and \begin{equation} \begin{gathered} X(z)=\begin{cases} iz^{[\kappa]}e^{iS(z)}Y(z), & z\in\Gamma_0, \\ ie^{i\theta_j}e^{iS(z)}Y(z), & z\in\Gamma_j,j=1,\dots ,N, \end{cases}\\ \operatorname{Im}[\overline{\lambda(z)}X(z)] =0,\quad z\in\Gamma, \\ \operatorname{Re} S(z)=S_1(z)-\theta(t),\\ S_1(z)=\begin{cases} \arg\lambda(z)- [\kappa]\arg z-\arg Y(z), & z\in\Gamma_0, \\ \arg\lambda(z)-\arg Y(z), & z\in\Gamma_j,\; j=1,\dots ,N, \end{cases} \\ \theta(z)=\begin{cases} 0, & z\in\Gamma_0, \\ \theta_j, & z\in\Gamma_j,\; j=1,\dots ,N, \end{cases} \\ \operatorname{Im}[S(1)]=0, \end{gathered}\label{e1.9} \end{equation} in which $S(z)$ is a solution of the modified Dirichlet problem with the above boundary condition for analytic functions, $\theta_j$ $(j=1,\dots ,N)$ are real constants, and $\kappa=K-N_0/2$. In addition, we may assume that the solution $w(z)$ satisfies the following point conditions \begin{equation} \operatorname{Im}[\overline{\lambda(a_j)}w(a_j)]=b_j,\quad j\in J=\{1,\dots ,2K+1\},\quad \text{if } K\ge 0,\label{e1.10} \end{equation} where $a_{j}\in\Gamma_{0}\,(j\in J)$ are distinct points; and $b_{j}(j\in J)$ are all real constants satisfying the conditions $$ |b_{j}|\le k_{3},\quad j\in J $$ with the positive constant $k_{3}$. Problem B with $A_3(z,w)=0$ in $D$, $c(z)=0$ on $\Gamma$ and $b_j=0$ $(j\in J)$ is called Problem $\rm B_0$. We mention that the undetermined real constants $h_j, h^\pm_m$ in \eqref{e1.8} are for ensuring the existence of continuous solutions, and the point conditions in \eqref{e1.10} are for ensuring the uniqueness of continuous solutions in $D$. The condition $0N-1, \\ h_j, &z\in\Gamma_j,\;j=1,\dots ,N-K',\; 0\leq K\le N-1 \\ 0, &z\in\Gamma_j,\;j=N-K'+1,\dots ,N-K'+[K]+1,\\ &\quad 0\leq K\le N-1, \\ h_{j}, &z\in\Gamma_j,\,j=1,\dots ,N,\; K<0, \\ [1+(-1)^{2K}] h_0\\ +\operatorname{Re} \sum^{[|K|+1/2]-1}_{m=1} (h^{+}_{m}\\ + i h^{-}_{m})z^{m}, &z\in\Gamma_0,\; K<0\,. \end{cases} \label{e1.11} \end{equation} in which $K'=[K+1/2]$, $[K]$ denotes the integer part of $K$, $h_0,h^+_m,h^-_m\,(m=1,\dots ,[|K|+1/2]-1)$ are unknown real constants to be determined appropriately, and $h_{N+1}(=h_0)=0$, if $2|K|$ is an odd integer; and the solution $w(z)$ satisfies the point conditions \begin{equation} \operatorname{Im}[\overline{\lambda(a_j)}w(a_j)]=b_j,\quad j\in J=\begin{cases} 1,\dots ,2K-N+1,&\text{if } K>N-1, \\ 1,\dots ,[K]+1, &\text{if } 0\le K\le N-1, \end{cases} \label{e1.12} \end{equation} in which $a_{j}\in\Gamma_{j+N_0}$ $(j=1,\dots ,N-N_0)$, $a_j\in \Gamma_{0}$ $(j=N-N_0+1,\dots ,2K-N+1$, if $K\ge N)$ are distinct points; and when $[K]+1\le N-N_0$, $a_j$ ($\in\Gamma_{j+N-[K]-1}$, $j=1,\dots ,[K]+1$), otherwise $a_j$ ($\in\Gamma_{j+N-N_0}$, $j=1,\dots ,N_0$), and $a_j$ $(\in\Gamma_0,\,j=N_0+1,\dots ,[K]+1)$ are distinct points, and $$ |b_{j}|\le k_{3},\quad j\in J $$ with a non-negative constant $k_{3}$. We can prove the equivalence of Problem B and Problem C for for equation \eqref{e1.1}. From this, we see that the advantages of the new well-posedness are as follows: \begin{itemize} \item[(1)] The statement of the new well-posedness is simpler than others (see \cite{w1,w2,w9}). \item[(2)] The point conditions in $\Gamma_0=\{|z|=1\}$ are similar to those for the simple connected domain $D=\{|z|<1\}$. \item[(3)] The new well-posedness statement does not distinguished the singular case $00$, it is easy to see that $W(z)=w(z)/{k_{*}}$ satisfies the complex equation and boundary conditions \begin{gather} W_{\bar z}-Q_{1}W_{z}-Q_{2}\overline{W_{z}}-A_{1}W-A_{2}\overline W=A_{3}/{k_{*}}, \quad z\in D,\label{e2.15}\\ \operatorname{Re}[\overline{\lambda(z)}W(z)]=[r(z)+h(z)\overline{\lambda(z)}X(z)]/{k_{*}},\quad z\in\Gamma^*, \label{e2.16}\\ \operatorname{Im}[\overline{\lambda(a_{j})}W(a_{j})]=b_{j}/{k_{*}},\quad j\in J,\label{e2.17} \end{gather} Noting that $L_{p}[A_{3}/{k_{*}},\overline D]\le 1$, $C_{\alpha}[R(z)r(z)/{k_{*}},\Gamma] \leq 1$, $| b_{j}/{k_{*}}| \le 1$, $j\in J$ and according to the proof of Theorem \ref{thm2.1}, we have \begin{equation} \hat C_{\delta}[W(z),\overline D]\leq M_{9},\quad \hat L^1_{p_{0}}[W(z),\overline D] \le M_{10}.\label{e2.18} \end{equation} From the above estimates, it follows that \eqref{e2.14} holds. \end{proof} Next, we prove the uniqueness of solutions of Problem B for the complex equation \eqref{e1.1}. For this, we need to add the following condition: For any continuous functions $w_1(z),w_2(z)$ in $D^*$ and $U(z)\,(R(z)S(z)U(z)\in L_{p_0}(\overline{D})$, there is \begin{equation} F(z,w_1,U)-F(z,w_2,U)=Q(z,w_1,w_2,U)U_z+A(z,w_1,w_2,U)(w_1-w_2),\label{e2.19} \end{equation} in which $|Q(z,w_1,w_2,U)|\leq q_0\,(<1),\,A(z,w_1,w_2,U)\in L_{p_0}(\overline{D})$. When \eqref{e1.1} is linear, \eqref{e2.19} obviously holds. \begin{theorem} \label{thm2.3} If Condition {\rm C1--C3} and \eqref{e2.19} hold, then the solution of Problem {\rm B} for \eqref{e1.1} is unique. \end{theorem} \begin{proof} Let $w_{1}(z),w_{2}(z)$ be two solutions of Problem B for \eqref{e1.1}. By Condition (C1)--(C3) and \eqref{e2.19}, we see that $w(z)=w_{1}(z)-w_{2}(z)$ is a solution of the boundary value problem \begin{gather} w_{\bar z}-\tilde Qw_{z}=\tilde A w,\quad z\in D,\quad \label{e2.20}\\ \operatorname{Re}[\overline{\lambda(z)}w(z)]=h(z)\overline{\lambda(z)}X(z),\quad z\in\Gamma^*, \label{e2.21}\\ \operatorname{Im}[\overline{\lambda(a_{j})}w(a_{j})]=0,\quad j\in J, \label{e2.22} \end{gather} where \begin{gather*} \tilde Q=\begin{cases} [F(z,w_{1},w_{1z})-F(z,w_{1},w_{2z})] /(w_{1}-w_{2})_{z} &\text{for } w_{1z}\neq w_{2z}, \\ 0 &\text{for } w_{1z }=w_{2z},\;z\in D, \end{cases} \\ \tilde A=\begin{cases} [F(z,w_{1},w_{2z})-F(z,w_{2},w_{2z})]/{(w_{1}-w_{2})} &\text{for } w_{1}(z)\neq w_{2}(z), \\ 0&\text{for } w_{1}(z)=w_{2}(z),\;z\in D, \end{cases} \end{gather*} and $|\tilde Q|\leq q_{0}<1$, $z\in D$, $L_{p_{0}}(\tilde A,\overline D)<\infty$. According to the representation \eqref{e1.13}, we have \begin{equation} w(z)=\Phi[\zeta(z)]e^{\phi(z)},\quad\label{e2.23} \end{equation} where $\phi(z),\zeta(z),\Phi(\zeta)$ are as stated in Theorem \ref{thm2.1}. It can be seen that the analytic function $\Phi(z)$ satisfies the boundary conditions of Problem $\rm B_{0}$: \begin{gather} \operatorname{Re}[\overline{\Lambda(\zeta)}\Phi (\zeta)]=H(\zeta)\overline{\lambda[z(\zeta)]}X[z(\zeta)],\quad \zeta\in L^*= \zeta(\Gamma^*),\label{e2.24} \\ \operatorname{Im}[\overline{\Lambda(a'_{j})} \Phi(a'_{j})]=0,\quad j\in J, \label{e2.25} \end{gather} where $\Lambda(\zeta)$, $H(\zeta)$ $(\zeta\in L)$, $a'_{j}$ $(j\in J)$ are as stated in \eqref{e2.3}--\eqref{e2.5}. According to the method in the proof of \cite[Theorem 1.2.4]{w9}, we can derive that $\Phi(\zeta)=0$, $\zeta\in G=\zeta(D)$. Hence, $w(z)=\Phi[\zeta(z)]e^{\phi(z)}=0$; i.e., $w_{1}(z)=w_{2}(z)$, $z\in D$. \end{proof} \section{Solvability of discontinuous Riemann-Hilbert problems} Now we prove the existence of solutions of Problem B for equation \eqref{e1.1} by the Leray-Schauder theorem. \begin{theorem} \label{thm3.1} Suppose that \eqref{e1.1} satisfies Conditions {\rm (C1)--(C3)} and \eqref{e2.19}. Then the discontinuous boundary value problem, Problem {\rm B}, for \eqref{e1.1} has a solution. \end{theorem} \begin{proof} We discuss the complex equation \eqref{e1.1}; i.e., \begin{equation} w_{\overline{\tilde z}}=F(z,w,w_z),\,F(z,w,w_z) =Q_1w_z+Q_2\overline w_{\bar z}+A_1w+A_2\overline w+A_3\quad\text{in } D.\label{e3.1} \end{equation} To find a solution $w(z)$ of Problem B for equation \eqref{e3.1} by the Leray-Schauder theorem, we consider the equation \eqref{e3.1} with the parameter $t\in[0,1]$ \begin{equation} w_{\overline{\tilde z}}=tF(z,w,w_z),\,F(z,w,w_z)=Q_1w_z+Q_2\overline w_{\bar z} +A_1w+A_2\overline w+ A_3\quad \text{in }D,\label{e3.2} \end{equation} and introduce a bounded open set $B_M$ of the Banach space $B=\hat C(\overline{D})\cap\hat L^1_{p_0}(\overline D)$, whose elements are functions $w(z)$ satisfying the condition \begin{equation} \begin{aligned} w(z)&\in\hat C(\overline D)\cap\hat L^1_{p_0}(\overline D):\hat C[w,\overline{D}]+\hat L^1_{p_0}[w,\overline D] \\ &=C[R(z)w(z),\overline D]+L_{p_{0}}[|RSw_{\bar z}|+|RSw_z|,\overline D]N-1, \\ 0, &z\in\Gamma_j,\;j=1,\dots ,[K]+1,\; 0\leq K\le N-1, \\ h_j, &z\in\Gamma_j,\;j=[K]+2,\dots ,[K]+1+N-K',\\ &\quad 0\leq K\le N-1,\\ h_{j}, & z\in\Gamma_j,\,j=1,\dots ,N,\;K<0, \\ [1+(-1)^{2K}]h_0\\ +\operatorname{Re} \sum^{[|K|+1/2]-1}_{m=1}(h^{+}_{m}\\ + ih^{-}_{m})z^{m}, & z\in\Gamma_0,\;K<0, \end{cases} \label{e4.17} \end{equation} in which $K'=[K+1/2]$, $[K]$ denotes the integer part of $K$, $h_0,h^+_m,h^-_m$, $(m=1,\dots ,[|K|+1/2]-1)$ are unknown real constants to be determined appropriately, and $h_{N+1}(=h_0)=0$, if $2|K|$ is an odd integer; and the solution $w(z)$ satisfies the point conditions \begin{equation} \operatorname{Im}[\overline{\lambda(a_j)}w(a_j)]=b_j,\quad j\in J=\begin{cases} 1,\dots ,2K-N+1,&\text{if } K>N-1, \\ 1,\dots ,[K]+1,&\text{if } 0\leq K\leq N-1, \end{cases} \label{e4.18} \end{equation} in which where $a_j\in\Gamma_j$ $(j=1,\dots ,N_0)$, $a_j\in\Gamma_0$ $(j=N_0+1,\dots ,2K-N+1,\text{if }K\ge N)$ are distinct points; and when $[K]+1>N_0$, $a_j\in \Gamma_j$ $(j=1,\dots ,N_0)$, $a_j\in\Gamma_0$ $(j=N_0+1,\dots ,[K]+1, \text{ if } 0\le K|\gamma_j|, \end{cases} \end{gathered}\label{e5.10} \end{equation} where $\gamma_j$ $(j=1,\dots ,m)$ are real constants as stated in \eqref{e4.6}, $\tau=\min(\alpha,1-2/p_0)$, $\delta<\min[\beta_1,\dots , \beta_m, \tau]$ is a small positive constant, $k=k(k_0,k_1,k_2,k_3)$, $M_j=M_j(q_0,p_0,\delta,k,D)$ $(j=14,15)$ are non-negative constants only dependent on $q_0,p_0,\delta,k,D,\,j=3,4$. \end{theorem} \begin{proof} By using the reduction to absurdity, we shall prove that any solution $u(z)$ of Problem Q satisfies the estimate of bounded-ness \begin{equation} \hat C^1[u,\overline D]= C[R'(z)u(z),\overline{D}]+C[R(z)w(z),\overline D]\le M_{16},\label{e5.11} \end{equation} in which $M_{16}=M_{16}(q_0,p_0,\delta,k,D)$ is a non-negative constant. Suppose that \eqref{e5.11} is not true, then there exist sequences of coefficients $\{A^{(m)}_j\}$ $(j=1,2,3)$, $\{Q^{(m)}\}$, $\{\lambda^{(m)}(z)\}$, $\{c_j^{(m)}\}\,(j=1,2)$, $b_j^{(m)}$ $(j\in J\cup\{0\})$, which satisfy Conditions (C4)--(C6) and \eqref{e4.5}, \eqref{e4.16}, such that $\{A^{(m)}_j\}$ $(j=1,2,3)$, $\{Q^{(m)}\}$, $\{\lambda^{(m)}(z)\}$, $\{|z-t_{j-1}|^{\beta_{j-1}} |z-t_j|^{\beta_j}c_j^{(m)}\}$ $(j=1,2)$ and $\{b_j^{(m)}\}$ $(j\in J\cup\{0\})$ in $\overline D,{\it\Gamma^*}$ converge weakly or converge uniformly to $A^{(0)}_j$ $(j=1,2,3)$, $Q^{(0)}$, $\lambda^{(0)}(z)$, $|z-t_{j-1}|^{\beta_{j-1}} |z-t_j|^{\beta_j}c_j^{(0)}$ $(j=1,2)$, $b_j^{(0)}(j\in J\cup\{0\})$ respectively, and the corresponding boundary value problem \begin{equation} w_{\bar z}-\operatorname{Re}[Q^{(m)}w_z+A^{(m)}_{1}w]- A^{(m)}_2u= A^{(m)}_{3},\label{e5.12} \end{equation} and \begin{equation} \begin{gathered} \operatorname{Re}[\overline{\lambda(z)}w(z)]+c^{(m)}_1(z)u=c^{(m)}_2(z)+c(z)\overline{\lambda(z)}X(z)\quad \text{on } \Gamma^*, \\ \operatorname{Im}[\overline{\lambda(a_j)}w(a_j)]=b^{(m)}_j,\quad j\in J,\quad u(a_0)=b^{(m)}_0 \end{gathered}\label{e5.13} \end{equation} have the solutions $\{u^{(m)}(z),w^{(m)}(z)\}$, but $\hat C^1[u^{(m)}(z),\overline D]$ $(m=1,2,\dots )$ are unbounded. Thus we can choose a subsequence of $\{u^{(m)}(z),w^{(m)}(z)\}$ denoted by $\{u^{(m)}(z),w^{(m)}(z)\}$ again, such that $h_m=\hat C[u^{(m)}(z),\overline{D}]\to\infty$ as $m\to\infty$, and assume that $H_m\ge\max[k_1,k_2,k_3,1]$. It is easy to see that $\{\tilde u^{(m)}(z),\tilde w^{(m)}(z)\}=\{u^{(m)}(z)/H_m,\tilde w^{(m)}(z)/H_m\}$ $(m=1,2,\dots )$ are solutions of the boundary value problems \begin{gather} \tilde w_{\bar z}-\operatorname{Re}[Q^{(m)}\tilde w_{z}+A^{(m)}_{1}\tilde w_{z}] -A^{(m)}_{2} \tilde u=A^{(m)}_{3}/H_m, \label{e5.14} \\ \begin{gathered} \operatorname{Re}[\overline{\lambda(z)}\tilde{w}(z)]+c^{(m)}_1(z) \tilde u=[c^{(m)}_2(z)+h(z)\overline{\lambda(z)}X(z)]/{H_m}\quad\text{on } \Gamma^*, \\ \operatorname{Im}[\overline{\lambda(a_j)}\tilde{w}(a_j)]=b^{(m)}_j/H_m,\quad j\in J,\quad \tilde u(a_0)=b^{(m)}_0/H_m. \end{gathered}\label{e5.15} \end{gather} We can see that the functions in the above equation and the boundary conditions satisfy the condition (C4)--(C6), \eqref{e4.5},\eqref{e4.16} and \begin{equation} \begin{gathered} |R'(z)u^{(m)}|/H_m\leq 1,\quad L_\infty[A^{(m)}_3/H_m,\overline{D}]\leq 1, \\ |R(z)c_2^{(m)}/H_m|\le1,\quad |b_j^{(m)}/H_m|\le1,\quad j\in J\cup\{0\}, \end{gathered}\label{e5.16} \end{equation} hence by using a similar method as in the proof of \cite[Theorem 6.1, Chapter IV]{w2}, we can obtain the estimates \begin{equation} \hat C_{\delta}[\tilde u^{(m)}(z),\overline{D}]\le M_{17},\quad \hat L^1_{p_0}[\tilde w^{(m)}(z),\overline D]\le M_{18}, \label{e5.17} \end{equation} where $M_j=M_j(q_0,p_0,\delta,k_0,D)$ $(j=17,18)$ are non-negative constants. Moreover from the sequence $\{\tilde u^{(m)}(z)$, $\tilde w^{(m)}(z)\}$, we can choose a subsequence denoted by $\{\tilde u^{(m)}(z),\tilde w^{(m)}(z)\}$ again, which in $\overline D$ uniformly converge to $\tilde u_0(z),\tilde w_0(z)$ respectively, and $R(z)S(z)(\tilde w^{(m)})_{\bar z}$, $R(z)S(z)(\tilde w^{(m)})_{z}$ in $D$ are weakly convergent. This shows that $[\tilde u_0(z),\tilde w_0(z)]$ is a solution of the boundary-value problem \begin{gather} \tilde w_{0\bar z}-\operatorname{Re}[Q^{(0)}\tilde w_{0z}+A^{(0)}_{1}\tilde u_{0}]-A^{(0)}_{2}\tilde u_0=0,\label{e5.18}\\ \begin{gathered} \operatorname{Re}[\overline{\lambda(z)}\tilde w_0(z)]+2 c^{(0)}_1(z)\tilde u_0=h(z)\overline{\lambda(z)}X(z)\quad \text{on }\Gamma^*, \\ \operatorname{Im}[\overline{\lambda(a_j)}\tilde{w}_{0}(a_j)]=0,\quad j\in J,\;\tilde u_0(a_0)=0. \end{gathered}\label{e5.19} \end{gather} We see that \eqref{e5.18} is a homogeneous equation, and \eqref{e5.19} is a homogeneous boundary condition. On the basis of Theorem \ref{thm5.1}, the solution $\tilde u_0(z)=0$, $\tilde{w}_0(z)=0$ however, from $\hat C^1[\tilde u^{(m)}(z),\overline D]=1$, we can derive that there exists a point $z^*\in\overline D$, such that $|R'(z^*)\tilde u_0(z^*)|+|R(z^*)\tilde{w}_0(z^*)|\ne 0$. This is impossible. This shows that the first estimate in \eqref{e5.9} are true. Moreover it is not difficult to verify the second estimate in \eqref{e5.9}. \end{proof} Now we prove the uniqueness of solutions of Problem Q for equation \eqref{e4.1} as follows. \begin{theorem} \label{thm5.3} Suppose that \eqref{e4.1} satisfies conditions {\rm (C4)--(C6)} and the following condition: for any real functions $R'(z)u_j(z)\in C(D^*),R(z)w_j(z)\in C(D^*)$, $R(z)S(z)U(z)\in L_{p_0}(\overline D)$ $(j=1,2)$, the equality \begin{equation} F(z,u_1,w_1,U)-F(z,u_2,w_2,U) =\operatorname{Re}[\tilde QU+\tilde A_1(w_1-w_2)]+\tilde A_2(u_1-u_2) \label{e5.20} \end{equation} holds, where $|\tilde Q|\leq_0 <1$ in $D$, $L_p[\tilde A_1,\overline D]\leq K_0$, $L_p[\tilde A_2,\overline D]\le\varepsilon k_0$ and \eqref{e4.5} with the sufficiently small positive constant $\varepsilon$. Then Problem $\rm Q$ for equation \eqref{e4.1} has at most one solution. \end{theorem} \begin{proof} Denote by $[u_j(z),w_j(z)](j=1,2)$ two solutions of Problem Q for \eqref{e4.9}, and substitute them into \eqref{e4.9}-\eqref{e4.11} and \eqref{e4.15}, we see that $[u(z),w(z)]=[u_1(z)-u_2(z),w_1(z)-w_2(z)]$ is a solution of the homogeneous boundary-value problem \begin{gather*} w_{\bar z}=\operatorname{Re}[\tilde Qw_z+\tilde A_1w]+\tilde A_2u,\quad z\in D, \\ \operatorname{Re}[\overline{\lambda(z)}w(z)]+c_1(z)u(z)=h(z)\overline{\lambda(z)}X(z),\quad z\in\Gamma^*, \\ \operatorname{Im}[\overline{\lambda(a_j)}w(a_j)]=0,\quad j\in J, \\ u(z)=\int^z_{a_0}[w(z)dz+\sum^N_{j=1}\frac{id_j} {z-z_j}dz]\quad \text{in }D, \end{gather*} the coefficients of which satisfy same conditions of \eqref{e4.2},\eqref{e4.3},\eqref{e4.5} and \eqref{e4.16}, but $k_1=k_2=k_3=0$. On the basis of Theorem \ref{thm5.1}, provided that $\varepsilon$ is sufficiently small, we can derive that $u(z)=w(z)=0$ in $\overline{D}$; i.e., $u_1(z)=u_2(z)$, $w_1(z)=w_2(z)$ in $\overline{D}$. \end{proof} \section{Solvability results of discontinuous Poincar\'e problem} In this section, we shall prove the solvability of general discontinuous Poincar\'e boundary value problem by the the method of parameter extension. \begin{theorem} \label{thm6.1} Suppose that the nonlinear elliptic equation \eqref{e4.1} satisfies condition {\rm (C4)--(C6)}, \eqref{e5.20}, and $\varepsilon$ in \eqref{e4.2}, \eqref{e4.5} is small enough. Then there exists a solution $[u(z),w(z)]$ of Problem $\rm Q$ for \eqref{e4.9} and $[u(z),w(z)]\in B=\hat C^1_\delta(\overline{D})\cap\hat L^1_{p_0}(\overline D)$, where $B=\hat C^1_\delta(\overline{D})\cap\hat L^1_{p_0}(\overline D)$ is a Banach space; i.e., $\hat C^1_\delta[u,\overline{D}]<\infty,\,\hat L^1_{p_0}[w,\overline D]<\infty$, and $p_0\,(>2)$ is stated as in \eqref{e5.9}. \end{theorem} \begin{proof} We introduce the nonlinear elliptic equation with the parameter $t\in[0,1]$, \begin{equation} w_{\bar z}=tF(z,u,w,w_{z})+A(z),\label{e6.1} \end{equation} where $A(z)$ is any measurable function in $D$ and $R(z)S(z)A(z)\in L_{p_0}(\overline{D})$, $20\}$, so that for every $t\in E$ and any function $R(z)S(z)A(z)\in L_{p_0}(\overline{D})$, Problem Q for \eqref{e6.1} is solvable. In fact, the complex equation \eqref{e6.1} can be written in the form \begin{equation} w_{\bar z}-t_0F(z,u,w,w_{z})=(t-t_0)F(z,u,w,w_{z})+A(z). \label{e6.5} \end{equation} We select an arbitrary function $[u_0(z),w_0(z)]\in B=\hat C^1_\delta(\overline D)\cap\hat L^1_{p_0}(\overline D)$, in particular $[u_0(z),w_0(z)]=0$ in $\overline{D}$. Let $[u_0(z),w_0(z)]$ be replaced into the position of $u(z),w(z)$ in the right hand side of \eqref{e6.5}. By condition (C4)--(C6), it is obvious that $$ B_0(z)=(t-t_0)RSF(z,u_0,w_{0z},w_{0zz})+R(z)S(z)A(z)\in L_{p_0}(\overline{D}). $$ Noting the \eqref{e6.5} has a solution $[u_1(z),w_1(z)]\in B$. Applying the successive iteration, we can find out a sequence of functions: $[u_n(z),w_n(z)]\in B$, $n=1,2,\dots $, which satisfy the complex equations \begin{equation} w_{n+1z\bar z}-t_0F(z,u_{n+1},w_{n+1},w_{n+1z}) = (t-t_0)F(z,u_n,w_{n},w_{nz})+A(z), \label{e6.6} \end{equation} for $n=,2,\dots$. The difference of the above equations for $n+1$ and $n$ is as follows: \begin{equation} \begin{aligned} &(w_{n+1}-w_n)_{z\bar z}-t_0[F(z,u_{n+1},w_{n+1},w_{n+1z})- F(z,u_{n},w_{n},w_{nz}] \\ &=(t-t_0)[F(z,u_{n},w_{n},w_{nz})-F(z,u_{n-1},w_{n-1},w_{n-1z})],\quad n= 1,2,\dots . \end{aligned}\label{e6.7} \end{equation} From conditions (C4)--(C6), it can be seen that \begin{equation} \begin{gathered} \begin{aligned} &F(z,u_{n+1},w_{n+1},w_{n+1z})-F(z,u_{n},w_{n},w_{nz})= F(z,u_{n+1},w_{n+1},w_{n+1z}) \\ &-F(z,u_{n+1},w_{n+1},w_{nz})+[F(z,u_{n+1},w_{n+1},w_{nz}) -F(z,u_{n},w_{n},w_{nz})] \\ &=\operatorname{Re}[\tilde Q_{n+1}(w_{n+1}-w_n)_{z}+\tilde A_{1n+1}(w_{n+1}-w_n)]+\tilde A_{2n+1}(u_{n+1}-u_{n}), \end{aligned} \\ |\tilde Q_{n+1}|\le q_0<1,\quad L_{p_0}[\tilde A_{1n+1},\overline D]\le k_0,\quad L_{p_0}[\tilde{A}_{2n+1},\overline D]\le\varepsilon k_0, \end{gathered} \label{e6.8} \end{equation} for $n=1,2,\dots$, and \begin{align*} &L_{p_0}[RS(F(z,u_{n},w_{n},w_{nz})-F(z,u_{n-1},w_{n-1}, w_{n-1z})),\overline{D}] \\ &\le q_0L_{p_0}[RS(w_n-w_{n-1})_{z},\overline{D}]+k_0C_\delta[R(w_n-w_{n-1}), \overline{D}] \\ &\le(q_0+k_0)[\hat C^1_\delta[u_n-u_{n-1},\overline{D}]+\hat L^1_{p_0}[w_n-w_{n-1},\overline D]=(q_0+k_0)L_n. \end{align*} Moreover, $u_{n+1}(z)-u_n(z)$ satisfies the homogeneous boundary conditions \begin{equation} \begin{gathered} \operatorname{Re}[\overline{\lambda(z)}(w_{n+1}-w_{n})]+c_1(z)[u_{n+1}(z) -u_n(z)]=h(z)\overline{\lambda(z)}X(z),\quad z\in\Gamma^*, \\ \operatorname{Im}[\overline{\lambda(a_j)}(w_{n+1}(a_j)-w_n(a_j))]=0,\quad j\in J,\quad u_{n+1}(a_0)-u_n(a_0)=0. \end{gathered} \label{e6.9} \end{equation} On the basis of Theorem \ref{thm5.2}, we have \begin{equation} L_{n+1}=\hat C^1_\delta[u_{n+1}-u_n,\overline{D}]+\hat L^1_{p_0}[w_{n+1}-w_{n},\overline{D}]\leq M_{19}|t-t_0|(q_0+k_0) L_n,\label{e6.10} \end{equation} where $M_{19}=(M_{17}+M_{18})k_*$, $M_{17}$ and $M_{18}$ are as stated in \eqref{e5.17}. Provided $\delta_0>0$ is small enough, so that $\sigma=\delta_0M_{19}(q_0+2k_0)<1$, it can be obtained that \begin{equation} L_{n+1}\le\sigma L_n\le \sigma^n L_1=\sigma^n[\hat C^1_\delta(u_1,\overline{D}) +\hat L^1_{p_0}(w_1,\overline{D})]\label{e6.11} \end{equation} for every $t\in E$. Thus \begin{equation} \begin{aligned} &\hat C^1_\delta[u_n-u_m,\overline{D}]+\hat L^1_{p_0} [w_n-w_m,\overline{D}] \\ &\le L_n+L_{n-1}+\dots+L_{m+1}\le(\sigma^{n-1}+\sigma^{n-2}+\dots+\sigma^m) L_1 \\ &=\sigma^m(1+\sigma+\dots+\sigma^{n-m-1})L_1\\ &\le\sigma^{N+1} \frac{1-\sigma^{n-m}}{1-\sigma}L_1 \le\frac{\sigma^{N+1}}{1-\sigma}L_1 \end{aligned}\label{e6.12} \end{equation} for $n\ge m>N$, where $N$ is a positive integer. This shows that $S(u_n-u_m)\to0$ as $n,m\to\infty$. Following the completeness of the Banach space $B=\hat C^1_\delta(\overline{D})\cap\hat L^1_{p_0}(\overline D)$, there is a function $w_*(z)\in B$, such that $$ \hat C^1_\delta[u_n-u_*,\overline{D}]+\hat L^1_{p_0}[w_n-w_*,\overline{D}]\to0,\quad \text{as } n\to\infty. $$ By conditions (C4)--(C6), from \eqref{e5.17} it follows that $u_*(z)$ is a solution of Problem Q for \eqref{e6.5}; i.e., \eqref{e6.1} for $t\in E$. It is easy to see that the positive constant $\delta_0$ is independent of $t_0\,(0\le t_0<1)$. Hence from Problem Q for the complex equation \eqref{e6.5} with $t=t_0=0$ is solvable, we can derive that when $t=\delta_0,2\delta_0,\dots,[1/\delta_0]\delta_0,1$, Problem Q for \eqref{e6.5} are solvable, especially Problem Q for \eqref{e6.1} with $t=1$ and $A(z) =0$, namely Problem Q for \eqref{e4.9} has a unique solution. From the above theorem, the solvability results of Problem P for equation \eqref{e4.1} can be derived. \end{proof} \begin{theorem} \label{thm6.2} Under the same conditions as in Theorem \ref{thm6.1}, the following statements hold. $(1)$ When the index $K\ge 0$, Problem $\rm P$ for \eqref{e4.1} has $2N$ solvability conditions, and the solution of Problem $\rm P$ depends on $2K+2$ arbitrary real constants. $(2)$ When $K<0$, Problem ${\rm P}$ for \eqref{e4.1} is solvable under $2N-2K-1$ conditions, and the solution of Problem $\rm P$ depends on one arbitrary real constant. \end{theorem} \begin{proof} Let the solution $[w(z),u(z)]$ of Problem Q for \eqref{e4.9} be substituted into the boundary condition \eqref{e4.10}, \eqref{e4.12} and the relation \eqref{e4.11}. If the function $h(z)=0$, $z\in\Gamma$; i.e., \begin{gather*} h_j=0,\quad j=1,\dots ,N,\quad\text{if } K\ge 0, \\ h_j=0,\quad j=[1-(-1)^{2K}]/2,\dots ,N, \quad\text{if }K<0,\\ h_m^\pm=0,\quad m= 1,\dots ,[|K|+1/2] -1,\quad\text{if }K<0, \end{gather*} and $d_j=0$, $j=1,\dots ,N$, then we have $w(z)=u_z$ in $D$ and the function $w(z)$ is just a solution of Problem P for \eqref{e4.1}. Hence the total number of above equalities is just the number of solvability conditions as stated in this theorem. Also note that the real constants $b_0$ in \eqref{e4.11} and $b_j$ $(j\in J)$ in \eqref{e4.15} and \eqref{e4.16} are arbitrarily chosen. This shows that the general solution of Problem P for \eqref{e4.1} includes the number of arbitrary real constants as stated in the theorem. \end{proof} \begin{thebibliography}{00} \bibitem{b1} A.-V. Bitsadze; \emph{Some classes of partial differential equations.} Gordon and Breach, New York, (1988). \bibitem{l1} M.-A. Lavrent$'$ev, B.-V. Shabat; \emph{Methods of function theory of a complex variable.} GITTL, Moscow, (1958) (Russian). \bibitem{v1} I.-N. Vekua; \emph{Generalized analytic functions.} Pergamon, Oxford, (1962). \bibitem{h1} S. Huang, Y.-Y. Qiao, G.-C. Wen; \emph{Real and complex Clifford analysis.} Springer-Verlag, Heidelberg, (2005). \bibitem{w1} G.-C. Wen; \emph{Conformal mappings and boundary value problems.} Translations of Mathematics Monographs 106, Amer. Math. Soc., Providence, RI, (1992). \bibitem{w2} G.-C. Wen; \emph{Linear and nonlinear elliptic complex equations.} Shanghai Scientific and Technical Publishers, Shanghai, (1986) (Chinese). \bibitem{w3} G.-C. Wen, C.-W. Tai, M.-Y. Tian; \emph{Function theoretic methods of free boundary problems and their applications to mechanics.} Higher Education Press, Beijing, (1996) (Chinese). \bibitem{w4} G.-C. Wen; \emph{Approximate methods and numerical analysis for elliptic complex equations.} Gordon and Breach, Amsterdam, (1999). \bibitem{w5} G.-C. Wen; \emph{Linear and nonlinear parabolic complex equations.} World Scientific Publishing Co., Singapore, (1999). \bibitem{w6} G.-C. Wen, B.-T. Zou; \emph{Initial-boundary value problems for nonlinear parabolic equations in higher dimensional domains.} Science Press, Beijing, (2002). \bibitem{w7} G.-C. Wen; \emph{Linear and quasilinear complex equations of hyperbolic and mixed type.} Taylor \& Francis, London, (2002). \bibitem{w8} G.-C. Wen; \emph{Elliptic, hyperbolic and mixed complex equations with parabolic degeneracy.} World Scientific Publishing Co., Singapore, (2008). \bibitem{w9} G.-C. Wen, D.-C. Chen, Z.-L. Xu; \emph{Nonlinear complex analysis and its applications.} Mathematics Monograph Series 12, Science Press, Beijing, (2008). \bibitem{w10} G.-C. Wen; \emph{Recent progress in theory and applications of modern complex analysis.} Science Press, Beijing, (2010). \end{thebibliography} \end{document}