\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 253, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/253\hfil Eigenvalue problems] {Eigenvalue problems for $p(x)$-Kirchhoff type equations} \author[G. A. Afrouzi, M. Mirzapour \hfil EJDE-2013/253\hfilneg] {Ghasem A. Afrouzi, Maryam Mirzapour} % in alphabetical order \address{Ghasem Alizadeh Afrouzi \newline Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran} \email{afrouzi@umz.ac.ir} \address{Maryam Mirzapour \newline Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran} \email{mirzapour@stu.umz.ac.ir} \thanks{Submitted August 17, 2013. Published November 20, 2013.} \subjclass[2000]{35J60, 35J35, 35J70} \keywords{$p(x)$-Kirchhoff type equations; variational methods; \hfill\break\indent boundary value problems} \begin{abstract} In this article, we study the nonlocal $p(x)$-Laplacian problem \begin{gather*} -M\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\Big) \operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)= \lambda|u|^{q(x)-2}u \quad \text{ in } \Omega,\\ u=0 \quad \text{on } \partial\Omega, \end{gather*} By means of variational methods and the theory of the variable exponent Sobolev spaces, we establish conditions for the existence of weak solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} The purpose of this article is to show the existence of solutions of the $p(x)$-Kirchhoff type eigenvalue problem \begin{equation}\label{e1.1} \begin{gathered} -M\Big (\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\Big) \operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)= \lambda|u|^{q(x)-2}u \quad \text{in } \Omega,\\ u=0 \quad \text{on } \partial\Omega, \end{gathered} \end{equation} where $\Omega\subset\mathbb{R}^N$, $N\geq3$, is a bounded domain with smooth boundary $\partial\Omega$, $M:\mathbb{R}^+\to \mathbb{R}$ is a continuous function, $p,q$ are continuous functions on $\overline{\Omega}$ such that $1
1$ for any $x\in \overline{\Omega}$ and $\lambda$ is a positive number.
The study of problems involving variable exponent growth conditions has a
strong motivation due to the fact that they can model various phenomena
which arise in the study of elastic mechanics \cite{Zhikov}, electrorheological
fluids \cite{Acerbi} or image restoration \cite{Chen}.
Equation \eqref{e1.1} is called a nonlocal problem because of the
the term $M$, which implies that the equation in \eqref{e1.1}
is no longer a pointwise equation. This causes some mathematical
difficulties which make the study of such a problem particularly interesting.
Nonlocal differential equations are also called Kirchhoff-type equations
because Kirchhoff \cite{K} investigated an equation of the form
\begin{equation} \label{e1.2}
\rho\frac{\partial^{2}u}{\partial t^{2}}
-\Big(\frac{\rho_0}{h}+\frac{E}{2L}\int_0^L
\big|\frac{\partial u}{\partial x}\big|^{2}\,dx\Big)
\frac{\partial^{2}u}{\partial x^{2}}=0,
\end{equation}
which extends the classical D'Alembert's wave equation, by considering
the effect of the changing in the length of the string during the vibration.
A distinct feature is that the \eqref{e1.2} contains
a nonlocal coefficient
$\frac{\rho_0}{h}+\frac{E}{2L}\int_0^L |\frac{\partial u}{\partial x}|^{2}\,dx$
which depends on the average
$\frac{1}{2L} \int_0^L \big|\frac{\partial u}{\partial x}\big|^{2}\,dx$,
and hence the equation is no longer a pointwise equation.
The parameters in \eqref{e1.2} have the following meanings:
$L$ is the length of the string, $h$ is the area of the cross-section,
$E$ is the Young modulus of the material, $\rho$ is the mass density
and $P_0$ is the initial tension. Lions \cite{Lions} has proposed an
abstract framework for the Kirchhoff-type equations.
After the work by Lions \cite{Lions}, various equations of Kirchhoff-type
have been studied extensively, see e.g. \cite{Aro,Cava}
and \cite{Corr1}-\cite{Dre2}.
The study of Kirchhoff type equations has already been extended to the case
involving the $p$-Laplacian (for details, see \cite{Dre1,Dre2,Corr1,Corr2})
and $p(x)$-Laplacian (see \cite{Aut,Col,Dai1,Dai2,Fan7}).
Motivated by the above papers and the results in \cite{Chung,Mih1},
we consider \eqref{e1.1} to study the existence of weak solutions.
\section{Preliminaries}
For the reader's convenience, we recall some necessary background
knowledge and propositions concerning the generalized Lebesgue-Sobolev spaces.
We refer the reader to \cite{Ed1,Ed2,Fan1,Fan2} for details.
Let $\Omega$ be a bounded domain of $\mathbb{R}^N$, denote
\begin{gather*}
C_+(\overline{\Omega})=\{p(x): p(x)\in C(\overline{\Omega}),~p(x)>1,
\text{ for all } x\in \overline{\Omega}\};\\
p^+=\max\{p(x): x \in\overline{\Omega}\},\quad
p^-=\min\{p(x); x \in\overline{\Omega}\};\\
L^{p(x)}(\Omega)=\big\{u: u\text{ is a measurable real-valued function},\;
\int_{\Omega}|u(x)|^{p(x)}dx<\infty\big\},
\end{gather*}
with the norm
\[
|u|_{L^{p(x)}(\Omega)}=|u|_{p(x)}
=\inf \big\{\lambda>0: \int_{\Omega}|\frac{u(x)}{\lambda}|
^{p(x)}dx\leq 1\big\}
\]
becomes a Banach space \cite{Kov}.
We also define the space
\[
W^{1,p(x)}(\Omega)=\{u\in L^{p(x)}(\Omega):
|\nabla u|\in L^{p(x)}(\Omega)\},
\]
equipped with the norm
\[
\|u\|_{W^{1,p(x)}(\Omega)}=|u(x)|_{L^{p(x)}(\Omega)}
+|\nabla u(x)|_{L^{p(x)}(\Omega)}.
\]
We denote by $W_0^{1,p(x)}(\Omega)$ the closure of $C_0^\infty(\Omega)$
in $W^{1,p(x)}(\Omega)$. Of course the norm
$\|u\|=|\nabla u|_{L ^{p(x)}(\Omega)}$ is an equivalent norm in
$W_0^{1,p(x)}(\Omega)$. In this paper, we denote by
$X=W_0^{1,p(x)}(\Omega)$.
\begin{proposition}[\cite{Ed1,Fan2}] \label{prop2.1}
$(i)$ The conjugate space of $L^{p(x)}(\Omega)$ is $L^{p'(x)}(\Omega)$,
where $\frac{1}{p(x)}+\frac{1}{p'(x)}=1$.
For any $u\in L^{p(x)}(\Omega)$ and $v\in L^{p'(x)}(\Omega)$, we have
\[
\int_{\Omega}|uv|dx\leq \Big(\frac{1}{p^{-}}
+\frac{1}{p'^{-}}\Big)|u|_{p(x)}|v|_{p'(x)}\leq 2|u|_{p(x)}|v|_{p'(x)}
\]
$(ii)$ If $p_1(x), p_2(x)\in C_+(\overline{\Omega})$ and
$p_1(x)\leq p_2(x)$ for all $x\in \overline{\Omega}$,
then $L^{p_2(x)}(\Omega)\hookrightarrow L^{p_1(x)}(\Omega)$ and the
embedding is continuous.
\end{proposition}
\begin{proposition}[\cite{Fan4}] \label{prop2.2}
Set $\rho(u)=\int_{\Omega}|\nabla u(x)|^{p(x)}dx$,
then for $u\in X$ and $(u_k)\subset X$, we have
\begin{itemize}
\item[(1)] $\|u\|<1$ (respectively$=1; >1$) if and only if
$\rho(u)<1$ (respectively$=1; >1$);
\item[(2)] for $u\neq 0$, $\|u\|=\lambda$ if and only if
$\rho(\frac{u}{\lambda})=1$;
\item[(3)] if $\|u\|>1$, then $\|u\|^{p^{-}}\leq \rho(u)\leq\|u\|^{p^{+}}$;
\item[(4)] if $\|u\|<1$, then $\|u\|^{p^{+}}\leq \rho(u)\leq\|u\|^{p^{-}}$;
\item[(5)] $\|u_k\|\to 0$ (respectively $\to \infty$) if and only if
$\rho(u_k)\to 0$ (respectively $\to \infty$).
\end{itemize}
\end{proposition}
For $x\in \Omega$, let us define
\[
p^*(x)=\begin{cases}
\frac{Np(x)}{N-p(x)} & \text{ if } p(x) 0$.
\end{proof}
\begin{lemma}\label{lem3.8}
For any $\lambda\in (0,\lambda^{**})$ given by \eqref{e3.11},
there exists $\varphi\in X$ such that $\varphi\geq 0$, $\varphi\neq 0$
and $J_\lambda(t\varphi)<0$ for all $t>0$ small enough.
\end{lemma}
\begin{proof}
Assumption \eqref{e3.7} implies that $q(x)<\beta p(x)$. Let $\epsilon_0>0$
such that $q^-+\epsilon_0<\beta p^-$. Since $q\in C(\overline{\Omega})$,
there exists an open set $\Omega_0\subset \Omega$ such that
$|q(x)-q^-|<\epsilon_0$ for all $x\in \Omega_0$. It follows that
$q(x)0$ problem \eqref{e1.1} possesses a
nontrivial weak solution.
\end{theorem}
\begin{lemma}\label{lem3.2}
There exist $\eta>0$ and $\alpha>0$ such that $J_\lambda(u)\geq \alpha>0$
for any $u\in X$ with $\|u\|=\eta$.
\end{lemma}
\begin{proof}
First, we point out that
\[
|u(x)|^{q(x)}\leq |u(x)|^{q^-}+|u(x)|^{q^+},\quad \text{for all }
x\in \overline{\Omega}.
\]
Using the above inequality and (M1), we find that
\begin{align*}
J_\lambda(u)
&=\widehat{M}\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\Big)
-\lambda\int_{\Omega}\frac{1}{q(x)}|u|^{q(x)}dx\\
&\geq\frac{m_1}{\alpha}\Big(\int_{\Omega}\frac{1}{p(x)}
|\nabla u|^{p(x)}dx\Big)^{\alpha}-\frac{\lambda}{q^-}\Big(|u|_{q^-}^{q^-}
+|u|_{q^+}^{q^+}\Big).
\end{align*}
From the assumptions of Theorem \ref{theo3.1}, $X$ is continuously
embedded in $L^{q^-}(\Omega)$ and $L^{q^+}(\Omega)$.
Then, there exist two positive constants $c_1$ and $c_2$ such that
\[
|u(x)|_{q^-}\leq c_1\|u\|, \quad
|u(x)|_{q^+}\leq c_2\|u\|,\quad \text{for all } u\in X.
\]
Hence, for any $u\in X$ with $\|u\|<1$, we obtain
\[
J_\lambda(u)\geq \frac{m_1}{\alpha (p^+)^\alpha}\|u\|^{\alpha p^+}
-\frac{\lambda}{q^-}\Big( c_1^{q^-}\|u\|^{q^-}+c_2^{q^+}\|u\|^{q^+}\Big).
\]
Since the function $g:[0,1]\to \mathbb{R}$ defined by
\[
g(t)=\frac{m_1}{\alpha (p^+)^\alpha}
-\frac{\lambda c_1^{q^-}}{q^-}t^{q^--\alpha p^+}
-\frac{\lambda c_2^{q^+}}{q^-}t^{q^+-\alpha p^+},
\]
is positive in a neighborhood of the origin, the proof is complete.
\end{proof}
\begin{lemma}\label{lem3.3}
There exists $e\in X$ with $\|e\|>\eta$ (where $\eta$ is given in
Lemma \ref{lem3.2}) such that $J_\lambda(e)<0$.
\end{lemma}
\begin{proof}
Let $\psi\in C_0^{\infty}(\Omega)$, $\psi\geq0$ and $\psi\neq0$ and $t>1$.
By (M1) we have
\begin{align*}
J_\lambda(t\psi)
&=\widehat{M}\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla t\psi|^{p(x)}dx\Big)
-\lambda\int_{\Omega}\frac{1}{q(x)}|t\psi|^{q(x)}dx\\
&\leq\frac{m_2}{\beta}\Big(\int_{\Omega}\frac{1}{p(x)}
|\nabla t\psi|^{p(x)}dx\Big)^{\beta}-\lambda\frac{t^{q^-}}{q^+}
\int_{\Omega}|\psi|^{q(x)}dx\\
&\leq\frac{m_2}{\beta (p^-)^{\beta}}t^{\beta p^+}
\Big(\int_{\Omega}|\nabla \psi|^{p(x)}dx\Big)^{\beta}
-\lambda\frac{t^{q^-}}{q^+}\int_{\Omega}|\psi|^{q(x)}dx.
\end{align*}
Since $\beta p^+
1$ large enough, we can take $e=t\psi$ such that $\|e\|>\eta$
and $J_\lambda(e)<0$.
\end{proof}
\begin{proof}[Proof of Theorem \ref{theo3.1}]
By Lemmas \ref{lem3.2}--\ref{lem3.3} and the mountain pass theorem
of Ambrosetti and Rabinowitz \cite{AmbRab}, we deduce the existence
of a sequence $(u_n)\subset X$ such that
\begin{equation}\label{e3.2}
J_\lambda(u_n)\to c_3>0, \quad
J'_\lambda(u_n)\to 0\quad \text{as }n\to\infty.
\end{equation}
We prove that $(u_n)$ is bounded in $X$. Arguing by contradiction.
We assume that, passing eventually to a subsequence, still denote
by $(u_n)$, $\|u_n\|\to\infty$ and $\|u_n\|>1$ for all $n$.
By \eqref{e3.2} and (M1)-(M2), for $n$ large enough, we have
\begin{align*}
&1+c_3+\|u_n\|\\
& \geq J_\lambda(u_n)-\frac{1}{q^-}\langle J'_\lambda(u_n),u_n\rangle\\
&\geq M\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla u_n|^{p(x)}dx\Big)
\int_{\Omega}\frac{1}{p(x)}|\nabla u_n|^{p(x)}dx
-\lambda\int_{\Omega}\frac{1}{q(x)}|u_n|^{q(x)}dx\\
&\hspace{0.3cm}-\frac{1}{q^-}M\Big(\int_{\Omega}\frac{1}{p(x)}
|\nabla u_n|^{p(x)}dx\Big)\int_{\Omega}|\nabla u_n|^{p(x)}dx
+\frac{\lambda}{q^-}\int_{\Omega}|u_n|^{q(x)}dx\\
&\geq\frac{m_1}{\alpha (p^+)^{\alpha-1}}\Big(\frac{1}{p^+}
-\frac{1}{q^-}\Big)\|u_n\|^{\alpha p^-}+\lambda \Big(\frac{1}{q^-}
-\frac{1}{q(x)}\Big)\int_{\Omega}|u_n|^{q(x)}dx\\
&\geq\frac{m_1}{\alpha (p^+)^{\alpha-1}}\Big(\frac{1}{p^+}
-\frac{1}{q^-}\Big)\|u_n\|^{\alpha p^-}+\lambda \Big(\frac{1}{q^-}
-\frac{1}{q(x)}\Big)\Big(c_1\|u_n\|^{q^-}+c_2\|u_n\|^{q^+}\Big).
\end{align*}
Dividing the above inequality by $\|u_n\|^{\alpha p^-}$, taking into
account \eqref{e3.1} holds true and passing to the limit as $n\to \infty$,
we obtain a contradiction. It follows that $(u_n)$ is bounded in $X$.
This information, combined with the fact that $X$ is reflexive,
implies that there exists a subsequence, still denote by $(u_n)$
and $u_1\in X$ such that $(u_n)$ converges weakly to $u_1$ in $X$.
Note that Proposition \ref{prop2.3} yields that $X$ is compactly
embedded in $L^{q(x)}(\Omega)$, it follows that $(u_n)$ converges
strongly to $u_1$ in $L^{q(x)}(\Omega)$. Then by H\"{o}lder inequality we deduce
\begin{equation}\label{e3.}
\lim_{n\to\infty}\int_{\Omega}|u_n|^{q(x)-2}u_n(u_n-u_1)dx=0.
\end{equation}
Using \eqref{e3.2}, we infer that
\begin{equation}\label{e3..}
\lim_{n\to\infty}\langle J'_\lambda (u_n),u_n-u_1\rangle=0.
\end{equation}
Since $(u_n)$ is bounded in $X$, passing to a subsequence, if necessary,
we may assume that
\[
\int_{\Omega}\frac{1}{p(x)}|\nabla u_n|^{p(x)}dx\to t_0\geq 0
\quad \text{ as } n\to\infty.
\]
If $t_0=0$ then $(u_n)$ converges strongly to $u_1=0$ in $X$ and
the proof is complete. If $t_0>0$ then since the function $M$
is continuous, we obtain
\[
M\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla u_n|^{p(x)}dx\Big)\to M(t_0)\geq 0
\quad \text{as } n\to\infty.
\]
Thus, by (M1), for sufficiently large $n$, we have
\begin{equation}\label{e3.3}
0
0$ such that for any $\lambda>\lambda^*$,
problem \eqref{e1.1} possesses a nontrivial weak solution.
\end{theorem}
Under the theorem's conditions, we want to construct a global minimizer
of the functional. We start with the following auxiliary result.
\begin{lemma}\label{lem3.5}
The functional $J_\lambda$ is coercive on $X$.
\end{lemma}
\begin{proof}
By Theorem \ref{theo3.1} and Proposition \ref{prop2.2}, we deduce
that for all $u\in X$,
\[
J_\lambda(u)\geq \frac{m_1}{\alpha (p^+)^{\alpha}}
\Big(\int_{\Omega}|\nabla u|^{p(x)}dx\Big))^{\alpha}
-\frac{\lambda}{q^-}\Big( c_1\|u\|^{q-}+c_2\|u\|^{q^+}\Big).
\]
Now we set $\|u\|>1$, then
\[
J_\lambda(u)\geq \frac{m_1}{\alpha (p^+)^{\alpha}}\|u\|^{\alpha p^-}
-\frac{\lambda}{q^-}\Big( c_1\|u\|^{q-}+c_2\|u\|^{q^+}\Big).
\]
Since by relation \eqref{e3.6} we have $\alpha p^->q^+\geq q^-$,
we infer that $J_\lambda(u)\to\infty$ as $\|u\|\to\infty$.
In other words, $J_\lambda$ is coercive in $X$.
\end{proof}
\begin{proof}[Proof of Theorem \ref{theo3.4}]
$J_\lambda(u)$ is a coercive functional and weakly lower
semi-con\-tinuous on $X$. These two facts enable us to apply
\cite[Theorem 1.2]{Struw} in order to find that there exists
$u_\lambda\in X$ a global minimizer of $J_\lambda$ and thus a
weak solution of problem \eqref{e1.1}.
We show $u_\lambda$ is not trivial for $\lambda$ large enough.
Letting $t_0>1$ be a constant and $\Omega_1$ be an open subset
of $\Omega$ with $|\Omega_1|>0$, we assume that
$v_0\in C_0^\infty(\overline{\Omega})$ is such that $v_0(x)=t_0$
for any $x\in \overline{\Omega_1}$ and $0\leq v_0(x)\leq t_0$ in
$\Omega\backslash\Omega_1$. We have
\begin{align*}
J_\lambda(v_0)
&=\widehat{M}\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla v_0|^{p(x)}dx\Big)
-\lambda\int_{\Omega}\frac{1}{q(x)}|v_0|^{q(x)}dx\\
&\leq c_6-\frac{\lambda}{q^+}\int_{\Omega}|v_0|^{q(x)}dx
\leq c_6-\frac{\lambda}{q^+}t_0^{q^-}|\Omega_1|.
\end{align*}
So there exists $\lambda^*>0$ such that
$J_\lambda(v_0)<0$ for any $\lambda\in [\lambda^*,+\infty)$.
It follows that for any $\lambda\geq \lambda^*$, $u_\lambda$
is a nontrivial weak solution of problem \eqref{e1.1} for $\lambda$
large enough.
\end{proof}
\begin{theorem}\label{theo3.6}
If $q\in C_+(\overline{\Omega})$ with
\begin{equation}\label{e3.7}
1
0$ such that for any
$\lambda\in (0,\lambda^{**})$, problem \eqref{e1.1} possesses
a nontrivial weak solution.
\end{theorem}
We plan to apply Ekeland variational principle \cite{Ek} to get
a nontrivial solution to problem \eqref{e1.1}.
We start with two auxiliary results.
\begin{lemma}\label{lem3.7}
There exists $\lambda^{**}>0$ such that for any $\lambda \in (0,\lambda^{**})$
there are $\rho,a>0$ such that $J_\lambda(u)\geq a>0$ for any
$u\in X$ with $\|u\|=\rho$.
\end{lemma}
\begin{proof}
Under the assumption of Theorem \ref{theo3.6}, $X$ is continuously embedded
in $L^{q(x)}(\Omega)$. Thus, there exists a positive constant $c_7$ such that
\begin{equation} \label{e3.8}
|u|_{q(x)}\leq c_7\|u\| \quad \text{for all } u\in X.
\end{equation}
Now, Let us assume that $\|u\|<\min \{1,\frac{1}{c_7}\}$, where $c_7$
is the positive constant from above. Then we have $|u|_{q(x)}<1$.
Using Proposition \ref{prop2.2} we obtain
\begin{equation} \label{e3.9}
\int_{\Omega}|u|^{q(x)}dx\leq|u|_{q(x)}^{q^-} \quad
\text{for all $u\in X$ with $\|u\|=\rho \in (0,1)$}.
\end{equation}
Relations \eqref{e3.8} and \eqref{e3.9} imply
\begin{equation} \label{e3.10}
\int_{\Omega}|u|^{q(x)}dx\leq c_7^{q^-}\|u\|^{q^-} \quad
\text{for all $u\in X$ with $\|u\|=\rho$}.
\end{equation}
Using the hypotheses (M1) and \eqref{e3.10}, we deduce that for
any $u\in X$ with $\|u\|=\rho$, the following hold
\begin{align*}
J_\lambda(u)
&=\widehat{M}\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\Big)
-\lambda\int_{\Omega}\frac{1}{q(x)}|u|^{q(x)}dx\\
&\geq \frac{m_1}{\alpha (p^+)^{\alpha}}\|u\|^{\alpha p^+}
-\frac{\lambda}{q^-}c_7^{q^-}\|u\|^{q^-}\\
&=\rho^{q^-}\Big(\frac{m_1}{\alpha (p^+)^{\alpha}}\rho^{\alpha p^+-q^-}
-\frac{\lambda}{q^-}c_7^{q^-}\Big).
\end{align*}
By \eqref{e3.7} we have $q^-\leq q^+
0.
\]
On the other hand, by Lemma \ref{lem3.8}, there exists $\varphi\in X$ such that
\[
J_\lambda(t\varphi)<0 \quad \text{for $t>0$ small enough}.
\]
Moreover, for $u\in B_{\rho}(0)$,
\[
J_\lambda(u)\geq \frac{m_1}{\alpha (p^+)^{\alpha}}\|u\|^{\alpha p^+}
-\frac{\lambda}{q^-}c_7^{q^-}\|u\|^{q^-}.
\]
It follows that
\[
-\infty