\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 248, pp. 1--19.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/248\hfil Electromagnetic transmission problems] {Electromagnetic transmission problems with a large parameter in weighted Sobolev spaces} \author[J. E. Ospino \hfil EJDE-2013/248\hfilneg] {Jorge Eli\'ecer Ospino} % in alphabetical order \address{Jorge Eli\'ecer Ospino Portillo \newline Departamento de Matem\'aticas y Estad\'istica, Fundaci\'on Universidad del Norte, Barranquilla, Colombia} \email{jospino@uninorte.edu.co} \thanks{Submitted June 15, 2012. Published November 15, 2013.} \subjclass[2000]{65N15, 35A35} \keywords{Electromagnetic transmission problem; weighted Sobolev spaces; \hfill\break\indent a priori estimates} \begin{abstract} We present an a priori estimate for an electromagnetic transmission problem in unbounded exterior domains in $\mathbb{R}^3$. We consider Maxwell's equations in two sub-domains, the bounded interior representing a conducting material (metal) and the unbounded exterior representing an insulating material (air). The behavior of the solution at infinity is described by means of families of weighted Sobolev spaces, so-called Beppo-Levi spaces \cite{Kufner}. We prove the existence and uniqueness of the solution. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{The electromagnetic transmission problem} \label{sec:el1} Let $\Omega^{\rm cd}$ be a bounded region in $\mathbb{R}^3$ representing a metallic conductor and $\Omega^{\rm is}:=\mathbb{R}^3\backslash \overline{\Omega^{\rm cd}}$. Let latter represents the air. The parameters $\varepsilon_0$, $\mu_0$, $\sigma$ denote permittivity, permeability, and conductivity in $\Omega^{\rm cd}$. We assume $\sigma=0$ in $\Omega^{\rm is}$. All fields are time-harmonic with frequency $\omega$. As in \cite{MacCamyS} we neglect conduction currents in the air and displacement currents in the metal. Thus we consider \begin{equation}\label{eq:2.1} \begin{gathered} \operatorname{curl} \mathbf{E}-i\omega\mu_0\mathbf{H}=0, \quad\text{in }\Omega^{\rm cd}\cup\Omega^{\rm is}\quad\text{(Faraday's law)},\\ \operatorname{curl} \mathbf{H}+(i\omega\varepsilon_0-\sigma)\mathbf{E} =\mathbf{J},\quad\text{in }\Omega^{\rm cd}\cup\Omega^{\rm is}\quad\text{(Ampere's law),} \end{gathered} \end{equation} where $\mathbf{E}$ denotes the electric field, $\mathbf{H}$ the magnetic field and $\mathbf{J}$ the electric current. Across the interface $\Sigma$ the tangential components of both $\mathbf{E}$ and $\mathbf{H}$ must be continuous; i.e. $\mathbf{E}_{T}^{\rm is}=\mathbf{E}_{T}^{\rm cd}$, $ \mathbf{H}_{T}^{\rm is}=\mathbf{H}_{T}^{\rm cd}$. Furthermore the Silver-M\"{u}ller radiation condition is assumed to hold at infinity (see \eqref{eq:2.4} below). Following Peron \cite{Peron} we introduce a large parameter $\rho=\sqrt{\frac{\sigma}{\omega\varepsilon_0}}>0$ and set $\mu=\sqrt{\mu_0/\varepsilon_0}$, $\varepsilon(\rho)=\frac{1}{\mu}(1_{\Omega^{\rm is}}+(1+i\rho^2)1_{\Omega^{\rm cd}})$, and $\mathbf{F}=i\kappa\mathbf{J}$. Then, defining $\widehat{\mathbf{x}}=\mathbf{x}/|\mathbf{x}|$, equation \eqref{eq:2.1} and the Silver-M\"{u}ller radiation condition become \begin{equation}\label{eq:2.4} \begin{gathered} \operatorname{curl} \mathbf{E}_{\rho}-i\kappa\mu\mathbf{H}_{\rho}=0, \quad\text{in }\Omega^{\rm cd}\cup\Omega^{\rm is}\quad\text{(Faraday's law)},\\ \operatorname{curl} \mathbf{H}_{\rho} +i\kappa\varepsilon(\rho)\mathbf{E}_{\rho} =\frac{1}{i\kappa}\mathbf{F},\quad\text{in }\Omega^{\rm cd}\cup\Omega^{\rm is} \quad\text{(Amper's law)},\\ |\mathbf{H}_{\rho}\times\widehat{\mathbf{x}}-\mathbf{E}_{\rho}| =o\big( \frac{1}{|\mathbf{x}|}\big),\quad\text{as } |\mathbf{x}|\to\infty\quad\text{(Silver-M\"{u}ller radiation condition)}. \end{gathered} \end{equation} The first two equations in \eqref{eq:2.4} reduce to $$ \frac{1}{\mu}\operatorname{curl} \operatorname{curl} \mathbf{E}_{\rho} -\kappa^2\varepsilon(\rho)\mathbf{E}_{\rho} =\mathbf{F},\quad\text{in }\Omega^{\rm cd}\cup\Omega^{\rm is}, $$ setting $\mathbf{H}_{\rho}=\frac{1}{i\kappa\mu}\operatorname{curl} \mathbf{E}_{\rho}$. The Silver-M\"{u}ller radiation condition at infinity becomes \begin{equation}\label{eq:2.2} |\operatorname{curl} \mathbf{E}_{\rho}\times\widehat{\mathbf{x}} -\mathbf{E}_{\rho}|=o\big( \frac{1}{|\mathbf{x}|}\big),\quad\text{as } |\mathbf{x}|\to\infty. \end{equation} Peron \cite{Peron} considers problem \eqref{eq:2.4} in a bounded domain $\Omega$ which is split into the conductor $\Omega^{\rm cd}$ and the insulator $\Omega^{\rm is}$, with either Dirichlet or Neumann condition. In our case $\Omega$ is unbounded and the boundary conditions are replaced by the Silver-M\"{u}ller decay condition at infinity. Problem \eqref{eq:2.4} may be analyzed using $H^{s}_{\rm loc}(\mathbb{R}^3)$ spaces or Beppo-Levi spaces. The reader is referred to Costabel and Stephan \cite{CostabelSt1} and Giroire \cite{Giroirej} for applications of these spaces to boundary value problems involving the Laplacian operator. Nedelec \cite{Nedelec} uses of $H^{s}_{\rm loc}$ spaces for the study of problems in electromagnetic theory. Let $$ \mathbf{L}^2(\Omega^{\rm cd})=(L^2(\Omega^{\rm cd}))^3 :=\big\{ \mathbf{u}:\Omega^{\rm cd}\to\mathbb{R}^3: \int_{\Omega^{\rm cd}}|\mathbf{u}|^2dx<\infty \big\}, $$ with norm $$ \|\mathbf{u}\|_{\mathbf{L}^2(\Omega^{\rm cd})} =\Big( \int_{\Omega^{\rm cd}}|\mathbf{u}|^2dx\Big) ^{1/2}. $$ Let also \begin{gather*} \mathbf{H}(\operatorname{curl},\Omega^{\rm cd}) =\{\mathbf{u}\in\mathbf{L}^2(\Omega^{\rm cd}): \operatorname{curl} \mathbf{u}\in\mathbf{L}^2(\Omega^{\rm cd})\},\\ \mathbf{H}(\operatorname{div},\Omega^{\rm cd}) =\{\mathbf{u}\in\mathbf{L}^2(\Omega^{\rm cd}): \operatorname{div} \mathbf{u}\in L^2(\Omega^{\rm cd})\}, \end{gather*} with norms \begin{gather*} \|\mathbf{u}\|_{\mathbf{H}(\operatorname{curl},\Omega^{\rm cd})}^2 =\|\operatorname{curl} \mathbf{u}\|_{\mathbf{L}^2(\Omega^{\rm cd})}^2 +\|\mathbf{u}\|_{\mathbf{L}^2(\Omega^{\rm cd})}^2, \\ \|\mathbf{u}\|_{\mathbf{H}(\operatorname{div},\Omega^{\rm cd})}^2 =\|\operatorname{div} \mathbf{u}\|_{L^2(\Omega^{\rm cd})}^2 +\|\mathbf{u}\|_{\mathbf{L}^2(\Omega^{\rm cd})}^2, \end{gather*} respectively. As in \cite{Peron} we define $$ \mathbf{X}(\Omega^{\rm cd})=\mathbf{H}(\operatorname{curl},\Omega^{\rm cd}) \cap\mathbf{H}(\operatorname{div},\Omega^{\rm cd}), $$ with norm $$ \|\mathbf{u}\|_{\mathbf{X}(\Omega^{\rm cd})}^2=\|\operatorname{curl} \mathbf{u}\|_{\mathbf{L}^2(\Omega^{\rm cd})}^2 +\|\operatorname{div} \mathbf{u}\|_{L^2(\Omega^{\rm cd})}^2 +\|\mathbf{u}\|_{\mathbf{L}^2(\Omega^{\rm cd})}^2, $$ and \begin{gather*} \mathbf{X}_T(\Omega^{\rm cd}) =\{\mathbf{u}\in\mathbf{X}(\Omega^{\rm cd}): [\mathbf{n}\cdot\mathbf{u}]=0,\text{ on }\Sigma\},\\ \mathbf{X}_N(\Omega^{\rm cd})=\{\mathbf{u}\in\mathbf{X}(\Omega^{\rm cd}): [\mathbf{n}\times\mathbf{u}]=0, \text{ on }\Sigma\},\\ \mathbf{X}_T(\Omega^{\rm cd},\rho)=\{\mathbf{u}\in\mathbf{H}(\operatorname{curl}, \Omega^{\rm cd}):\varepsilon(\rho)\mathbf{u}\in\mathbf{H}(\operatorname{div}, \Omega^{\rm cd}),\; [\mathbf{n}\cdot\mathbf{u}]=0, \text{ on }\Sigma\},\\ \mathbf{X}_N(\Omega^{\rm cd},\rho)=\{\mathbf{u}\in\mathbf{H}(\operatorname{curl}, \Omega^{\rm cd}):\varepsilon(\rho)\mathbf{u}\in\mathbf{H}(\operatorname{div}, \Omega^{\rm cd}),\; [\mathbf{n}\times\mathbf{u}]=0,\text{ on }\Sigma\}. \end{gather*} with norm $$ \|\mathbf{u}\|_{\mathbf{X}(\Omega^{\rm cd},\rho)}^2 =\|\operatorname{curl} \mathbf{u}\|_{\mathbf{L}^2(\Omega^{\rm cd})}^2 +\|\operatorname{div}(\varepsilon(\rho)\mathbf{u})\|_{L^2(\Omega^{\rm cd})}^2 +\|\mathbf{u}\|_{\mathbf{L}^2(\Omega^{\rm cd})}^2, $$ Note that $\mathbf{X}_T(\Omega^{\rm cd})$, $\mathbf{X}_N(\Omega^{\rm cd})$, $\mathbf{X}_T(\Omega^{\rm cd},\rho)$ and $\mathbf{X}_N(\Omega^{\rm cd},\rho)$ are Hilbert spaces. Also let $\mathfrak{D}$ denote the space of all $C^{\infty}$-functions defined in $\mathbb{R}^3$ with compact support and $\mathfrak{D}'$ its topological dual space (space of distributions, see \cite{Rudin}). In what follows we define several spaces of distributions which turn out to be Hilbert spaces. For detailed proof of the corresponding facts the reader is referred to \cite{Boulmezaoud,Girault,Kufner} and \cite[Section 2.5.4]{Nedelec}. For $\mathbf{x}\in\mathbb{R}^3$, let $\ell(\|\mathbf{x}\|)=\sqrt{1+x_1^2+x_2^2+x_3^2}$, and \begin{gather*} \mathbf{W}(\operatorname{curl},\mathbb{R}^3) =\{\mathbf{u}\in\mathfrak{D}'(\mathbb{R}^3) :\ell(\|\mathbf{x}\|)^{-1}\mathbf{u}\in\mathbf{L}^2(\mathbb{R}^3),\; \operatorname{curl} \mathbf{u}\in\mathbf{L}^2(\mathbb{R}^3)\},\\ \mathbf{W}(\operatorname{div},\mathbb{R}^3) =\{\mathbf{u}\in\mathfrak{D}'(\mathbb{R}^3) :\ell(\|\mathbf{x}\|)^{-1}\mathbf{u}\in\mathbf{L}^2(\mathbb{R}^3),\; \operatorname{div} \mathbf{u}\in L^2(\mathbb{R}^3)\}. \end{gather*} Note that $\mathbf{W}(\operatorname{curl},\mathbb{R}^3)$ and $\mathbf{W}(\operatorname{div},\mathbb{R}^3)$ are Hilbert spaces equipped with the norms $$ \|\mathbf{u}\|_{\mathbf{W}(\operatorname{curl},\mathbb{R}^3)}^2 =\|\operatorname{curl} \mathbf{u}\|_{\mathbf{L}^2(\mathbb{R}^3)}^2 +\|\ell(\|\mathbf{x}\|)^{-1}\mathbf{u}\|_{\mathbf{L}^2(\mathbb{R}^3)}^2, $$ and $$ \|\mathbf{u}\|_{\mathbf{W}(\operatorname{div},\mathbb{R}^3)}^2 =\|\operatorname{div} \mathbf{u}\|_{L^2(\mathbb{R}^3)}^2 +\|\ell(\|\mathbf{x}\|)^{-1}\mathbf{u}\|_{\mathbf{L}^2(\mathbb{R}^3)}^2. $$ Furthermore we will use the space $$ \mathbb{X}(\mathbb{R}^3)=\mathbf{W}(\operatorname{curl}, \mathbb{R}^3)\cap\mathbf{W}(\operatorname{div},\mathbb{R}^3), $$ subject to the norm $$ \|\mathbf{u}\|_{\mathbb{X}(\mathbb{R}^3)}^2 =\|\operatorname{curl} \mathbf{u}\|_{\mathbf{L}^2(\mathbb{R}^3)}^2 +\|\operatorname{div} \mathbf{u}\|_{L^2(\mathbb{R}^3)}^2 +\|\ell(\|\mathbf{x}\|)^{-1}\mathbf{u}\|_{\mathbf{L}^2(\mathbb{R}^3)}^2, $$ and \begin{gather*} \mathbb{X}_T(\mathbb{R}^3)=\{\mathbf{u}\in\mathbb{X}(\mathbb{R}^3) :[\mathbf{n}\cdot\mathbf{u}]=0,\text{ on }\Sigma\},\\ \mathbb{X}_N(\mathbb{R}^3)=\{\mathbf{u}\in\mathbb{X}(\mathbb{R}^3) :[\mathbf{n}\times\mathbf{u}]=0,\text{ on }\Sigma\},\\ \mathbb{X}_T(\mathbb{R}^3,\rho)=\{\mathbf{u}\in\mathbf{W}(\operatorname{curl}, \mathbb{R}^3):\varepsilon(\rho)\mathbf{u}\in\mathbf{W}(\operatorname{div}, \mathbb{R}^3), [\mathbf{n}\cdot\mathbf{u}]=0,\text{ on }\Sigma\},\\ \mathbb{X}_N(\mathbb{R}^3,\rho)=\{\mathbf{u}\in\mathbf{W}(\operatorname{curl}, \mathbb{R}^3):\varepsilon(\rho)\mathbf{u}\in\mathbf{W}(\operatorname{div}, \mathbb{R}^3), [\mathbf{n}\times\mathbf{u}]=0,\text{ on }\Sigma\},\\ \mathbb{X}_{TN}(\mathbb{R}^3,\rho) =\{\mathbf{u}\in\mathbf{W}(\operatorname{curl},\mathbb{R}^3) :\varepsilon(\rho)\mathbf{u}\in\mathbf{W}(\operatorname{div},\mathbb{R}^3), [\mathbf{n}\times\mathbf{u}]=[\mathbf{n}\cdot\mathbf{u}]=0, \text{ on }\Sigma\}, \end{gather*} with norm $$ \|\mathbf{u}\|_{\mathbb{X}_{TN}(\mathbb{R}^3,\rho)}^2 =\|\operatorname{curl} \mathbf{u}\|_{\mathbf{L}^2(\mathbb{R}^3)}^2 +\|\operatorname{div}(\varepsilon(\rho)\mathbf{u})\|_{L^2(\mathbb{R}^3)}^2 +\|\ell(\|\mathbf{x}\|)^{-1}\mathbf{u}\|_{\mathbf{L}^2(\mathbb{R}^3)}^2. $$ Note that $\mathbb{X}_T(\mathbb{R}^3)$, $\mathbb{X}_N(\mathbb{R}^3)$, $\mathbb{X}_T(\mathbb{R}^3,\rho)$, and $\mathbb{X}_N(\mathbb{R}^3,\rho)$ are Hilbert spaces. For $m$ in $\mathbb{N}\cup\{0\}$ and $k$ in $\mathbb{Z}$, we define $$ \mathbf{L}_{m,k}^2(\mathbb{R}^3):=\big\{ \mathbf{u}:\mathbb{R}^3\to\mathbb{R}^3: \forall\alpha\in\mathbb{N}^3, 0\leq|\alpha|\leq m, \ell(\|\mathbf{x}\|)^{|\alpha|-m+k}\mathbf{u}\in \mathbf{L}^2(\mathbb{R}^3)\big\} , $$ with norm $$ \|\mathbf{u}\|_{\mathbf{L}_{m,k}^2(\mathbb{R}^3)} =\|\ell(\|\mathbf{x}\|)^{|\alpha|-m+k}\mathbf{u}\|_{\mathbf{L}^2(\mathbb{R}^3)}, $$ where $\mathbf{L}_{m,k}^2(\mathbb{R}^3)=\big( L^2_{m,k}(\mathbb{R}^3)\big)^3 $. Next we extend \cite[Theorems 1.2.16 and 1.2.17]{Louer} for unbounded domains. \begin{lemma}\label{lem:2.9} Let $\mathbf{F}\in\mathbf{L}^2(\mathbb{R}^3)$. Let $\mathbf{E}_{\rho}$ and $\mathbf{H}_{\rho}$ in $\mathbf{L}^2(\mathbb{R}^3)$ be a solution to \eqref{eq:2.4}. Then, $\mathbf{E}_{\rho},\mathbf{H}_{\rho}\in\mathbf{W}(\operatorname{curl}, \mathbb{R}^3)$ if and only if $\mathbf{E}_{\rho}^{\rm cd},\mathbf{H}_{\rho}^{\rm cd}\in\mathbf{H} (\operatorname{curl},\Omega^{\rm cd})$ and $\mathbf{E}_{\rho}^{\rm is},\mathbf{H}_{\rho}^{\rm is}\in\mathbf{W} (\operatorname{curl},\Omega^{\rm is})$ and $[\mathbf{n}\times\mathbf{E}_{\rho}]_{\Sigma}=0$, $[\mathbf{n}\times\mathbf{H}_{\rho}]_{\Sigma}=0$, where $[\mathbf{u}]_{\Sigma}=\mathbf{u}^{\rm is}-\mathbf{u}^{\rm cd}$ denotes the jump across $\Sigma$. \end{lemma} \begin{proof} ``$\Rightarrow$'' If $\mathbf{E}_{\rho},\mathbf{H}_{\rho}\in\mathbf{W} (\operatorname{curl},\mathbb{R}^3)$, then by definition $\mathbf{E}_{\rho}^{\rm cd},\mathbf{H}_{\rho}^{\rm cd}\in\mathbf{H} (\operatorname{curl},\Omega^{\rm cd})$ and $\mathbf{E}_{\rho}^{\rm is},\mathbf{H}_{\rho}^{\rm is} \in\mathbf{W}(\operatorname{curl},\Omega^{\rm is})$. Thus for $\mathbf{u}_{\rho}=\mathbf{E}_{\rho}$ or $\mathbf{u}_{\rho}=\mathbf{H}_{\rho}$, we have $$ \int_{\Omega^{\rm cd}\cup\Omega^{\rm is}}\mathbf{v}\cdot\operatorname{curl} \mathbf{u}_{\rho} dx=\int_{\Omega^{\rm cd}}\mathbf{v}\cdot\operatorname{curl} \mathbf{u}_{\rho}^{\rm cd} dx+\int_{\Omega^{\rm is}}\mathbf{v} \cdot\operatorname{curl} \mathbf{u}_{\rho}^{\rm is} dx, $$ and $$ \int_{\Omega^{\rm cd}\cup\Omega^{\rm is}}\mathbf{u}_{\rho}\cdot \operatorname{curl} \mathbf{v} dx=\int_{\Omega^{\rm cd}} \mathbf{u}_{\rho}^{\rm cd}\cdot\operatorname{curl} \mathbf{v} dx+\int_{\Omega^{\rm is}}\mathbf{u}_{\rho}^{\rm is} \cdot\operatorname{curl} \mathbf{v} dx, $$ for all $\mathbf{v}\in\mathbf{W}(\operatorname{curl},\mathbb{R}^3)$. In $\Omega^{\rm cd}$, integrating by parts (see \cite[Theorem 1.2.17]{Louer}) gives $$ \int_{\Omega^{\rm cd}}[\mathbf{v}\cdot\operatorname{curl} \mathbf{u}_{\rho}^{\rm cd} dx-\mathbf{u}_{\rho}^{\rm cd}\cdot\operatorname{curl} \mathbf{v}] dx=\int_{\Sigma}[\mathbf{n}\times(\mathbf{n} \times\mathbf{u}_{\rho}^{\rm cd})]\cdot(\mathbf{n}\times\mathbf{v}) ds. $$ where $$\mathbf{n}\times(\mathbf{n}\times\mathbf{u}_{\rho}^{\rm cd}) =\mathbf{n}(\mathbf{n}\cdot\mathbf{u}_{\rho}^{\rm cd}) -\mathbf{u}_{\rho}^{\rm cd}(\mathbf{n}\cdot\mathbf{n}) =\mathbf{n}(\mathbf{n}\cdot\mathbf{u}_{\rho}^{\rm cd}) -\mathbf{u}_{\rho}^{\rm cd}. $$ Thus $$ [\mathbf{n}\times(\mathbf{n}\times\mathbf{u}_{\rho}^{\rm cd})] \cdot(\mathbf{n}\times\mathbf{v})=[\mathbf{n}(\mathbf{n} \cdot\mathbf{u}_{\rho}^{\rm cd})-\mathbf{u}_{\rho}^{\rm cd}] \cdot(\mathbf{n}\times\mathbf{v})=-\mathbf{u}_{\rho}^{\rm cd} \cdot(\mathbf{n}\times\mathbf{v}), $$ and $$ -\mathbf{u}_{\rho}^{\rm cd}\cdot(\mathbf{n}\times\mathbf{v}) =\mathbf{v}\cdot(\mathbf{n}\times\mathbf{u}_{\rho}^{\rm cd}). $$ Hence $$ \int_{\Omega^{\rm cd}}\mathbf{v}\cdot\operatorname{curl} \mathbf{u}_{\rho}^{\rm cd} dx=\int_{\Omega^{\rm cd}} \mathbf{u}_{\rho}^{\rm cd}\cdot\operatorname{curl} \mathbf{v} dx+\int_{\Sigma}\mathbf{v}\cdot(\mathbf{n} \times\mathbf{u}_{\rho}^{\rm cd}) ds. $$ Let $B_{R}$ be a ball with radius $R>0$ containing $\Omega^{\rm cd}$. Let $\Omega_{R}=B_{R}\cap\Omega^{\rm is}$. Hence $\partial\Omega_{R}=\partial B_{R}\cup\Sigma$. In the domain $\Omega_{R}$, we have, integrating by parts, (see \cite[Theorem 1.2.17]{Louer}), \begin{equation}\label{eq:2.3} \int_{\Omega_{R}}\mathbf{v}\cdot\operatorname{curl} \mathbf{u}_{\rho}^{\rm is} dx =\int_{\Omega_{R}}\mathbf{u}_{\rho}^{\rm is}\cdot\operatorname{curl} \mathbf{v} dx-\int_{\Sigma}\mathbf{v}\cdot(\mathbf{n} \times\mathbf{u}_{\rho}^{\rm is}) ds+\int_{\partial B_{R}}\mathbf{v} \cdot(\mathbf{n}\times\mathbf{u}_{\rho}^{\rm is}) ds. \end{equation} Due to the Silver-M\"{u}ller radiation conditions (see \eqref{eq:2.2}) \begin{align*} |\int_{\partial B_{R}}\mathbf{v}\cdot(\mathbf{n} \times\mathbf{u}_{\rho}^{\rm is}) ds| &\leq\int_{\partial B_{R}}|\mathbf{v}| |\mathbf{n}\times\mathbf{u}_{\rho}^{\rm is}| ds \\ &\leq\int_{\partial B_{R}}|\mathbf{v}||\mathbf{n}||\mathbf{u}_{\rho}^{\rm is}| |\sin\theta|ds\\ &\leq\int_{\partial B_{R}}\frac{C_1}{R^2}\frac{C_2}{R^2}ds =\frac{C}{R^2}\to 0,\quad\text{as } R\to\infty. \end{align*} Hence, in \eqref{eq:2.3} taking the limit as $R\to\infty$, we have $$ \int_{\Omega^{\rm is}}\mathbf{v}\cdot\operatorname{curl} \mathbf{u}_{\rho}^{\rm is} dx=\int_{\Omega^{\rm is}} \mathbf{u}_{\rho}^{\rm is}\cdot\operatorname{curl} \mathbf{v} dx -\int_{\Sigma}\mathbf{v}\cdot(\mathbf{n}\times\mathbf{u}_{\rho}^{\rm is}) ds. $$ Thus $$ \int_{\Omega^{\rm cd}\cup\Omega^{\rm is}}\mathbf{v}\cdot\operatorname{curl} \mathbf{u}_{\rho} dx =\int_{\Omega^{\rm cd}\cup\Omega^{\rm is}} \mathbf{u}_{\rho}\cdot\operatorname{curl} \mathbf{v} dx +\int_{\Sigma}\mathbf{v}\cdot(\mathbf{n}\times\mathbf{u}_{\rho}^{\rm cd} -\mathbf{n}\times\mathbf{u}_{\rho}^{\rm is}) ds, $$ yielding $$ \int_{\Sigma}\mathbf{v}\cdot(\mathbf{n}\times\mathbf{u}_{\rho}^{\rm cd} -\mathbf{n}\times\mathbf{u}_{\rho}^{\rm is}) ds=0, $$ and therefore $[\mathbf{n}\times\mathbf{u}_{\rho}]_{\Sigma}=0$. ``$\Leftarrow$'' If $\mathbf{E}_{\rho}^{\rm cd},\mathbf{H}_{\rho}^{\rm cd} \in\mathbf{H}(\operatorname{curl},\Omega^{\rm cd})$, $\mathbf{E}_{\rho}^{\rm is},\mathbf{H}_{\rho}^{\rm is} \in\mathbf{W}(\operatorname{curl},\Omega^{\rm is})$, $[\mathbf{n}\times\mathbf{E}_{\rho}]_{\Sigma}=0$, and $[\mathbf{n}\times\mathbf{H}_{\rho}]_{\Sigma}=0$. Then for $\mathbf{v}\in\mathbf{W}(\operatorname{curl},\mathbb{R}^3)$ and $\mathbf{u}_{\rho}=\mathbf{E}_{\rho}$ or $\mathbf{u}_{\rho}=\mathbf{H}_{\rho}$, integrating by parts, \begin{align*} &\int_{\Omega^{\rm cd}\cup\Omega^{\rm is}}\mathbf{u}_{\rho} \cdot\operatorname{curl} \mathbf{v} dx\\ &=\int_{\Omega^{\rm cd}}\mathbf{u}_{\rho}^{\rm cd}\cdot\operatorname{curl} \mathbf{v} dx+\int_{\Omega^{\rm is}}\mathbf{u}_{\rho}^{\rm is} \cdot\operatorname{curl} \mathbf{v} dx,\\ &=\int_{\Omega^{\rm cd}}\mathbf{v}\cdot\operatorname{curl} \mathbf{u}_{\rho}^{\rm cd} dx+\int_{\Omega^{\rm is}}\mathbf{v} \cdot\operatorname{curl} \mathbf{u}_{\rho}^{\rm is} dx +\int_{\Sigma}\mathbf{v}\cdot(\mathbf{n}\times\mathbf{u}_{\rho}^{\rm cd} -\mathbf{n}\times\mathbf{u}_{\rho}^{\rm is}) ds. \end{align*} Hence $\mathbf{n}\times\mathbf{u}_{\rho}^{\rm cd} -\mathbf{n}\times\mathbf{u}_{\rho}^{\rm is}=0$ implies $$ \int_{\Omega^{\rm cd}\cup\Omega^{\rm is}}\mathbf{u}_{\rho} \cdot\operatorname{curl} \mathbf{v} dx=\int_{\Omega^{\rm cd} \cup\Omega^{\rm is}}\mathbf{v}\cdot\operatorname{curl} \mathbf{u}_{\rho} dx. $$ \end{proof} Our next Lemma adapts \cite[Lemmas 2.7 and 2.8]{Peron} for exterior domains in weighted Sobolev spaces. \begin{lemma}\label{lem:2.10} Let $\mathbf{F}\in\mathbf{W}(\operatorname{div},\mathbb{R}^3)$. Let $\mathbf{E}_{\rho}$ and $\mathbf{H}_{\rho}$ in $\mathbf{L}^2(\mathbb{R}^3)$ solutions of \eqref{eq:2.4}. If $\mathbf{E}_{\rho},\mathbf{H}_{\rho}\in\mathbf{W}(\operatorname{curl}, \mathbb{R}^3)$, then $\varepsilon(\rho)\mathbf{E}_{\rho}, \mathbf{H}_{\rho}\in\mathbf{W}(\operatorname{div},\mathbb{R}^3)$, $[\mathbf{n}\cdot(\varepsilon(\rho)\mathbf{E}_{\rho})]_{\Sigma}=0$, and $[\mathbf{n}\cdot\mathbf{H}_{\rho}]_{\Sigma}=0$. Furthermore, $$ \operatorname{div}(\varepsilon(\rho)\mathbf{E}_{\rho}) =-\frac{1}{\kappa^2}\operatorname{div}\mathbf{F},\quad \operatorname{div}\mathbf{H}_{\rho}=0\quad\text{in } \mathbf{L}^2(\mathbb{R}^3). $$ \end{lemma} \begin{proof} If $\mathbf{F}\in\mathbf{W}(\operatorname{div},\mathbb{R}^3)$ and $\mathbf{E}_{\rho},\mathbf{H}_{\rho}\in\mathbf{L}^2(\mathbb{R}^3)$ are solutions of \eqref{eq:2.4}, then applying divergence operator in \eqref{eq:2.4}, we have $$ \operatorname{div}(\varepsilon(\rho)\mathbf{E}_{\rho}) =-\frac{1}{\kappa^2}\operatorname{div} \mathbf{F},\quad \operatorname{div} \mathbf{H}_{\rho}=0\quad\text{in} \mathbf{L}^2(\mathbb{R}^3), $$ and $\varepsilon(\rho)\mathbf{E}_{\rho}\in\mathbf{W}(\operatorname{div}, \mathbb{R}^3)$, $\mathbf{H}_{\rho}\in\mathbf{W}(\operatorname{div},\mathbb{R}^3)$. Now, for $\mathbf{u}_{\rho}=\varepsilon(\rho)\mathbf{E}_{\rho}$ or $\mathbf{H}_{\rho}$, we have \begin{gather*} \int_{\Omega^{\rm cd}\cup\Omega^{\rm is}}\phi \operatorname{div} \mathbf{u}_{\rho} dx=\int_{\Omega^{\rm cd}}\phi \operatorname{div} \mathbf{u}_{\rho}^{\rm cd} dx+\int_{\Omega^{\rm is}}\phi \operatorname{div} \mathbf{u}_{\rho}^{\rm is} dx, \\ \int_{\Omega^{\rm cd}\cup\Omega^{\rm is}}\mathbf{u}_{\rho}\cdot\nabla\phi dx =\int_{\Omega^{\rm cd}}\mathbf{u}_{\rho}^{\rm cd}\cdot\nabla\phi dx +\int_{\Omega^{\rm is}}\mathbf{u}_{\rho}^{\rm is}\cdot\nabla\phi dx, \end{gather*} for all $\phi\in\mathcal{\mathbf{V}}=H_0^{1}(\Omega^{\rm cd}) \cup\mathbb{W}^{1}_0(\Omega^{\rm is})$. In $\Omega^{\rm cd}$, integrating by parts (see \cite[Theorem 1.2.16]{Louer}), $$ \int_{\Omega^{\rm cd}}\phi \operatorname{div} \mathbf{u}_{\rho}^{\rm cd} dx =\int_{\Omega^{\rm cd}}\mathbf{u}_{\rho}^{\rm cd}\cdot\nabla\phi dx -\int_{\Sigma}(\mathbf{n}\cdot\mathbf{u}_{\rho}^{\rm cd})\phi ds. $$ Let be a ball $B_{R}$ with radius $R>0$ containing $\Omega^{\rm cd}$. Let $\Omega_{R}=B_{R}\cap\Omega^{\rm is}$. Hence $\partial\Omega_{R}=\partial B_{R}\cup\Sigma$. In the domain $\Omega_{R}$, we have, integrating by parts, (see \cite[Theorem 1.2.16]{Louer}), \begin{align*} &\int_{\Omega_{R}}\phi \operatorname{div} \mathbf{u}_{\rho}^{\rm is} dx\\ &=\int_{\Omega_{R}}\mathbf{u}_{\rho}^{\rm is}\cdot\nabla\phi dx +\int_{\Sigma}(\mathbf{n}\cdot\mathbf{u}_{\rho}^{\rm is})\phi ds -\int_{\partial B_{R}}(\mathbf{n}\cdot\mathbf{u}_{\rho}^{\rm is})\phi ds\\ &=\int_{\Omega_{R}}\mathbf{u}_{\rho}^{\rm is}\cdot\nabla\phi dx +\int_{\Sigma}(\mathbf{n}\cdot\mathbf{u}_{\rho}^{\rm is})\phi ds -\int_{\partial B_{R}}(\mathbf{n}\cdot[\mathbf{u}_{\rho}^{\rm is} +\mathbf{U}_{\rho}^{\rm is}\times\mathbf{n}])\phi ds, \end{align*} where, if $\mathbf{u}_{\rho}^{\rm is}=\varepsilon(\rho)\mathbf{E}_{\rho}$, $\mathbf{U}_{\rho}^{\rm is}=-\varepsilon(\rho)\mathbf{H}_{\rho}$ or if $\mathbf{u}_{\rho}^{\rm is}=\mathbf{H}_{\rho}$, $\mathbf{U}_{\rho}^{\rm is}=\mathbf{E}_{\rho}$ and $\mathbf{n}\cdot[\mathbf{U}_{\rho}^{\rm is}\times\mathbf{n}]=0$. Due to the Silver-M\"{u}ller radiation conditions (see \eqref{eq:2.2}) $$ \int_{\partial B_{R}}\mathbf{n}\cdot[\mathbf{u}_{\rho}^{\rm is} +\mathbf{U}_{\rho}^{\rm is}\times\mathbf{n}]\cdot\phi ds\to 0\quad\text{as} R\to\infty. $$ Hence $$ \int_{\Omega^{\rm is}}\phi \operatorname{div} \mathbf{u}_{\rho}^{\rm is} dx =\int_{\Omega^{\rm is}}\mathbf{u}_{\rho}^{\rm is}\cdot\nabla\phi dx+\int_{\Sigma}(\mathbf{n}\cdot\mathbf{u}_{\rho}^{\rm is})\phi ds.$$ Altogether we have $$ \int_{\Omega^{\rm cd}\cup\Omega^{\rm is}}\phi \operatorname{div} \mathbf{u}_{\rho} dx =\int_{\Omega^{\rm cd}\cup\Omega^{\rm is}}\mathbf{u}_{\rho} \cdot\nabla\phi dx+\int_{\Sigma}(\mathbf{n}\cdot\mathbf{u}_{\rho}^{\rm is} -\mathbf{n}\cdot\mathbf{u}_{\rho}^{\rm cd})\cdot\phi ds $$ then $$ \int_{\Sigma}(\mathbf{n}\cdot\mathbf{u}_{\rho}^{\rm is} -\mathbf{n}\cdot\mathbf{u}_{\rho}^{\rm cd})\cdot\phi ds=0, $$ for all $\phi$ implies $[\mathbf{n}\cdot\mathbf{u}_{\rho}]_{\Sigma}=0$. \end{proof} For $\mathbf{E}_{\rho},\mathbf{E}'\in\widetilde{\mathbf{W}}(\operatorname{curl}, \mathbb{R}^3):=\{\mathbf{E}\in\mathbf{W}(\operatorname{curl},\mathbb{R}^3) : \mathbf{E}\in\mathbf{L}^2(\mathbb{R}^3)\}$, set \begin{equation}\label{eq:2.5} b_{\rho}(\mathbf{E}_{\rho},\mathbf{E}') :=\int_{\Omega^{\rm cd}\cup\Omega^{\rm is}} \Big( \frac{1}{\mu}\operatorname{curl} \mathbf{E}_{\rho}\cdot\operatorname{curl} \overline{\mathbf{E}'}-\kappa^2\varepsilon(\rho)\mathbf{E}_{\rho} \cdot\overline{\mathbf{E}'}\Big) dx. \end{equation} \begin{proposition}\label{pro:2.15} If $\mathbf{F}\in\mathbf{L}^2(\mathbb{R}^3)$, $\mathbf{E}_{\rho},\mathbf{H}_{\rho}\in\mathbf{L}^2(\mathbb{R}^3)$ satisfy \eqref{eq:2.4}, then, $\mathbf{E}_{\rho}\in\mathbf{W}(\operatorname{curl},\mathbb{R}^3)$ and for all $\mathbf{E}'\in\mathbf{W}(\operatorname{curl},\mathbb{R}^3)$, \begin{equation}\label{eq:2.6} b_{\rho}(\mathbf{E}_{\rho},\mathbf{E}') =\int_{\Omega^{\rm cd}\cup\Omega^{\rm is}}\mathbf{F}\cdot\overline{\mathbf{E}'}dx. \end{equation} \end{proposition} The proof of Proposition \ref{pro:2.15} is a minor modification of the proof \cite[Proposition 3]{Peron}, and is left for the reader. \begin{proposition}\label{pro:2.17} If $\mathbf{E}_{\rho}\in\mathbf{W}(\operatorname{curl},\mathbb{R}^3)$ satisfies \eqref{eq:2.6}, then $\mathbf{E}_{\rho}$ satisfies (in the sense of distributions): \begin{equation}\label{eq:2.8} \begin{gathered} \operatorname{curl} \operatorname{curl} \mathbf{E}_{\rho} -\kappa^2\mathbf{E}_{\rho} =\mu\mathbf{F}^{\rm is}, \quad\text{in }\Omega^{\rm is},\\ \operatorname{curl} \operatorname{curl} \mathbf{E}_{\rho} -\kappa^2(1+i\rho^2)\mathbf{E}_{\rho} =\mu\mathbf{F}^{\rm cd}, \quad\text{in }\Omega^{\rm cd},\\ [ \mathbf{n}\times\mathbf{E}_{\rho}] _{\Sigma}=0, \quad [ \mathbf{n}\times\operatorname{curl} \mathbf{E}_{\rho}] _{\Sigma}=0, \quad \text{on } \Sigma, \end{gathered} \end{equation} with Silver-M\"{u}ller condition \[ |\operatorname{curl} \mathbf{E}_{\rho}\times\widehat{\mathbf{x}} -\mathbf{E}_{\rho}|=o\big( \frac{1}{|\mathbf{x}|}\big), \quad \text{as }|\mathbf{x}|\to\infty, \] On the other hand, if $\mathbf{E}_{\rho}$ solves \eqref{eq:2.8}, then \begin{gather}\label{eq:2.9} \frac{1}{\mu}\operatorname{curl} \operatorname{curl} \mathbf{E}_{\rho}-\kappa^2\varepsilon(\rho)\mathbf{E}_{\rho}=\mathbf{F}, \quad\text{in }\Omega^{\rm cd}\cup\Omega^{\rm is}, \\ \label{eq:2.10} \operatorname{div}(\varepsilon(\rho)\mathbf{E}_{\rho}) =-\frac{1}{\kappa^2}\operatorname{div} \mathbf{F},\quad\text{in } \Omega^{\rm cd}\cup\Omega^{\rm is}. \end{gather} \end{proposition} \begin{proof} We follow the proof of \cite[Proposition 2.15]{Peron} to show that $\mathbf{E}_{\rho}$ satisfies the first two equations in \eqref{eq:2.8}. Taking $\mathbf{E}'\in\mathfrak{D}'(\mathbb{R}^3)$ with support in $\Omega^{\rm is}$ as test function in \eqref{eq:2.6} and using $$ \int_{\Omega^{\rm cd}\cup\Omega^{\rm is}}\operatorname{curl} \mathbf{E}_{\rho}\cdot\operatorname{curl} \overline{\mathbf{E}'}dx =\langle\operatorname{curl} \operatorname{curl} \mathbf{E}_{\rho}, \mathbf{E}'\rangle_{\Omega^{\rm is}}, $$ we see that the first equation in \eqref{eq:2.8} is satisfied. Taking $\mathbf{E}'\in\mathfrak{D}'(\mathbb{R}^3)$ with support in $\Omega^{\rm cd}$ as test function in \eqref{eq:2.6} and using $$ \int_{\Omega^{\rm cd}\cup\Omega^{\rm is}}\operatorname{curl} \mathbf{E}_{\rho}\cdot\operatorname{curl} \overline{\mathbf{E}'}dx=\langle\operatorname{curl} \operatorname{curl} \mathbf{E}_{\rho},\mathbf{E}'\rangle_{\Omega^{\rm cd}}, $$ we see that the second equation in \eqref{eq:2.8} is satisfied. By Lemma \ref{lem:2.9}, the third relation \eqref{eq:2.8} holds. Let $B_{R}$ be a ball with radius $R>0$ containing $\Omega^{\rm cd}$. Let $\Omega=\Omega^{\rm cd}\cup(\Omega^{\rm is}\cap B_{R})$. Hence $\partial(\Omega^{\rm is}\cap B_{R})=\Sigma\cup\partial B_{R}=\partial\Omega$, for all $\mathbf{E},\mathbf{H}\in\mathbf{H}(\operatorname{curl},\Omega)$, \begin{equation}\label{eq:2.11} \int_{\Omega}\operatorname{curl} \mathbf{E}\cdot\overline{\mathbf{H}} -\mathbf{E}\cdot\operatorname{curl} \overline{\mathbf{H}})dx =\langle\mathbf{n}\times\mathbf{E},\mathbf{H}_{\tau}\rangle_{\partial\Omega}, \end{equation} where $\mathbf{H}_{\tau}=(\mathbf{n}\times\mathbf{H})\times\mathbf{n}$. From the first equation in \eqref{eq:2.8} we have $\operatorname{curl} \mathbf{E}^{\rm is}\in\mathbf{H}(\operatorname{curl}, \Omega^{\rm is}\cap B_{R})$. Applying formula \eqref{eq:2.11} in $\Omega^{\rm is}\cap B_{R}$ to $\mathbf{E}=\operatorname{curl} \mathbf{E}_{\rho}^{\rm is}$ and $\mathbf{H}=\mathbf{E}'\in\mathbf{H}(\operatorname{curl},\Omega)$, we have \begin{equation}\label{eq:2.11a} \begin{aligned} &\int_{\Omega^{\rm is}\cap B_{R}}\operatorname{curl} \mathbf{E}_{\rho}^{\rm is}\cdot\operatorname{curl} \overline{(\mathbf{E}')^{\rm is}}dx\\ &= \int_{\Omega^{\rm is}\cap B_{R}}\operatorname{curl} \operatorname{curl} \mathbf{E}_{\rho}^{\rm is} \cdot\overline{(\mathbf{E}')^{\rm is}}dx+\langle\operatorname{curl} \mathbf{E}_{\rho}^{\rm is}\times\mathbf{n},(\mathbf{E}')^{\rm is}_{\tau} \rangle_{\partial(\Omega^{\rm is}\cap B_{R})}. \end{aligned} \end{equation} Applying formula \eqref{eq:2.11} in $\Omega^{\rm cd}$ to $\mathbf{E}=\operatorname{curl} \mathbf{E}_{\rho}^{\rm cd}$ and $\mathbf{H}=\mathbf{E}'\in\mathbf{H}(\operatorname{curl},\Omega)$, we have \begin{equation}\label{eq:2.11b} \begin{aligned} &\int_{\Omega^{\rm cd}}\operatorname{curl} \mathbf{E}_{\rho}^{\rm cd} \cdot\operatorname{curl} \overline{(\mathbf{E}')^{\rm cd}}dx\\ &= \int_{\Omega^{\rm cd}}\operatorname{curl} \operatorname{curl} \mathbf{E}_{\rho}^{\rm cd}\cdot\overline{(\mathbf{E}')^{\rm cd}}dx +\langle\operatorname{curl} \mathbf{E}_{\rho}^{\rm cd}\times\mathbf{n}, (\mathbf{E}')^{\rm cd}_{\tau}\rangle_{\Sigma}. \end{aligned} \end{equation} In \eqref{eq:2.11a}, $$ \langle\operatorname{curl} \mathbf{E}_{\rho}^{\rm is}\times\mathbf{n} ,(\mathbf{E}')^{\rm is}_{\tau}\rangle_{\partial(\Omega^{\rm is}\cap B_{R})} =\langle\operatorname{curl} \mathbf{E}_{\rho}^{\rm is}\times\mathbf{n}, (\mathbf{E}')^{\rm is}_{\tau}\rangle_{\Sigma}+\langle\operatorname{curl} \mathbf{E}_{\rho}^{\rm is}\times\mathbf{n},(\mathbf{E}') ^{\rm is}_{\tau}\rangle_{\partial B_{R}}. $$ Applying Silver-M\"{u}ller radiation condition yields \begin{align*} |\langle\operatorname{curl} \mathbf{E}_{\rho}^{\rm is}\times\mathbf{n}, (\mathbf{E}')^{\rm is}_{\tau}\rangle_{\partial B_{R}}| &=\big|\int_{\partial B_{R}}\operatorname{curl} \mathbf{E}_{\rho}^{\rm is} \times\mathbf{n}\cdot(\mathbf{E}')^{\rm is}_{\tau}ds\big| \\ &\leq\int_{\partial B_{R}}|\operatorname{curl} \mathbf{E}_{\rho}^{\rm is} \times\mathbf{n}||(\mathbf{n}\times\mathbf{E}')\times\mathbf{n}|ds \\ &\leq\int_{\partial B_{R}}|\operatorname{curl} \mathbf{E}_{\rho}^{\rm is}| |\mathbf{n}||\sin\theta_1||\mathbf{n}||\mathbf{n}\times\mathbf{E}'| |\sin\theta_2|ds \\ &\leq\int_{\partial B_{R}}C_1|\operatorname{curl} \mathbf{E}_{\rho}^{\rm is}| |\mathbf{n}||\mathbf{E}'||\sin\theta_3|ds \\ &\leq\int_{\partial B_{R}}C_1|\operatorname{curl} \mathbf{E}_{\rho}^{\rm is}||\mathbf{E}'|ds \\ &=C_1\frac{C_2}{R^{4}}R^2=\frac{C}{R^2}\to 0,\quad\text{as } R\to\infty. \end{align*} Then, by the dominated convergence Theorem, \begin{equation}\label{eq:2.11c} \begin{aligned} &\int_{\Omega^{\rm is}}\operatorname{curl} \mathbf{E}_{\rho}^{\rm is} \cdot\operatorname{curl} \overline{(\mathbf{E}')^{\rm is}}dx \\ &= \int_{\Omega^{\rm is}}\operatorname{curl} \operatorname{curl} \mathbf{E}_{\rho}^{\rm is}\cdot\overline{(\mathbf{E}')^{\rm is}}dx +\langle\operatorname{curl} \mathbf{E}_{\rho}^{\rm is}\times\mathbf{n}, (\mathbf{E}')^{\rm is}_{\tau}\rangle_{\Sigma}. \end{aligned} \end{equation} From \eqref{eq:2.11b} and \eqref{eq:2.11c}, \begin{align*} &\int_{\Omega^{\rm cd}\cup\Omega^{\rm is}}\operatorname{curl} \mathbf{E}_{\rho}\cdot\operatorname{curl} \overline{\mathbf{E}'}dx\\ &=\int_{\Omega^{\rm cd}\cup\Omega^{\rm is}}\operatorname{curl} \operatorname{curl} \mathbf{E}_{\rho}\cdot\overline{\mathbf{E}'}dx +\langle[\operatorname{curl} \mathbf{E}_{\rho}\times\mathbf{n}]_{\Sigma}, \mathbf{E}'_{\tau}\rangle_{\Sigma}, \end{align*} for all $\mathbf{E}'\in\mathbf{W}(\operatorname{curl},\mathbb{R}^3)$. From \eqref{eq:2.6} and the first two equations in \eqref{eq:2.8}, $$ \langle[\operatorname{curl} \mathbf{E}_{\rho}\times\mathbf{n}]_{\Sigma}, \mathbf{E}'_{\tau}\rangle_{\Sigma}=0, $$ which proofs the fourth equation in \eqref{eq:2.8}. \end{proof} Next we consider a \emph{regularized version} of problem \eqref{eq:2.6}. Namely: We consider finding $\mathbf{E}_{\rho}\in\mathbb{X}_T(\mathbb{R}^3,\rho)$, such that, for all $\mathbf{E}_{\rho}'\in\mathbb{X}_T(\mathbb{R}^3,\rho)$, \begin{equation}\label{eq:2.18} \begin{aligned} &\int_{\Omega^{\rm cd}\cup\Omega^{\rm is}}\Big( \frac{1}{\mu}\operatorname{curl} \mathbf{E}_{\rho}\cdot\operatorname{curl} \overline{\mathbf{E}'_{\rho}} +\alpha \operatorname{div}(\varepsilon(\rho)\mathbf{E}_{\rho}) \cdot\operatorname{div}(\overline{\varepsilon(\rho)\mathbf{E}'_{\rho}}) -\kappa^2\varepsilon(\rho)\mathbf{E}_{\rho}\cdot\overline{\mathbf{E}'_{\rho}} \Big) dx\\ &=\langle f,\mathbf{E}_{\rho}'\rangle, \end{aligned} \end{equation} where \begin{equation}\label{eq:2.19} \langle f,\mathbf{E}_{\rho}'\rangle=\int_{\Omega^{\rm cd} \cup\Omega^{\rm is}}\Big( \mathbf{F}\cdot\overline{\mathbf{E}_{\rho}'} -\frac{\alpha}{\kappa^2}\operatorname{div} \mathbf{F}\cdot\operatorname{div} (\overline{\varepsilon(\rho)\mathbf{E}_{\rho}'})\Big) dx, \end{equation} and where $\alpha>0$. The next theorem, extends \cite[Theorem 2.21]{Peron} (see also Costabel et al.~\cite{Costabeld}), which corresponds to Peron's theorem \cite[Theorem 2.21]{Peron} and is its modification for an unbounded exterior domain and weighted spaces. \begin{theorem}\label{th:2.23} There exists $\alpha>0$, independent of $\rho$, such that if $\mathbf{E}_{\rho}\in\mathbb{X}_T(\mathbb{R}^3,\rho)$ is a solution of \eqref{eq:2.18}--\eqref{eq:2.19} for $\mathbf{F}\in\mathbf{W}_0(\operatorname{div},\mathbb{R}^3)$, then \begin{equation}\label{eq:2.20} \operatorname{div}(\varepsilon(\rho)\mathbf{E}_{\rho}) +\frac{1}{\kappa^2}\operatorname{div} \mathbf{F}=0,\quad \text{in }\Omega^{\rm cd}\cup\Omega^{\rm is}. \end{equation} Furthermore $\mathbf{E}_{\rho}$ and $\mathbf{H}_{\rho}=\frac{1}{i\omega\varepsilon_0}\operatorname{curl} \mathbf{E}_{\rho}$ satisfy Maxwell's equations \eqref{eq:2.4}. \end{theorem} \begin{proof} Let us define the operator $\Delta_{\varepsilon(\rho)}^N$ from $\mathbb{W}^{1}_0(\mathbb{R}^3)$ to $\mathbb{W}^{1}_0(\mathbb{R}^3)'$ mapping $\varphi$ to $\operatorname{div}(\varepsilon(\rho)\nabla\varphi)$, where $\operatorname{div}(\varepsilon(\rho)\nabla\varphi) \in\mathbb{W}^{1}_0(\mathbb{R}^3)'$ defined for any $\psi\in\mathbb{W}^{1}_0(\mathbb{R}^3)$ by $$ \int_{\Omega^{\rm cd}\cup\Omega^{\rm is}}\varepsilon(\rho)\nabla\varphi\cdot \overline{\nabla\psi}dx. $$ see \cite[Theorem 2.21]{Peron}. Defining the domain of $\Delta_{\varepsilon(\rho)}^N$ by $$ \textbf{D}(\Delta_{\varepsilon(\rho)}^N)=\{\varphi\in\mathbb{W}^{1}_0 (\mathbb{R}^3) |\quad\operatorname{div}(\varepsilon(\rho)\nabla\varphi) \in L^2(\mathbb{R}^3)\}, $$ $\nabla\varphi\in\mathbb{X}_T(\mathbb{R}^3,\rho)$ for $\varphi\in\textbf{D}(\Delta_{\varepsilon(\rho)}^N)$. Let $\mathbf{E}_{\rho}$ satisfy \eqref{eq:2.18}. Choosing $\mathbf{E}'=\nabla\varphi$ with $\varphi\in\textbf{D}(\Delta_{\varepsilon(\rho)}^N)$, \eqref{eq:2.18} gives \begin{equation}\label{eq:2.21} \begin{aligned} &\int_{\Omega^{\rm cd}\cup\Omega^{\rm is}}(\alpha \operatorname{div} (\varepsilon(\rho)\mathbf{E}_{\rho})\cdot\operatorname{div} (\overline{\varepsilon(\rho)\nabla\varphi}) -\kappa^2\varepsilon(\rho)\mathbf{E}_{\rho}\cdot\overline{\nabla\varphi}) dx\\ &=\int_{\Omega^{\rm cd}\cup\Omega^{\rm is}} \Big( \mathbf{F}\cdot\overline{\nabla\varphi} -\frac{\alpha}{\kappa^2}\operatorname{div} \mathbf{F}\cdot\operatorname{div}(\overline{\varepsilon(\rho)\nabla\varphi}) \Big) dx. \end{aligned} \end{equation} Since $\varepsilon(\rho)\mathbf{E}_{\rho},\mathbf{F} \in\mathbf{W}_0(\operatorname{div},\mathbb{R}^3)$ and $\varphi\in\mathbb{W}^{1}_0(\mathbb{R}^3)$ we have $$ \int_{\mathbb{R}^3}-\kappa^2\varepsilon(\rho) \mathbf{E}_{\rho}\cdot\overline{\nabla\varphi}) dx =\int_{\Omega^{\rm cd}}-\kappa^2\varepsilon(\rho) \mathbf{E}_{\rho}\cdot\overline{\nabla\varphi}) dx +\int_{\Omega^{\rm is}}-\kappa^2\varepsilon(\rho)\mathbf{E}_{\rho}\cdot \overline{\nabla\varphi}) dx. $$ Green's formula in $\Omega^{\rm cd}$, yields $$ \int_{\Omega^{\rm cd}}-\kappa^2\varepsilon(\rho)\mathbf{E}_{\rho}\cdot \overline{\nabla\varphi}) dx=\int_{\Omega^{\rm cd}}\kappa^2 \operatorname{div}(\varepsilon(\rho)\mathbf{E}_{\rho}) \cdot\overline{\varphi}) dx+\int_{\Sigma}\kappa^2\mathbf{n} \cdot(\varepsilon(\rho)\mathbf{E}_{\rho}\overline{\nabla\varphi})) dS. $$ Let $B_{R}$ be a ball with radius $R>0$ containing $\Omega^{\rm cd}$, with $\partial\Omega_{R}=\partial B_{R}\cup\Sigma$. Let $\Omega_{R}$ be as above. Integrating by parts, \begin{equation}\label{eq:2.21a} \int_{\Omega_{R}}-\kappa^2\varepsilon(\rho)\mathbf{E}_{\rho} \cdot\overline{\nabla\varphi}) dx=\int_{\Omega_{R}}\kappa^2 \operatorname{div}(\varepsilon(\rho)\mathbf{E}_{\rho}) \cdot\overline{\varphi}) dx+\int_{\partial\Omega_{R}} \kappa^2\mathbf{n}\cdot(\varepsilon(\rho)\mathbf{E}_{\rho}) \overline{\varphi}) ds, \end{equation} and $$ \int_{\partial\Omega_{R}}\kappa^2\mathbf{n}\cdot(\varepsilon(\rho) \mathbf{E}_{\rho})\overline{\varphi}) ds =\int_{\Sigma}\kappa^2\mathbf{n}\cdot(\varepsilon(\rho)\mathbf{E}_{\rho}) \overline{\varphi}) ds+\int_{\partial B_{R}}\kappa^2\mathbf{n} \cdot(\varepsilon(\rho)\mathbf{E}_{\rho})\overline{\varphi}) ds. $$ As in the proof of Lemma \ref{lem:2.10}, applying the Silver-M\"{u}ller condition (see \eqref{eq:2.8}), $$ \int_{\partial B_{R}}\kappa^2\mathbf{n}\cdot(\varepsilon(\rho) \mathbf{E}_{\rho})\overline{\varphi} ds\to 0,\quad\text{as } R\to\infty, $$ Hence, by \eqref{eq:2.21a}, \begin{align*} &\int_{\Omega^{\rm is}}-\kappa^2\varepsilon(\rho)\mathbf{E}_{\rho} \cdot\overline{\nabla\varphi}) dx\\ &=\int_{\Omega^{\rm is}}\kappa^2\operatorname{div}(\varepsilon(\rho) \mathbf{E}_{\rho})\cdot\overline{\varphi}dx-\int_{\Sigma}\kappa^2\mathbf{n} \cdot(\varepsilon(\rho)\mathbf{E}_{\rho}\overline{\nabla\varphi})) ds -\int_{\Sigma}\kappa^2\mathbf{n}\cdot(\varepsilon(\rho)\mathbf{E}_{\rho}) \overline{\varphi} ds=0, \end{align*} for all $\varphi\in\textbf{D}(\Delta_{\varepsilon(\rho)}^N)$ yielding $[\mathbf{n}\cdot(\varepsilon(\rho)\mathbf{E}_{\rho})]=0$ on $\Sigma$. Now $$ \int_{\mathbb{R}^3}\mathbf{F}\cdot\overline{\nabla\varphi}dx =\int_{\Omega^{\rm cd}}\mathbf{F}\cdot\overline{\nabla\varphi}dx +\int_{\Omega^{\rm is}}\mathbf{F}\cdot\overline{\nabla\varphi}dx, $$ Green's formula in $\Omega^{\rm cd}$, yields $$ \int_{\Omega^{\rm cd}}\mathbf{F}\cdot\overline{\nabla\varphi}dx =-\int_{\Omega^{\rm cd}}\operatorname{div} \mathbf{F}\cdot \overline{\varphi}dx-\int_{\Sigma}(\mathbf{n}\cdot\mathbf{F}) \overline{\varphi}ds. $$ Again, we choose $R>0$ such that $B_{R}$ contains $\Omega^{\rm cd}$. Using again that $\Omega^{\rm is}=\bigcup_{R>0}\Omega_{R}$ and that $\partial\Omega_{R}=\partial B_{R}\cup\Sigma$. Applying the divergence theorem to $\mathbf{F}=i\kappa\operatorname{curl}\mathbf{H} -\kappa^2\varepsilon(\rho)\mathbf{E}$ in $\Omega_{R}$, and the Silver-M\"{u}ller condition, we have $$ \int_{\partial B_{R}}(\mathbf{n}\cdot\mathbf{F})\overline{\varphi}ds\to 0, \quad\text{as }R\to\infty. $$ Hence $$ \int_{\Omega^{\rm is}}\mathbf{F}\cdot\overline{\nabla\varphi}dx =-\int_{\Omega^{\rm is}}\operatorname{div} \mathbf{F} \cdot\overline{\varphi}dx+\int_{\Sigma}(\mathbf{n}\cdot\mathbf{F}) \overline{\varphi}ds. $$ Then, we have \begin{align*} \int_{\mathbb{R}^3}-\kappa^2\varepsilon(\rho)\mathbf{E}_{\rho} \cdot\overline{\nabla\varphi}) dx &=\int_{\mathbb{R}^3}\kappa^2\operatorname{div}(\varepsilon(\rho) \mathbf{E}_{\rho})\cdot\overline{\varphi}dx +\int_{\Sigma}\kappa^2\mathbf{n}\cdot[\varepsilon(\rho) \mathbf{E}_{\rho}]\overline{\varphi}ds\\ &=\int_{\mathbb{R}^3}\kappa^2\operatorname{div}(\varepsilon(\rho) \mathbf{E}_{\rho})\cdot\overline{\varphi}dx \end{align*} and $$ \int_{\mathbb{R}^3}\mathbf{F}\cdot\overline{\nabla\varphi}dx =-\int_{\mathbb{R}^3}\operatorname{div} \mathbf{F}\cdot\overline{\varphi}dx. $$ Similarly, according to \eqref{eq:2.21} there holds \begin{align*} &\int_{\mathbb{R}^3}\Big(\alpha \operatorname{div}(\varepsilon(\rho) \mathbf{E}_{\rho})\cdot\operatorname{div}(\overline{\varepsilon (\rho)\nabla\varphi})+\frac{\alpha}{\kappa^2}\operatorname{div} \mathbf{F}\cdot\operatorname{div}(\overline{\varepsilon(\rho)\nabla\varphi})\\ & -\kappa^2\varepsilon(\rho)\mathbf{E}_{\rho}\cdot\overline{\nabla\varphi} -\mathbf{F}\cdot\overline{\nabla\varphi}\Big) dx=0. \end{align*} Then \begin{align*} &\int_{\mathbb{R}^3}\Big(\alpha \operatorname{div}(\varepsilon(\rho) \mathbf{E}_{\rho})\cdot\operatorname{div}(\overline{\varepsilon (\rho)\nabla\varphi})+\frac{\alpha}{\kappa^2}\operatorname{div} \mathbf{F}\cdot\operatorname{div}(\overline{\varepsilon(\rho)\nabla\varphi})\\ &+\kappa^2\operatorname{div}(\varepsilon(\rho)\mathbf{E}_{\rho}) \cdot\overline{\varphi}+\operatorname{div} \mathbf{F}\cdot\overline{\varphi}\Big) dx=0. \end{align*} Therefore, for all $\varphi\in\textbf{D}(\Delta_{\varepsilon(\rho)}^N)$, \begin{equation}\label{eq:2.22} \int_{\mathbb{R}^3}\big( \operatorname{div}(\varepsilon(\rho)\mathbf{E}_{\rho}) +\frac{1}{\kappa^2}\operatorname{div} \mathbf{F}\big) \cdot(\alpha \operatorname{div}(\overline{\varepsilon(\rho)\nabla\varphi}) +\kappa^2\overline{\varphi})dx=0. \end{equation} The sesquilinear form associated with the operator $-\Delta_{\varepsilon(\rho)}^N$ is uniformly coercive on $\mathbb{W}^{1}_0(\mathbb{R}^3)$, because (see Giroire \cite{Giroirej}) \begin{equation}\label{eq:2.23} \operatorname{Re}\Big( \int_{\mathbb{R}^3}\varepsilon(\rho) \nabla\varphi\cdot\overline{\nabla\varphi}dx\Big) =\frac{1}{\mu}|\varphi|^2_{\mathbb{W}^{1}_0(\mathbb{R}^3)} \geq C\|\varphi\|^2_{\mathbb{W}^{1}_0(\mathbb{R}^3)}. \end{equation} Next, we follow again Peron \cite{Peron} and examine the real non-zero eigenvalues $\lambda$ of $-\Delta_{\varepsilon(\rho)}^N$; i.e, \begin{equation}\label{eq:2.24} -\Delta_{\varepsilon(\rho)}^N\varphi=\lambda\varphi\quad\text{in }\mathbb{R}^3, \end{equation} which, after integration by parts, gives $$ \int_{\mathbb{R}^3}\varepsilon(\rho)\nabla\varphi\cdot \overline{\nabla\varphi}dx=\lambda\int_{\mathbb{R}^3} \varphi\cdot\overline{\varphi}dx. $$ Now \eqref{eq:2.23} gives $\lambda\geq C$ and we take $\alpha>0$ large enough such that $\frac{\kappa^2}{\alpha}0$, independent of $\rho$, such that if $\mathbf{E}_{\rho}\in\mathbb{X}_N(\mathbb{R}^3,\rho)$ is a solution to \begin{equation}\label{eq:2.25} \int_{\mathbb{R}^3}\Big( \frac{1}{\mu}\operatorname{curl} \mathbf{E}_{\rho}\cdot\operatorname{curl} \overline{\mathbf{E}'_{\rho}} +\beta \operatorname{div}(\varepsilon(\rho)\mathbf{E}_{\rho}) \cdot\operatorname{div}(\overline{\varepsilon(\rho)\mathbf{E}'_{\rho}}) -\kappa^2\varepsilon(\rho)\mathbf{E}_{\rho}\cdot\overline{\mathbf{E}'_{\rho}} \Big) dx=\langle f,\mathbf{E}_{\rho}'\rangle, \end{equation} and \eqref{eq:2.19} for some $\mathbf{F}\in\mathbf{W}(\operatorname{div}, \mathbb{R}^3)$, then \begin{equation}\label{eq:2.26} \operatorname{div}(\varepsilon(\rho)\mathbf{E}_{\rho}) +\frac{1}{\kappa^2}\operatorname{div} \mathbf{F}=0,\quad\text{in }\mathbb{R}^3. \end{equation} Furthermore, $\mathbf{E}_{\rho}$ and $\mathbf{H}_{\rho}=\frac{1}{i\omega\varepsilon_0}\operatorname{curl} \mathbf{E}_{\rho}$ solve \eqref{eq:2.4}. This results corresponds directly to \cite[Theorem 2.22]{Peron}. \end{remark} In this part, we give a variational formulation for the term $\varphi_{\rho}\in\mathcal{V}$, with $\mathcal{V}=H^{1}_0(\Omega_{-})\cup\mathbb{W}^{1}_0(\Omega_{+})$, (see \cite[Chapter 2]{Ospino} and \cite{Ospino1}), which appears in the decomposition of the electrical field, to see Theorem \ref{th:2.3.4.1}. Again, we extend the ideas of Peron \cite{Peron} to prove Lemmas \ref{lem:2.34} and \ref{lem:2.35} for the unbounded exterior domain. Our Lemma \ref{lem:2.34} corresponds to \cite[Lemma 2.33]{Peron} and gives the appropriate setting for an unbounded exterior domain. \begin{lemma}\label{lem:2.34} Let $\mathbf{E}_{\rho}\in\mathbb{X}_T(\mathbb{R}^3,\rho)$ satisfy \eqref{eq:2.18}-\eqref{eq:2.19} for $\mathbf{F}\in\mathbf{W}_0(\operatorname{div},\mathbb{R}^3)$, and let $(\mathbf{w}_{\rho},\varphi_{\rho})\in \mathcal{\mathbf{W}}^{1}_0(\mathbb{R}^3)\times\mathcal{V}$ with $\operatorname{div}\mathbf{w}_{\rho}=0$ given by Theorem \ref{th:2.3.4.1}. Then, $\varphi_{\rho}$ solves the variational problem: Find $\varphi_{\rho}\in\mathcal{V}$, such that for all $\psi\in\mathcal{V}$, \begin{equation}\label{eq:2.47} \int_{\mathbb{R}^3}\varepsilon(\rho)\nabla\varphi_{\rho}\cdot \overline{\nabla\psi}dx=\frac{1}{\kappa^2}\int_{\mathbb{R}^3} \operatorname{div} \mathbf{F}\cdot\overline{\psi}dx+\frac{1}{\mu} i\rho^2\int_{\Sigma}\mathbf{w}_{\rho}\cdot\mathbf{n}|_{\Sigma} \overline{\psi}ds. \end{equation} \end{lemma} \begin{proof} Due to Theorem \ref{th:2.3.4.1} there exists an unique couple $(\mathbf{w}_{\rho},\varphi_{\rho})\in\mathbb{W}_0^{1}(\mathbb{R}^3) \times\mathcal{V}$ such that $\mathbf{E}_{\rho}=\mathbf{w}_{\rho}+\nabla\varphi_{\rho}$. Thus we have \begin{equation*} \int_{\mathbb{R}^3}\varepsilon(\rho)\nabla\varphi_{\rho}\cdot \overline{\nabla\psi}dx=\int_{\mathbb{R}^3}\varepsilon(\rho) \mathbf{E}_{\rho}\cdot\overline{\nabla\psi}dx-\int_{\mathbb{R}^3} \varepsilon(\rho)\mathbf{w}_{\rho}\cdot\overline{\nabla\psi}dx, \quad \forall\psi\in\mathcal{V}. \end{equation*} Then, since $\varepsilon(\rho)\mathbf{E}_{\rho}\in\mathbf{W}_0(\operatorname{div}, \mathbb{R}^3)$, there holds \begin{equation*} \int_{\mathbb{R}^3}\varepsilon(\rho)\mathbf{E}_{\rho}\cdot \overline{\nabla\psi}dx=-\int_{\mathbb{R}^3}\operatorname{div} (\varepsilon(\rho)\mathbf{E}_{\rho})\cdot\overline{\psi}dx, \end{equation*} so, due to Theorem \ref{th:2.23}, \begin{equation*} \int_{\mathbb{R}^3}\varepsilon(\rho)\mathbf{E}_{\rho} \cdot\overline{\nabla\psi}dx=\frac{1}{\kappa^2} \int_{\mathbb{R}^3}\operatorname{div} \mathbf{F}\cdot\overline{\psi}dx. \end{equation*} Next, we have $$ \int_{\mathbb{R}^3}\varepsilon(\rho)\mathbf{w}_{\rho}\cdot\overline{\nabla\psi} dx =\int_{\Omega^{\rm is}}\varepsilon(\rho)^{\rm is}\mathbf{w}_{\rho}\cdot \overline{\nabla\psi} dx+\int_{\Omega^{\rm cd}}\varepsilon(\rho)^{\rm cd} \mathbf{w}_{\rho}\cdot\overline{\nabla\psi} dx, $$ and, by integration by parts, $$ \int_{\Omega^{\rm cd}}\varepsilon(\rho)^{\rm cd}\mathbf{w}_{\rho} \cdot\overline{\nabla\psi} dx=\int_{\Omega^{\rm cd}}\operatorname{div} (\varepsilon(\rho)^{\rm cd}\mathbf{w}_{\rho})\overline{\psi} dx -\int_{\Sigma}(\varepsilon(\rho)^{\rm cd}\mathbf{w}_{\rho}\cdot\mathbf{n}) \overline{\psi} ds. $$ Let $B_{R}$ be a ball with radius $R>0$ containing $\Omega^{\rm cd}$. We have \begin{align*} \int_{\Omega_{R}}\varepsilon(\rho)^{\rm is}\mathbf{w}_{\rho} \cdot\overline{\nabla\psi} dx &=\int_{\Omega_{R}}\operatorname{div} (\varepsilon(\rho)^{\rm is}\mathbf{w}_{\rho})\overline{\psi} dx +\int_{\Sigma}(\varepsilon(\rho)^{\rm is}\mathbf{w}_{\rho}\cdot\mathbf{n}) \overline{\psi} ds\\ &\quad +\int_{\partial B_{R}}(\varepsilon(\rho)^{\rm is} \mathbf{w}_{\rho}\cdot\mathbf{n})\overline{\psi} ds. \end{align*} Applying the Silver-M\"{u}ller condition, $$ \int_{\partial B_{R}}(\varepsilon(\rho)^{\rm is} \mathbf{w}_{\rho}\cdot\mathbf{n})\overline{\psi} ds =\int_{\partial B_{R}}(\varepsilon(\rho)^{\rm is}[\mathbf{w}_{\rho} -\mathbf{w}_{\rho}\times\mathbf{n}]\cdot\mathbf{n})\overline{\psi} ds\to 0 \quad\text{as } R\to\infty, $$ Hence $$ \int_{\Omega^{\rm is}}\varepsilon(\rho)^{\rm is}\mathbf{w}_{\rho}\cdot \overline{\nabla\psi} dx=\int_{\Omega^{\rm is}}\operatorname{div} (\varepsilon(\rho)^{\rm is}\mathbf{w}_{\rho})\overline{\psi} dx +\int_{\Sigma}(\varepsilon(\rho)^{\rm is}\mathbf{w}_{\rho}\cdot\mathbf{n}) \overline{\psi} ds. $$ Thus $$ \int_{\mathbb{R}^3}\varepsilon(\rho)\mathbf{w}_{\rho}\cdot\overline{\nabla\psi} dx =\int_{\mathbb{R}^3}\operatorname{div}(\varepsilon(\rho)\mathbf{w}_{\rho}) \overline{\psi} dx+\int_{\Sigma}(\varepsilon(\rho)^{\rm is} -\varepsilon(\rho)^{\rm cd})\mathbf{w}_{\rho}\cdot\mathbf{n}|_{\Sigma} \overline{\psi} ds. $$ Since $\operatorname{div} \mathbf{w}_{\rho}=0$ in $\mathbb{R}^3$, we obtain \eqref{eq:2.47} because (see \eqref{eq:2.4}) $$\varepsilon(\rho)^{\rm is}-\varepsilon(\rho)^{\rm cd} =-\frac{1}{\mu}i\rho^2. $$ \end{proof} Analogously we obtain the following counterpart of \cite[Lemma 2.34]{Peron}. \begin{lemma}\label{lem:2.35} Let $\mathbf{E}_{\rho}\in\mathbb{X}_N(\mathbb{R}^3,\rho)$ solution of \eqref{eq:2.25}-\eqref{eq:2.19} associated with $\mathbf{F}\in\mathbf{W}(\operatorname{div},\mathbb{R}^3)$, and let $(\mathbf{w}_{\rho},\varphi_{\rho})\in\mathbb{X}_N(\mathbb{R}^3) \times\mathcal{V}$ given by Theorem \ref{th:2.3.4.1}. Then, $\varphi_{\rho}$ is solution of following variational problem: Find $\varphi\in\mathcal{V}$, such that for all $\psi\in\mathcal{V}$, \begin{equation}\label{eq:2.48} \int_{\mathbb{R}^3}\varepsilon(\rho)\nabla\varphi\cdot \overline{\nabla\psi}dx=\frac{1}{\kappa^2} \int_{\mathbb{R}^3}\operatorname{div} \mathbf{F} \cdot\overline{\psi}dx+\frac{1}{\mu}i\rho^2\int_{\Sigma} \mathbf{w}_{\rho}\cdot\mathbf{n}|_{\Sigma}\overline{\psi}ds. \end{equation} \end{lemma} \section{Decomposition of vector fields and compact embedding in weighted spaces} \label{sec:el3} In this section we collect the tools needed in the proof of our a priori estimate (Theorem \ref{th:2.26}), namely a vector Helmholtz decomposition in $\mathbb{R}^3$ and a compactness results (Lemma \ref{lemnew}) for the embedding in weighted spaces. First we consider the vector potential of divergence-free vector fields and present results for a Helmholtz decomposition by Girault \cite{Girault}. The weighted Sobolev spaces used here were introduced and studied by Hanouzet in \cite{Hanouzet}. For any multi-index $\alpha$ in $\mathbb{N}^3$, we denote by $\partial^{\alpha}$ the differential operator of order $\alpha$: $$ \partial^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2}\partial x_3^{\alpha_3}},\quad \text{with } |\alpha|=\alpha_1+\alpha_2+\alpha_3. $$ Then, for all $m$ in $\mathbb{N}$ and all $k$ in $\mathbb{Z}$, we define the weighted Sobolev space \begin{equation}\label{eq:2.3.2.0} \mathbb{W}_{k}^{m}(\Omega^{\rm is}) :=\big\{v\in\mathfrak{D}'(\Omega^{\rm is}): \forall\alpha\in\mathbb{N}^3,\; 0\leq|\alpha|\leq m,\; \ell(r)^{|\alpha|-m+k}\partial^{\alpha}v\in L^2(\Omega^{\rm is})\big\}, \end{equation} which is a Hilbert space with the norm: $$ \|v\|_{\mathbb{W}_{k}^{m}(\Omega^{\rm is})} =\Big\{\sum_{|\alpha|=0}^{m}\|\ell(r)^{|\alpha|-m+k}\partial^{\alpha}v\|_{L^2 (\Omega^{\rm is})}^2\Big\}^{1/2}. $$ Hence $$ \mathbb{W}_0^{0}(\Omega^{\rm is})=L^2(\Omega^{\rm is}),\quad\ \mathbb{W}_{-1}^{0}(\mathbb{R}^3)=L^2_{0,-1}(\mathbb{R}^3). $$ For all $n\in\mathbb{Z}$, $\mathbf{P}_{n}$ denotes the space of all polynomials (in three variables) of degree at most $n$, with the convention that the space is reduced to zero when $n$ is negative. We denote by $\mathcal{P}_{n}$ is the subspace of all harmonic polynomials of $\mathbf{P}_{n}$, again with the convention that the space is reduced to zero when $n$ is negative. For all integers $k\geq 0$, we define the following subspace of $(\mathcal{P}_{k})^3$, $$ \mathcal{G}_{k}:=\{\nabla q:q\in\mathcal{P}_{k+1}\}. $$ Note that $\mathcal{G}_0=\mathbb{R}^3$. The following result is based on the paper by Girault \cite{Girault}. In the case of a bounded domain, there are two classical orthogonal decompositions of vector fields: a decomposition in $\mathbf{L}^2$ and a decomposition in $H_0^{1}$ (cf. for example \cite{GiraultR}). The following theorem establishes the analogue of the decomposition in $\mathbf{L}^2$ for vector fields in $\mathbb{R}^3$. Let \begin{gather*} \mathbf{V}_{k}^{m}(\mathbb{R}^3):=\{ \mathbf{v}\in\mathbb{W}_{k}^{m} (\mathbb{R}^3)^3 :\operatorname{div} \mathbf{v}=0\} , \\ \mathcal{C}_{k}:=\{\operatorname{curl} \mathbf{q}:\mathbf{q} \in(\mathcal{P}_{k+1})^3\}, \end{gather*} with the usual convention that $\mathcal{C}_{k}=\{0\}$, when $k<0$, observe that $\mathcal{C}_0=\mathbb{R}^3=\mathcal{G}_0$. In addition, for all $k\geq 1$, $\mathcal{G}_{k}\subset\mathcal{C}_{k}$, but the inverse inclusion is false. \begin{theorem}[{Girault \cite[Theorem 5.1]{Girault}}] \label{th:2.3.4.1} Let the integers $m$ and $k$ belong to $\mathbb{Z}$ and let $\mathbf{u}$ be a vector field in $\mathbb{W}_{m+k}^{m}(\mathbb{R}^3)^3$. (1) If $k\leq 1$, $\mathbf{u}$ may be decomposed as \begin{equation}\label{eq:2.3.4.1} \mathbf{u}=\nabla p+\operatorname{curl} \Phi, \end{equation} where $\Phi$ is unique in $\mathbf{V}_{m+k}^{m+1}(\mathbb{R}^3)/\mathcal{C}_{-k-1}$ and $p$ is uniquely determined by $\mathbf{u}$ and $\Phi$ in $\mathbb{W}_{m+k}^{m+1}(\mathbb{R}^3)/\mathbb{R}$, or $\mathbb{W}_{m+k}^{m+1}(\mathbb{R}^3)$ if $k=0$ or $1$. They satisfy the bounds: \begin{equation}\label{eq:2.3.4.2} \|\Phi\|_{\mathbb{W}_{m+k}^{m+1}(\mathbb{R}^3)^3/\mathcal{C}_{-k-1}} +\|p\|_{\mathbb{W}_{m+k}^{m+1}(\mathbb{R}^3)/\mathbb{R}}\leq C\|\mathbf{u}\|_{\mathbb{W}_{m+k}^{m}(\mathbb{R}^3)^3}, \end{equation} with the convention that the quotient norm of $p$ is replaced by $\|p\|_{\mathbb{W}_{m+k}^{m+1}(\mathbb{R}^3)}$ when $k=0$ or $1$. (2) If $k\geq 2$ has the decomposition \eqref{eq:2.3.4.1} with a unique $p$ in $\mathbb{W}_{m+k}^{m+1}(\mathbb{R}^3)$ and a unique $\Phi$ in $\mathbf{V}_{m+k}^{m+1}(\mathbb{R}^3)$ if and only if $\mathbf{u}$ is orthogonal to $\mathcal{C}_{k-2}$ (for the duality paring). The analogue of \eqref{eq:2.3.4.2} holds: \begin{equation}\label{eq:2.3.4.3} \|\Phi\|_{\mathbb{W}_{m+k}^{m+1}(\mathbb{R}^3)^3}+\|p\|_{\mathbb{W}_{m+k}^{m+1}(\mathbb{R}^3)}\leq C\|\mathbf{u}\|_{\mathbb{W}_{m+k}^{m}(\mathbb{R}^3)^3}, \end{equation} (3) When both $m$ and $k$ belong to $\mathbb{N}$, the decomposition is orthogonal for the scalar product of $\mathbf{L}^2(\mathbb{R}^3)$. \end{theorem} Now, this part is concerned with compact embedding in weighted Sobolev spaces for unbounded domains, and is based on Avantaggiati and Troisi \cite{Avantaggiati}. Let $\Omega$ be an unbounded domain of $\mathbb{R}^{n}$, satisfying the cone property, and $\delta\in C^{0}(\overline{\Omega})$, a positive continuous function divergent for $|\mathbf{x}|\to\infty$, satisfying also: \begin{enumerate} \item There exist two open and separated subsets $\Omega_1$ and $\Omega_2$ of $\mathbb{R}^{n}$, such that\\ $\overline{\Omega}=\overline{\Omega_1}\cup\overline{\Omega_2}$ and $$ \delta(\mathbf{x})\leq 1, \quad \forall\mathbf{x}\in\Omega_1, \; \delta(\mathbf{x})\geq 1,\; \forall\mathbf{x}\in\Omega_2. $$ We will put also, $\Omega_0=\Omega$. \item For each $\mathbf{x}_0\in\Omega_{i}$, $i=0,1,2$, let $$ A_{i}(\mathbf{x}_0)=\Omega_{i}\cap\{ \mathbf{x}:|\mathbf{x} -\mathbf{x}_0|<\delta(\mathbf{x}_0)\}. $$ We assume that there $c_1$ and $c_2$ are two positive constants independent of $\mathbf{x}_0$ and $\mathbf{x}$, and $$ c_1\delta(\mathbf{x}_0)\leq\delta(\mathbf{x}) \leq c_2\delta(\mathbf{x}_0),\quad \forall\mathbf{x}\in A_{i}(\mathbf{x}_0), $$ \item If $\varphi_{i}(\mathbf{x},\mathbf{x}_0)$ is the characteristic function of the set $A_{i}(\mathbf{x}_0)$, then the inequalities $$ c_3\delta^{n}(\mathbf{x})\leq\int_{\Omega_{i}}\varphi_{i}(\mathbf{x}, \mathbf{x}_0)d\mathbf{x}_0\leq c_{4}\delta^{n}(\mathbf{x}), \quad \forall\mathbf{x}\in A_{i}(\mathbf{x}_0), $$ hold, where $c_3$ and $c_{4}$ are two positive constants independent of $\mathbf{x}$. \end{enumerate} If $s,\lambda\in\mathbb{R}$ and $01$, such that for each non-negative integer $k0$, and for each $t\in(-\tau,\tau)$, the injection \begin{equation}\label{eq:2.5.1.2} W^{r,p}_{s,\lambda}(\Omega)\hookrightarrow W^{k,p}_{s+k-r+t,\lambda+\tau}(\Omega) \end{equation} is compact. \end{theorem} As a consequence of the above results, we have the following Lemma. \begin{lemma}\label{lemnew} The emmbeding of $\mathbf{PH}^{1}(\mathbb{R}^3)$ into $\mathbf{L}^2_{0,-1}(\mathbb{R}^3)$ is compact. \end{lemma} \begin{proof} First, we observe that by definition $\widetilde{L}^2_{-1,1}(\Omega)=L^2_{0,-1}(\Omega)=W^{0,2}_{-1,1}(\Omega)$. On the other hand choosing $t=s=\lambda=k=0$, $\tau=r=1$, $p=2$ in \eqref{eq:2.5.1.2} gives the compact embedding $W^{1,2}_{0,0}(\Omega)\subset\subset W^{0,2}_{-1,1}(\Omega)$. Hence $W^{1,2}_{0,0}(\Omega)\subset\subset L^2_{0,-1}(\Omega)$ where we can set $\Omega=\mathbb{R}^3$. Furthermore $\varphi\in PH^{1}(\mathbb{R}^3):=\{ \varphi=(\varphi^{\rm is},\varphi^{\rm cd}): \varphi^{\rm is}\in\mathbb{W}^{1}_0(\Omega^{\rm is}), \varphi^{\rm cd}\in H^{1}(\Omega^{\rm cd}) \}$, due to the definition of $\mathbb{W}^{1}_0$, gives that $\nabla\varphi\in L^2$ and hence $\nabla\varphi\in\widetilde{L}^2_{0,0}$ with $s=\lambda=0$ in \eqref{n1}. Therefore, $\varphi\in W^{1,2}_{0,0}(\Omega)$ with $r=1$, $p=2$, $s=\lambda=0$ in \eqref{n2} because with $s=\lambda=0=\lvert\alpha\rvert$, $r=1$ there holds $$ \lVert\varphi\rVert_{\widetilde{L}^2_{-1,0}}(\Omega) =\lVert\delta^{-1}\varphi\rVert_{L^2(\Omega)} \leq c\lVert\frac{\varphi}{\sqrt{1+x^2}}\rVert_{L^2(\Omega)}<\infty $$ by taking $\delta$ proportional to $\sqrt{1+x^2}$. \end{proof} \section{A priori estimate for the electrical field} \label{sec:el2} Next we give an existence and uniqueness result for the solution of \eqref{eq:2.18}-\eqref{eq:2.19}. The proof uses an a priori estimate. The ideas of this section are based on those of Peron \cite{Caloz,Peron}, but using compactness results for the embedding of weighted spaces with unbounded domains. This is a crucial difference of our proof compared to Peron's proof. An alternative proof may be obtained using \cite[Theorem 2.1]{Hiptmair}. For the rest of this article we assume the following condition. \noindent\textbf{Spectral hypothesis}: We assume $\kappa^2$ is not an eigenvalue of the limit problem. That is, we assume that if $\mathbf{E}_0\in\mathbf{W}(\operatorname{curl}, \Omega^{\rm is})$ is such that for all $\mathbf{E}'\in\mathbf{W}(\operatorname{curl},\Omega^{\rm is})$, \begin{equation}\label{eq:2.30} \int_{\Omega^{\rm is}}(\operatorname{curl} \mathbf{E}_0\cdot\operatorname{curl} \overline{\mathbf{E}'}-\kappa^2\mathbf{E}_0\cdot\overline{\mathbf{E}'})dx=0, \quad \mathbf{n}\times\mathbf{E}=0 \quad\text{on } \Sigma, \end{equation} then $\mathbf{E}_0=0$. Now, we can formulate our main theorem of this section. \begin{theorem}\label{th:2.26} Under the spectral hypothesis \eqref{eq:2.30}, there exists a constant $\rho_0>0$, such that for all $\rho>\rho_0$, problem \eqref{eq:2.18}-\eqref{eq:2.19} admits an unique solution $\mathbf{E}_{\rho}\in\mathbb{X}_{TN}(\mathbb{R}^3,\rho)$ for $\mathbf{F}\in\mathbf{W}_0(\operatorname{div},\mathbb{R}^3)$, satisfying \begin{equation}\label{eq:2.31} \begin{aligned} &\|\operatorname{curl} \mathbf{E}_{\rho}\|_{\mathbf{L}^2_{0,-1} (\mathbb{R}^3)}+\|\operatorname{div}(\varepsilon(\rho) \mathbf{E}_{\rho})\|_{\mathbf{L}^2_{0,-1}(\mathbb{R}^3)} +\|\mathbf{E}_{\rho}\|_{\mathbf{L}^2_{0,-1}(\mathbb{R}^3)} +\rho\|\mathbf{E}_{\rho}\|_{\mathbf{L}^2(\Omega^{\rm cd})}\\ &\leq C\|\mathbf{F}\|_{\mathbf{W}(\operatorname{div},\mathbb{R}^3)}, \end{aligned} \end{equation} with a constant $C>0$, independent of $\rho$. \end{theorem} The proof of the above theorem is given in various steps, below. The estimate \eqref{eq:2.31} is based on the a priori estimate \eqref{eq:2.49}. \begin{theorem}\label{th:2.36} If \eqref{eq:2.30} holds, then there exists a constant $\rho_0>0$, such that, for all $\rho>\rho_0$, if $\mathbf{E}_{\rho}\in\mathbb{X}_{TN}(\mathbb{R}^3,\rho)$ satisfies \eqref{eq:2.18}-\eqref{eq:2.19} for $\mathbf{F}\in\mathbf{W}_0(\operatorname{div},\mathbb{R}^3)$, then \begin{equation}\label{eq:2.49} \|\mathbf{E}_{\rho}\|_{\mathbf{L}^2_{0,-1} (\mathbb{R}^3)}\leq C\|\mathbf{F}\|_{\mathbf{W} (\operatorname{div},\mathbb{R}^3)}, \end{equation} where $C>0$ is a constant independent of $\rho$. \end{theorem} \begin{proof} The proof is similar to the one given by Peron \cite[Theorem 2.35]{Peron}. Here we use a compact embedding of $\mathbf{PH}^{1}(\mathbb{R}^3)$ into $\mathbf{L}^2_{0,-1}(\mathbb{R}^3)$ where $$ \mathbf{PH}^{1}(\mathbb{R}^3)=\{\varphi : \varphi^{\rm is} \in(\mathbb{W}^{1}_0(\Omega^{\rm is}))^3, \; \varphi^{\rm cd}\in (H^{1}(\Omega^{\rm cd}))^3\}. $$ Let $\mathbf{E}_{\rho}\in\mathbb{X}_{TN}(\mathbb{R}^3,\rho)$, be a solution of \eqref{eq:2.18}-\eqref{eq:2.19}. For $\Phi\in\mathbb{X}_{TN}(\mathbb{R}^3,\rho)$, \begin{equation}\label{eq:2.51} \begin{aligned} &\int_{\mathbb{R}^3}\Big( \frac{1}{\mu}\operatorname{curl} \mathbf{E}_{\rho}\cdot\operatorname{curl} \overline{\Phi} +\alpha \operatorname{div}(\varepsilon(\rho)\mathbf{E}_{\rho}) \cdot\operatorname{div}(\overline{\varepsilon(\rho)\Phi}) -\frac{\kappa^2}{\mu}\mathbf{E}_{\rho}\overline{\Phi}\Big) dx\\ &-\frac{1}{\mu}i\rho^2\int_{\Omega^{\rm cd}}\mathbf{E}_{\rho} \overline{\Phi}dx\\ &=\int_{\mathbb{R}^3}\Big( \mathbf{F}\cdot\overline{\Phi} -\frac{\alpha}{\kappa^2}\operatorname{div} \mathbf{F}\cdot\operatorname{div}(\overline{\varepsilon(\rho)\Phi})\Big) dx. \end{aligned} \end{equation} By Theorem \ref{th:2.23} there holds $$ \operatorname{div}(\varepsilon(\rho)\mathbf{E}_{\rho}) +\frac{1}{\kappa^2}\operatorname{div} \mathbf{F}=0,\quad\text{in }\mathbb{R}^3. $$ For $\Phi\in\mathbb{X}_{TN}(\mathbb{R}^3,\rho)$, \begin{equation}\label{eq:2.52} \int_{\mathbb{R}^3}(\operatorname{curl} \mathbf{E}_{\rho}\cdot\operatorname{curl} \overline{\Phi}-\kappa^2\mathbf{E}_{\rho}\overline{\Phi})dx -i\rho^2\int_{\Omega^{\rm cd}}\mathbf{E}_{\rho}\overline{\Phi}dx =\mu\int_{\mathbb{R}^3}\mathbf{F}\cdot\overline{\Phi}dx, \end{equation} for all $\Phi\in\mathbb{X}_{TN}(\mathbb{R}^3,\rho)$. Just as in Peron \cite{Peron} we prove the theorem by contradiction argument, but we crucially apply a compactness result for the embedding in weighted Sobolev spaces by Avantaggiati and Troisi \cite{Avantaggiati}. Since Peron \cite{Peron} considers only bounded domains, he can, in contrary, apply standard embedding arguments (Rellich's theorem). Suppose that exists a sequence $\{\mathbf{F}_{\rho_{n}}\}_{n\geq 1}$ in $\mathbf{W}(\operatorname{div},\mathbb{R}^3)$ with $\rho_{n}\to\infty$, $\|\mathbf{F}_{\rho_{n}}\|_{\mathbf{W}(\operatorname{div},\mathbb{R}^3)}=1$, $\mathbf{F}_{\rho_{n}}\cdot\mathbf{n}=0$ in $\Sigma$, and such that for the corresponding solutions $\mathbf{E}_{\rho_{n}}\in\mathbb{X}_{TN}(\mathbb{R}^3, \rho_{n})$ satisfy $$ \lim_{n\to\infty}\|\mathbf{E}_{\rho_{n}}\|_{\mathbb{X}_{TN} (\mathbb{R}^3,\rho_{n})}=\infty. $$ Letting $\widetilde{\mathbf{E}}_{\rho_{n}} =(\|\mathbf{E}_{\rho_{n}}\|_{\mathbf{W}(\operatorname{div},\mathbb{R}^3)})^{-1} \mathbf{E}_{\rho_{n}}$ we have \begin{equation}\label{eq:2.53} \|\widetilde{\mathbf{E}}_{\rho_{n}}\|_{\mathbf{W}(\operatorname{div}, \mathbb{R}^3)}=1,\quad \lim_{n\to\infty}\|\widetilde{\mathbf{F}}_{\rho_{n}}\|_{\mathbf{W} (\operatorname{div},\mathbb{R}^3)}=0. \end{equation} With $\Phi=\widetilde{\mathbf{E}}_{\rho_{n}}$, equality \eqref{eq:2.52} becomes \begin{equation}\label{eq:2.54} \|\operatorname{curl} \widetilde{\mathbf{E}}_{\rho_{n}}\|^2_{\mathbf{L}^2 (\mathbb{R}^3)}-\kappa^2\|\widetilde{\mathbf{E}}_{\rho_{n}} \|^2_{\mathbf{L}^2_{0,-1}(\mathbb{R}^3)}-i\rho^2_{n} \|\widetilde{\mathbf{E}}_{\rho_{n}}\|^2_{\mathbf{L}^2(\Omega^{\rm cd})} =\mu(\widetilde{\mathbf{F}}_{\rho_{n}},\widetilde{\mathbf{E}}_{\rho_{n}} )_{\mathbf{L}^2_{0,-1}(\mathbb{R}^3)}. \end{equation} Taking imaginary parts we have \begin{equation}\label{eq:2.55} \rho^2_{n}\|\widetilde{\mathbf{E}}_{\rho_{n}}\|^2_{\mathbf{L}^2(\Omega^{\rm cd})} =-\mu\operatorname{Im}(\widetilde{\mathbf{F}}_{\rho_{n}}, \widetilde{\mathbf{E}}_{\rho_{n}})_{\mathbf{L}^2_{0,-1}(\mathbb{R}^3)}. \end{equation} By the Cauchy-Schwartz inequality we obtain, $$ |\operatorname{Im}(\widetilde{\mathbf{F}}_{\rho_{n}}, \widetilde{\mathbf{E}}_{\rho_{n}})_{\mathbf{L}^2_{0,-1} (\mathbb{R}^3)}|\leq\|\widetilde{\mathbf{F}}_{\rho_{n}}\|_{\mathbf{W} (\operatorname{div},\mathbb{R}^3)}\|\widetilde{\mathbf{E}}_{\rho_{n}} \|_{\mathbf{W}(\operatorname{div},\mathbb{R}^3)}. $$ Hence \eqref{eq:2.53} yields \begin{equation}\label{eq:2.56} \lim_{n\to\infty}\|\widetilde{\mathbf{E}}_{\rho_{n}}\|_{\mathbf{L}^2 (\Omega^{\rm cd})}=0. \end{equation} Also, taking real parts in \eqref{eq:2.54}, \begin{equation}\label{eq:2.57} \|\operatorname{curl} \widetilde{\mathbf{E}}_{\rho_{n}} \|^2_{\mathbf{L}^2(\mathbb{R}^3)}-\kappa^2\|\widetilde{\mathbf{E}}_{\rho_{n}} \|^2_{\mathbf{L}^2_{0,-1}(\mathbb{R}^3)} =\mu\operatorname{Re}(\widetilde{\mathbf{F}}_{\rho_{n}}, \widetilde{\mathbf{E}}_{\rho_{n}})_{\mathbf{L}^2_{0,-1}(\mathbb{R}^3)}. \end{equation} Hence due to Cauchy-Schwartz inequality and \eqref{eq:2.53}, there are constants $C_1$ and $C_2$ independent of $n$, such that \begin{equation}\label{eq:2.58} \|\operatorname{curl} \widetilde{\mathbf{E}}_{\rho_{n}}\|^2_{\mathbf{L}^2 (\mathbb{R}^3)}\leq C_1+C_2\|\widetilde{\mathbf{F}}_{\rho_{n}} \|_{\mathbf{L}^2_{0,-1}(\mathbb{R}^3)}. \end{equation} Therefore, $\{\operatorname{curl} \widetilde{\mathbf{E}}_{\rho_{n}}\}_{n\geq 1}$ is bounded in $\mathbf{L}^2_{0,-1}(\mathbb{R}^3)$. Let $(\mathbf{w}_{\rho_{n}},\varphi_{\rho_{n}})\in\mathbb{W}_0^{1} (\mathbb{R}^3)\times\mathcal{V}$, (for definition of $\mathcal{V}$ see \cite[Chapter 2]{Ospino} and \cite{Ospino1}), be given by Girault \cite[Theorems 3.2 and 5.1]{Girault}, such that $$ \widetilde{\mathbf{E}}_{\rho_{n}}=\widetilde{\mathbf{w}}_{\rho_{n}} +\nabla\widetilde{\varphi}_{\rho_{n}},\quad \operatorname{div} \widetilde{\mathbf{w}}_{\rho_{n}}=0,\quad\text{in } \mathbb{R}^3, $$ and \begin{equation}\label{eq:2.59} \|\widetilde{\mathbf{w}}_{\rho_{n}}\|_{\mathbb{W}^{1}_0(\mathbb{R}^3)} \leq C\|\operatorname{curl} \widetilde{\mathbf{E}}_{\rho_{n}}\|_{\mathbf{L}^2 (\mathbb{R}^3)}, \end{equation} where $C>0$ is a constant independent of $n$. Therefore, $\{\widetilde{\mathbf{w}}_{\rho_{n}}\}_{n\in\mathbb{N}}$ is bounded in $\mathbb{W}_0^{1}(\mathbb{R}^3)$. According to Lemma \ref{lem:2.34} and \eqref{eq:2.20}, $\widetilde{\varphi}_{\rho_{n}}$ satisfies \begin{equation}\label{eq:2.60} \int_{\mathbb{R}^3}\varepsilon(\rho)\nabla\widetilde{\varphi}_{\rho_{n}} \cdot\overline{\nabla\psi}dx=\frac{1}{\kappa^2}\int_{\mathbb{R}^3} \operatorname{div} \widetilde{\mathbf{F}}_{\rho_{n}} \cdot\overline{\psi}dx+\frac{1}{\mu}i\rho^2 \int_{\Sigma}\widetilde{\mathbf{w}}_{\rho_{n}} \cdot\mathbf{n}|_{\Sigma}\overline{\psi}ds. \end{equation} for all $\psi\in\mathcal{V}$. Let $\rho_0>0$ and the constant $C_{\rho_0}>0$ be given by \cite[Theorem 3]{Ospino} and \cite[Teorema 1]{Ospino1}. We set $\delta_{n}=1+i\rho^2_{n}$. Then there exists $n_0\in\mathbb{N}$, such that for all $n\geq n_0$ we have $|\delta_{n}|\geq\rho_0$. Note that $\operatorname{div} \widetilde{\mathbf{F}}_{\rho_{n}}$ and $\widetilde{\mathbf{w}}_{\rho_{n}}\cdot\mathbf{n}$ verify the hypotheses of \cite[Theorem 3]{Ospino} and \cite[Teorema 1]{Ospino1}. Also, problem \eqref{eq:2.60} is coercive on $\mathcal{V}$. Hence the solution of \eqref{eq:2.60} belongs to $PH^2(\mathbb{R}^3)$ and there holds \begin{equation*} \Arrowvert\widetilde{\varphi}^{\rm cd}_{\rho_{n}} \Arrowvert_{H^2(\Omega^{\rm cd})} +\Arrowvert\widetilde{\varphi}^{\rm is}_{\rho_{n}} \Arrowvert_{\mathbb{W}^2_1(\Omega^{\rm is})} \leq C_{\delta_0}\Big(\|\operatorname{div} \widetilde{\mathbf{F}}_{\rho_{n}} \|_{\mathbf{L}^2_{0,-1}(\mathbb{R}^3)}+\|\widetilde{\mathbf{w}}_{\rho_{n}} \cdot\mathbf{n}\|_{H^{1/2}(\Sigma)} \Big). \end{equation*} for any $n\geq n_0$. Thus $\{\nabla\widetilde{\varphi}_{\rho_{n}}\}_{n\geq 1}$ is bounded in $\mathbf{PH}^{1}(\mathbb{R}^3)$, and $\{\widetilde{\mathbf{E}}_{\rho_{n}}\}_{n\geq 1}$ is bounded in $\mathbf{H}^{1}(\Omega^{\rm cd})\cup\left( \mathbb{W}^{1}_0(\Omega^{\rm is}) \right) ^3$. According to Lemma \ref{lemnew}, the embedding of $\mathbf{PH}^{1}(\mathbb{R}^3)$ in $\mathbf{L}^2_{0,-1}(\mathbb{R}^3)$ is compact. This implies that there exists a subsequence $\{\widetilde{\mathbf{E}}_{\rho_{n}}\}_{n\geq 1}$ and $\widetilde{\mathbf{E}}\in\mathbf{L}^2_{0,-1}(\mathbb{R}^3)$, such that \begin{equation}\label{eq:2.61} \widetilde{\mathbf{E}}_{\rho_{n}}\rightharpoonup\widetilde{\mathbf{E}} \quad\text{in }\left( \mathbf{PH}^{1}(\mathbb{R}^3)\right) ^3,\quad \widetilde{\mathbf{E}}_{\rho_{n}}\to\widetilde{\mathbf{E}}\quad\text{in } \mathbf{L}^2_{0,-1}(\mathbb{R}^3). \end{equation} By \eqref{eq:2.53}, we have \begin{equation}\label{eq:2.62} \|\widetilde{\mathbf{E}}\|_{\mathbf{L}^2_{0,-1}(\mathbb{R}^3)}=1. \end{equation} To obtain a contradiction, we show that $\widetilde{\mathbf{E}}=0$ in $\Omega^{\rm is}\cup\Omega^{\rm cd}$. Due to \eqref{eq:2.56}, $\|\widetilde{\mathbf{E}}\|_{\mathbf{L}^2(\Omega^{\rm cd})}=0$. Hence \begin{equation}\label{eq:2.63} \widetilde{\mathbf{E}}=0,\quad\text{in }\Omega^{\rm cd}. \end{equation} Next, we take $\Phi\in\mathbb{X}_{TN}(\mathbb{R}^3,\rho)$ with support in $\Omega^{\rm is}$. Then $\mathbf{n}\cdot\Phi=0$, $\mathbf{n}\times\Phi=0$ on $\Sigma$ and due to \eqref{eq:2.52}, we have \begin{equation}\label{eq:2.64} (\operatorname{curl} \widetilde{\mathbf{E}}_{\rho_{n}}, \operatorname{curl} \Phi)_{\mathbf{L}^2_{0,-1}(\Omega^{\rm is})} -\kappa^2(\widetilde{\mathbf{E}}_{\rho_{n}},\Phi)_{\mathbf{L}^2_{0,-1} (\Omega^{\rm is})}=\mu(\widetilde{\mathbf{F}}_{\rho_{n}},\Phi) _{\mathbf{L}^2_{0,-1}(\Omega^{\rm is})}. \end{equation} Letting $n\to\infty$ in \eqref{eq:2.64} and using \eqref{eq:2.61} we obtain \begin{equation}\label{eq:2.65} (\operatorname{curl} \widetilde{\mathbf{E}},\operatorname{curl} \Phi )_{\mathbf{L}^2_{0,-1}(\Omega^{\rm is})}-\kappa^2(\widetilde{\mathbf{E}}, \Phi)_{\mathbf{L}^2_{0,-1}(\Omega^{\rm is})}=0. \end{equation} Now \eqref{eq:2.30} gives $\widetilde{\mathbf{E}}=0,\quad\text{in } \Omega^{\rm is}$, and therefore $\widetilde{\mathbf{E}}=0$, in $\mathbb{R}^3$, which is a contradiction to \eqref{eq:2.62} and therefore \eqref{eq:2.49} holds. \end{proof} Now with the help of Theorem \ref{th:2.36} we can prove Theorem \ref{th:2.26}. \begin{proof}[Proof of Theorem \ref{th:2.26}] Let $\rho_0>0$ be given by Theorem \ref{th:2.36}. Let us assume $\mathbf{E}_{\rho}$ satisfies \eqref{eq:2.18}-\eqref{eq:2.19}. Then $\mathbf{E}_{\rho}$ satisfies \eqref{eq:2.52} and taking $\Phi=\mathbf{E}_{\rho}$ we obtain \begin{equation}\label{eq:2.68} \|\operatorname{curl} \mathbf{E}_{\rho}\|^2_{\mathbf{L}^2(\mathbb{R}^3)} -\kappa^2\|\mathbf{E}_{\rho}\|^2_{\mathbf{L}^2_{0,-1}(\mathbb{R}^3)} -i\rho^2\|\mathbf{E}_{\rho}\|^2_{\mathbf{L}^2(\Omega^{\rm cd})} =\mu(\mathbf{F},\mathbf{E}_{\rho})_{\mathbf{L}^2_{0,-1}(\mathbb{R}^3)}. \end{equation} Taking real and imaginary parts as in the proof of Theorem \ref{th:2.36} we obtain the a priori estimate \eqref{eq:2.31} from \eqref{eq:2.20} and \begin{gather}\label{eq:2.69} \rho\|\mathbf{E}_{\rho}\|_{\mathbf{L}^2(\Omega^{\rm cd})} \leq C_1\|\mathbf{F}\|_{\mathbf{W}(\operatorname{div},\mathbb{R}^3)},\\ \label{eq:2.70} \|\operatorname{curl} \mathbf{E}_{\rho}\|_{\mathbf{L}^2(\mathbb{R}^3)} \leq C_2\|\mathbf{F}\|_{\mathbf{W}(\operatorname{div},\mathbb{R}^3)}. \end{gather} Next, note that the a priori estimate \eqref{eq:2.31} implies the injectivity of the solution operator to the variational problem \eqref{eq:2.18}. Therefore to show existence of the solution it suffices to demonstrate that this operator is surjective. We introduce the sesquilinear form $c_{\rho}$ defined by \begin{equation}\label{eq:2.72} c_{\rho}(\mathbf{E}_{\rho},\mathbf{E}'_{\rho}) =\int_{\mathbb{R}^3}\Big( \frac{1}{\mu}\operatorname{curl} \mathbf{E}_{\rho}\cdot\operatorname{curl} \overline{\mathbf{E}'_{\rho}} +\alpha \operatorname{div}(\varepsilon(\rho)\mathbf{E}_{\rho}) \cdot\operatorname{div}(\overline{\varepsilon(\rho)\mathbf{E}'_{\rho}})\Big) dx. \end{equation} for all $\mathbf{E}_{\rho},\mathbf{E}'_{\rho}\in\mathbb{X}_T(\mathbb{R}^3,\rho)$. The bilinear form $c_{\rho}$ is coercive on $\mathbb{X}_T(\mathbb{R}^3,\rho)$. By the Lax-Milgram Theorem there exist a bounded linear operator $\mathbf{M}$ such that $c_{\rho}(\mathbf{E}_{\rho},\mathbf{E}'_{\rho}) =\langle\mathbf{M}\mathbf{E}_{\rho},\mathbf{E}'_{\rho}\rangle$. Since the embedding $I_{\rho}(\mathbf{E}_{\rho}) =\varepsilon(\rho)\mathbf{E}_{\rho}$ for $\mathbf{E}_{\rho}\in\mathbb{X}_T(\mathbb{R}^3,\rho)$ from $\mathbb{X}_T(\mathbb{R}^3,\rho)$ into $\mathbb{X}_T(\mathbb{R}^3,\rho)'$ is compact. Hence $\mathbf{M}-\kappa^2I_{\rho}$ is a Fredholm operator. In particular, it is surjective if and only if his adjoint $\mathbf{M}^{*}-\kappa^2I_{\rho}^{*}$ is injective where $I_{\rho}^{*}=\overline{\varepsilon(\rho)}I_{\rho}$. Let $c_{\rho}^{*}$ be the sesquilinear form associated with the operator $c_{\rho}$; i.e., \begin{equation}\label{eq:2.73} c_{\rho}^{*}(\mathbf{E}_{\rho},\mathbf{E}'_{\rho}) =\int_{\mathbb{R}^3}\Big( \frac{1}{\mu}\operatorname{curl} \mathbf{E}_{\rho}\cdot\operatorname{curl} \overline{\mathbf{E}'_{\rho}}+\alpha \operatorname{div} (\overline{\varepsilon(\rho)}\mathbf{E}_{\rho}) \cdot\operatorname{div}(\varepsilon(\rho)\overline{\mathbf{E}'_{\rho}})\Big) dx, \end{equation} for all $\mathbf{E}_{\rho},\mathbf{E}'_{\rho}\in\mathbb{X}_T(\mathbb{R}^3,\rho)$. As in Theorem \ref{th:2.26}, an a priori estimate for $\mathbf{M}^{*}-\kappa^2I_{\rho}^{*}$ is proven, yielding its injectivity. Hence $\mathbf{M}-\kappa^2I_{\rho}$ is a subjectivity of the operator. Proving the Theorem. \end{proof} \subsection*{Acknowledgements} This research was supported by the Progama ALECOL-DAAD and Fundaci\'{o}n Universidad del Norte, Colombia. The author wants to thank the anonymous referees for their valuable suggestions. \begin{thebibliography}{99} \bibitem{Avantaggiati} A. Avantaggiati, M. Troisi; \emph{Spazi di Sobolev con peso e problemi ellittici in un angolo (I)}, Ann. Mat. Pura ed Appl., \textbf{93}, (1972), 361--408. \bibitem{Boulmezaoud} T. Z. Boulmezaoud; \emph{On the Laplace operator and the vector potential problems in the half-space: an approach using weighted spaces}, Math. Meth. in the Appl. Scienc., \textbf{23}, (2003), 633--669. \bibitem{Caloz} G. Caloz, M. Dauge, V. Peron; \emph{Uniform estimates for transmission problems with high contrast in heat conduction and electromagnetism}, Journal of Mathematical Analysis and applications. \textbf{370 (2)} (2010), 555--572. \bibitem{Costabeld} M. Costabel, M. Dauge; \emph{Singularities of electromagnetic fields in polyhedral domains}, Arch. Ration. Mech. Anal., \textbf{151(3)}, (2000), 221--276. \bibitem{CostabelSt1} M. Costabel, E. P. Stephan; \emph{A direct boundary integral equation method for transmission problems}, J. Math. Anal. Appl., \textbf{106(2)}, (1985), 367--413. \bibitem{Girault} V. Girault; \emph{The gradient, divergence, curl and Stokes operators in weighted Sobolev spaces of $\mathbb{R}^3$}, J. Fac. Sci. Univ. Tokyo. Sect. IA, Math., \textbf{39}, (1992), 279--307. \bibitem{GiraultR} V. Girault, P. A. Raviart; \emph{Finite element methods for Navier-Stokes equations}, SCM 5, Springer-Verlag, Berlin, (1986). \bibitem{Giroirej} J. Giroire; \emph{Etude de quelques probl\`{e}mes aux limites ext\'{e}rieurs et r\'{e}solution par \'{e}quations int\'{e}grales}, PhD thesis, UPMC, Paris, France, (1987). \bibitem{Hanouzet} B. Hanouzet; \emph{Espaces de Sobolev avec poids. Application au probl\`{e}me de Dirichlet dans un demi-espace}, Rend. Sem. Mat. Univ. Padova XLVI, (1971), 227--272. \bibitem{Hiptmair} R. Hiptmair; \emph{Symmetric coupling for eddy current problems}, SIAM J. Numer. Anal., \textbf{40}, (2002), 41--65. \bibitem{Kufner} A. Kufner; \emph{Weighted Sobolev spaces}, John Wiley and Sons, (1985). \bibitem{Louer} F. Le Lou\"{e}r; \emph{Optimisation de forme d'Antennes lentilles int\'{e}gr\'{e}es aux ondes millim\'{e}triques}, PhD thesis, Universit\'{e} de Rennes I, Rennes, France, (2009). \bibitem{MacCamyS} R. C. MacCamy, E. P. Stephan; \emph{Solution procedures for three-dimensional eddy current problems}, J. Math. Anal. Appl., \textbf{101}, (1984), 348--379. \bibitem{Nedelec} J. C. Nedelec; \emph{Acoustic and electromagnetic equations}. Integral representations for harmonic problems, Springer-Verlag, (2001). \bibitem{Ospino1} J. E. Ospino; \emph{Scalar transmission problem with a parameter}, Revista Colombiana de Matem\'{a}ticas, (2012), submitted. \bibitem{Ospino} J. E. Ospino; \emph{Finite elements/boundary elements for electromagnetic interface problems, especially the skin effect}, PhD thesis, Institut of Applied Mathematics, Hannover University, Germany, (2011). \bibitem{Peron} V. Peron; \emph{Mod\'{e}lisation math\'{e}matique de ph\'{e}nom\`{e}nes \'{e}lectromagn\'{e}tiques dans des mat\'{e}riaux \`{a} fort contraste}, PhD thesis, Universit\'{e} de Rennes I, Rennes, France, (2009). \bibitem{Rudin} W. Rudin; \emph{Functional Analysis}, McGraw-Hill, New York, 2nd ed., (1991). \end{thebibliography} \end{document}