% Trinh Tuan Anh (family name, middle name, given name, respectively) \documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 261, pp. 1--16.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/261\hfil Existence and global asymptotic stability] {Existence and global asymptotic stability of positive periodic solutions of a Lotka-Volterra type competition systems with delays and feedback controls} \author[A. T. Trinh \hfil EJDE-2013/261\hfilneg] {Anh Tuan Trinh} % in alphabetical order \address{Anh Tuan Trinh \newline Department of Mathematics\\ Hanoi National University of Education\\ 136 Xuan Thuy Road, Hanoi, Vietnam} \email{anhtt@hnue.edu.vn} \thanks{Submitted January 8, 2013. Published November 26, 2013.} \subjclass[2000]{34K13, 92B05, 92D25, 93B52} \keywords{Lotka-Volterra competition system; time delay; feedback control; \hfill\break\indent positive periodic solution; global asymptotic stability; continuation theorem} \begin{abstract} The existence of positive periodic solutions of a periodic Lotka-Volterra type competition system with delays and feedback controls is studied by applying the continuation theorem of coincidence degree theory. By contracting a suitable Liapunov functional, a set of sufficient conditions for the global asymptotic stability of the positive periodic solution of the system is given. A counterexample is given to show that the result on the existence of positive periodic solution in \cite{tk2} is incorrect. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction}\label{sec.int} In this paper, we consider the following non-autonomous Lotka-Volterra $n$-species competition system with delays and feedback controls \begin{equation}\label{1.1} \begin{gathered} \begin{aligned} \dot x_i(t) &= g_i(x_i(t))\Big[r_i(t)-\sum_{j=1}^na_{ij}(t)x_j(t)-\sum_{j=1}^n \sum_{k=1}^mb_{ijk}(t)x_j(t-\tau_{ijk}(t))\\ &\quad-\sum_{j=1}^n\sum_{k=1}^m\int_{-\infty}^tc_{ijk}(t,s)x_j(s) d s -d_{i}(t)u_i(t)\\ &\quad -\sum_{k=1}^me_{ik}(t)u_ i(t-\sigma_{ik}(t)) -\int_{-\infty}^tf_{i}(t,s)u_i(s)ds \Big], \end{aligned}\\ \begin{aligned} \dot u_i(t)&=-\alpha_i(t)u_i(t)+\beta _i(t)x_i(t) +\sum_{k=1}^mp_{ik}(t)x_i(t-\gamma_{ik}(t))\\ &\quad +\int_{-\infty}^tv_{i}(t,s)x_i(s)ds, \end{aligned} \end{gathered} \end{equation} where $i\in\{1,2,\dots,n\}$, $u_i$ denote indirect feedback control variables. For system \eqref{1.1}, we introduce the following hypotheses \begin{itemize} \item[(H1)] $r_i, \alpha _i\in C(\mathbb{R},\mathbb{R})$, $a_{ij}, b_{ijk}, d_i, e_{ik}, p_{ik}, \beta_i\in C(\mathbb{R},\mathbb{R}_+)$ are $\omega$-periodic ($\omega$ is a fixed positive number) with $\int_0^\omega r_i(t)dt>0, \int_0^\omega \alpha_i(t)dt>0$, $i,j=1,2,\dots,n$; $k=1,2,\dots,m$. \item[(H2)] $c_{ijk},f_{i},v_{i}:\mathbb{R}\times \mathbb{R} \to \mathbb{R}_+$ are $\omega$-periodic functions; i.e., $$ c_{ijk}(t+\omega,s+\omega)=c_{ijk}(t,s), f_{i}(t+\omega,s+\omega) =f_{i}(t,s), v_{i}(t+\omega,s+\omega)=v_{i}(t,s) $$ and $\int_{-\infty}^tc_{ijk}(t,s)ds$, $\int_{-\infty}^tf_{i}(t,s)ds$, $\int_{-\infty}^tv_{i}(t,s)ds $ are continuous with respect to $t$. Moreover \begin{gather*} \int_0^{+\infty}\int_{-t}^0c_{ijk}(s+t,s)\,ds\,dt<+\infty, \quad \int_0^{+\infty}\int_{-t}^0f_{i}(s+t,s)\,ds\,dt<+\infty,\\ \int_0^{+\infty}\int_{-t}^0v_{i}(s+t,s)\,ds\,dt <+\infty, \quad i,j=1,2,\dots,n; k=1,2,\dots,m. \end{gather*} \item[(H3)] $g_i\in C(\mathbb{R}_+,\mathbb{R}_+)$ is strictly increasing, $g_i(0)=0$ and $\lim_{v\to 0^+}\frac{g_i(v)}{v}$ is a positive constant. Moreover, there are positive constants $l$ and $L$ such that $l\leq \frac{g_i(v)}{v}\leq L$ for all $v>0$, $i=1,2,\dots,n$. \item[(H4)] $\tau_{ijk}$, $\sigma_{ik}$, $\gamma _{ik}\in C(\mathbb{R},\mathbb{R}_+)$ are $\omega$-periodic for $i,j=1,2,\dots$ $n, k=1,2,\dots,m$. \item[(H5)] $\tau_{ijk}$, $\sigma_{ik}$, $\gamma _{ik} \in C^1(\mathbb{R},\mathbb{R}_+)$ and $\dot \tau_{ijk}(t)<1$, $\dot \sigma_{ik}(t)<1$, $\dot \gamma _{ik}(t)<1$ for all $t\in \mathbb{R}$, $i,j=1,2,\dots,n$, $k=1,2,\dots,m$. \end{itemize} We consider \eqref{1.1} with the initial conditions \begin{equation}\label{1.2} \begin{gathered} x_i(s)=\phi_i(s), s\in (-\infty, 0],\quad \phi_i\in C((-\infty, 0], \mathbb{R}_+), \phi_i(0)>0 \\ u_i(s)=\psi_i (s), s\in (-\infty, 0], \quad \psi_i\in C((-\infty, 0], \mathbb{R}_+),\quad \psi_i(0)>0, \end{gathered} \end{equation} for $ i=1,2,\dots,n$. Throughout this paper, we use the following symbols: for an $\omega$-periodic function $f\in C(\mathbb{R},\mathbb{R})$, we define \begin{equation}\label{1.3} \begin{gathered} \bar f = \frac{1}{\omega}\int_0^\omega f(t)dt,\quad c^*_{ijk}(t)=\int_{-\infty}^tc_{ijk}(t,s)ds,\quad f^*_{i}(t)=\int_{-\infty}^tf_{i}(t,s)ds,\\ v^*_{i}(t)=\int_{-\infty}^tv_{i}(t,s)ds,\quad G_i(t,s)=\frac{\exp \{ \int_t^s\alpha_i(v)dv \}} {\exp\{\int_0^\omega \alpha_i(v)dv\}-1 }, s\geq t,\\ P_i(t)=d_i(t)\int_t^{t+\omega}G_i(t,s)\Big[\beta_i (s) +\sum_{k=1}^mp_{ik}(s)+v^*_{i}(s)\Big]ds,\\ Q_i(t)=\sum_{j=1}^me_{ij}(t)\int_t^{t+\omega}G_i(t,s)\Big[\beta_i (s) +\sum_{k=1}^mp_{ik}(s)+v^*_{i}(s)\Big]ds,\\ R_i(t)=\int_{-\infty}^t f_{i}(t,s)\int_s^{s+\omega}G_i(s,\tau) \Big[\beta_i (\tau)+\sum_{k=1}^mp_{ik}(\tau)+v^*_{i}(\tau)\Big]d\tau ds. \end{gathered} \end{equation} Fan et al.~\cite{tk4} studied system \eqref{1.1} in the case $k=1$, $g_i(v_i)=v_i$, $ f_{i}(t,s)=v_{i}(t,s)=0$ for $ i=1,2,\dots,n$ and obtained several results for the existence and global asymptotically stability of positive periodic solutions of the system. Recently, Yan and Liu \cite{tk2} considered system \eqref{1.1} in the case $e_{ik}(t)=p_{ik}(t)=0$ and $ f_{i}(t,s)=v_{i}(t,s)=0$ for $k=2,3,\dots,m$, $i=1,2,\dots,n$, \begin{equation}\label{1.4} \begin{gathered} \begin{aligned} \dot x_i(t)&=g_i(x_i(t))\Big[r_i(t)-\sum_{j=1}^na_{ij}(t)x_j(t) -\sum_{j=1}^n\sum_{k=1}^mb_{ijk}(t)x_j(t-\tau_{ijk}(t))\\ &\quad -\sum_{j=1}^n\sum_{k=1}^m\int_{-\infty}^tc_{ijk}(t,s)x_j(s) d s -d_{i}(t)u_i(t)-e_{i1}(t)u_ i(t-\sigma_{i1}(t)) \Big], \end{aligned}\\ \dot u_i(t)=-\alpha_i(t)u_i(t)+\beta _i(t)x_i(t)+p_{i1}(t)x_i(t-\gamma_{i1}(t)), \quad i=1,2,\dots,n. \end{gathered} \end{equation} By employing fixed point index theory on cones, Yan and Liu \cite{tk2} established the following result. \begin{theorem}[\cite{tk2}] \label{thm1.1} Assume that {\rm (H1)--(H4)} hold. For system \eqref{1.4}, to have at least one positive $\omega$-periodic solution, a necessary and sufficient condition is \begin{equation}\label{1.5} \min_{1\leq i\leqslant n}\Big\{ \sum_{j=1}^n\Big[\bar a_{ij} +\sum_{k=1}^m(\bar b_{ijk}+\bar c^*_{ijk})\Big]+\bar P_i+\bar Q_i\Big\}>0 \end{equation} and \begin{equation}\label{1.6} \min_{1\leq i\leq n}\{ \bar \beta _i+\bar p_{i1} \}>0. \end{equation} \end{theorem} Unfortunately, the sufficient condition in the above theorem is incorrect, as shown by the following example. \noindent \textbf{Example.} Consider the system \begin{equation}\label{1.7} \begin{gathered} \dot x_1(t)=x_1(t)\Big[1-x_1(t)-3x_2(t)-2x_2(t-\tau_{1})-u_1(t) -u_ 1(t-\sigma_{1}) \Big],\\ \dot x_2(t)=x_1(t)\Big[2-3x_1(t)-x_2(t)-2x_1(t-\tau_{2})-u_2(t) -u_ 2(t-\sigma_{2}) \Big],\\ \dot u_1(t)=-u_1(t)+x_1(t)+x_1(t-\gamma_{1}),\ \dot u_2(t) =-u_2(t)+x_2(t)+x_2(t-\gamma_{2}), \end{gathered} \end{equation} where $\tau_{i}, \sigma_i, \gamma_i$, $i=1,2,$ are positive constants. It is easy to see that system \eqref{1.7} satisfies all hypotheses of Theorem \ref{thm1.1} with $\omega =1$. On the other hand, if $(x^*_1(t),x^*_2(t),u^*_1(t),u^*_2(t))$ is a positive 1-periodic solution of system \eqref{1.7}, then \begin{equation}\label{1.8} \begin{gathered} \frac{d}{dt}\ln x^*_1(t) =\Big[1-x^*_1(t)-3x^*_2(t)-2x^*_2(t-\tau_{1})-u^*_1(t)-u^*_ 1(t-\sigma_{1}) \Big],\\ \frac{d}{dt}\ln x^*_2(t) =\Big[2-3x^*_1(t)-x^*_2(t)-2x^*_1(t-\tau_{2})-u^*_1(t)-u^*_ 2(t-\sigma_{2}) \Big],\\ \frac{d}{dt} u^*_1(t)=-u^*_1(t)+x^*_1(t)+x^*_1(t-\gamma_{1}),\\ \frac{d}{dt} u^*_2(t)=-u^*_2(t)+x^*_2(t)+x^*_2(t-\gamma_{2}), \end{gathered} \end{equation} Integrating \eqref{1.8} from 0 to 1 and simplifying, we obtain \begin{equation}\label{1.9} \bar x^*_1+5 \bar x^*_2+2\bar u^*_1=1,\quad 5 \bar x^*_1 + \bar x^*_2+2\bar u^*_2=2,\quad \bar u^*_1=2\bar x^*_1,\quad \bar u^*_2=2x^*_2. \end{equation} This implies \[ 5 \bar x^*_1+5 \bar x^*_2=1,\quad 5 \bar x^*_1+5 \bar x^*_2=2, \] which is impossible. Thus, system \eqref{1.7} has no positive 1-periodic solution and then the sufficient condition in Theorem \ref{thm1.1} (given in \cite{tk2}) is incorrect. In the proof of Theorem \ref{thm1.1} (see \cite{tk2}), authors considered a map $\Phi: K \to K,$ where $$ K=\{(x_1,\dots,x_n) \in E:x_i(t)\geqslant \delta _i \|x_i\|_0,\; i=1,2,\dots,n,\; t\in [0,\omega ]\} $$ (with $\delta_i=\exp\{-\bar r_i\omega\}$) is a cone of the Banach space $E=\{x\in C(\mathbb{R},\mathbb{R}^n): x(t+\omega)=x(t) \text{ for all } t\in \mathbb{R}\}$ with the norm $\|x\|_0=\sum_{i=1}^n\|x_i\|_0$ (where $\|x_i\|_0=\max_{t\in [0,\omega]}|x_i(t)|$). By employing fixed point index theory on cone, it was proved in \cite{tk2} that there exist positive constants $r$ and $R$ $(r0, \delta_i>0$ for $i,j=1,2,\dots,n$. If \begin{equation}\label{2.3} \delta_i-\sum_{j\ne i}^nq_{ij}\frac{\delta_j}{q_{jj}}>0, i=1,2,\dots,n, \end{equation} then the system of algebraic equations \begin{equation}\label{2.4} \delta_i-\sum_{j=1}^nq_{ij}x_j=0, \quad i=1,2,\dots,n \end{equation} has a unique solution $x^*=(x_1^*,\dots,x_n^*)\in \mathbb{R}^n$. Moreover, $x^*_i>0$ for $i=1,2,\dots,n$. \end{lemma} \begin{proof} Let $y_i=q_{ii}x_i$ for $i=1,2,\dots,n$, so that system \eqref{2.4} becomes \begin{equation}\label{2.5} \delta_i-\sum_{j=1}^nq^*_{ij}y_j=0, i=1,2,\dots,n, \end{equation} where $q^*_{ij}=q_{ij}/q_{jj}$, $i,j=1,2,\dots,n$. Clearly, $q^*_{ii}=1$ for $i=1,2,\dots,n$. By \eqref{2.3}, \begin{equation}\label{2.6} \delta_i-\sum_{j\ne i}^nq^*_{ij}\delta_j>0, \quad i=1,2,\dots,n. \end{equation} Let $\epsilon$ be a positive number such that $\epsilon <\min_{1\leq i \leq n} \big[\delta_i-\sum_{j\ne i}^nq^*_{ij}\delta_j\big]$. Denote \[ {\mathcal D}=\{y=(y_1,\dots,y_n)\in \mathbb{R}^n: \epsilon \leq y_i \leq \delta_i, i=1,2,\dots,n\}, \] $F=(F_1,\dots,F_n):\mathbb{R}^n\to \mathbb{R}^n$, where \[ F_i(y)=\delta_i-\sum_{j=1}^nq^*_{ij}y_j, \quad i=1,2,\dots,n; \] and $H=F+I$, where $I$ is the identity operator on $\mathbb{R}^n$. It is easy to see that $\epsilon < H_i(y)<\delta_i$ for $i=1,2,\dots,n,$ $y \in {\mathcal D}$; i.e., $H(y)\in \operatorname{int}({\mathcal D})$-the interior of $\mathcal D$ for all $y\in {\mathcal D}$. Thus, $\deg (H-I,\operatorname{int}{\mathcal D},0)=\deg (F,\operatorname{int}{\mathcal D},0)=1$. This implies that the equation $Fy=0$ has at least one solution $y^*$ in $\operatorname{int}{\mathcal D}$. Since $Fy\neq 0$ for all $y \in \partial {\mathcal D}$ and $Fy=0$ is linear equation, it follows that $y^*$ is the unique solution in $\mathbb{R}^n$ of the equation $Fy=0$. Thus, equation \eqref{2.4} has a unique solution $x^*=(x_1^*,\dots,x_n^*)\in \mathbb{R}^n$. Moreover, $x^*_i>0$ for $i=1,2,\dots,n.$ The proof is complete. \end{proof} \begin{definition}\label{def2.1} \rm Let $(\tilde x(t),\tilde u(t))=(\tilde x_1(t),\dots,\tilde x_n(t), \tilde u_1(t),\dots, \tilde u_n(t))$ be a positive $\omega$-periodic solution of system \eqref{1.1}. It is said to be globally asymptotically stable if any positive solution $(x(t),u(t))=(x_1(t),\dots,x_n(t),u_1(t),\dots,u_n(t))$ of \eqref{1.1}-\eqref{1.2} satisfies $$ \lim_{t\to +\infty}\sum_{i=1}^n\Big\{|x_i(t)-\tilde x_i(t)| + |u_i(t)-\tilde u_i(t)|\Big\}=0. $$ \end{definition} \begin{remark} \label{rmk2.1} \rm Let us put $y_i=h_i(x_i):=\int_1^{x_i}\frac{ds}{g_i(s)}$, $i=1,2,\dots,n$. By (H3), it is easy to see that $h_i:(0,+\infty)\to \mathbb{R}$, $x_i\mapsto y_i=h_i(x_i)$ has a unique inverse $\varphi_i:\mathbb{R}\to (0,+\infty )$, $y_i\mapsto x_i=\varphi _i(y_i)$. Moreover, $\varphi_i \in C^1(\mathbb{R},(0,+\infty))$ and $\varphi_i$ is strictly monotone increasing. \end{remark} \begin{remark} \label{rmk2.2}\rm By (H5), Lemma \ref{lem2.3} implies that the functions $t-\tau_{ijk}(t), t-\sigma_{ik}(t)$ and $t-\gamma_{ik}(t)$ have the unique inverses, respectively. Let $\mu_{ijk}(t),\ \zeta_{ik}(t)$ and $\xi_{ik}(t)$ represent the inverses of functions $t-\tau_{ijk}(t), t-\sigma_{ik}(t)$ and $t-\gamma_{ik}(t)$, respectively. Obviously, $\mu_{ijk}, \zeta_{ik}, \xi_{ik}\in C(\mathbb{R},\mathbb{R})$ and $\mu_{ijk}(t+\omega)=\mu_{ijk}(t), \zeta_{ik}(t+\omega) =\zeta_{ik}(t), \xi_{ik}(t+\omega)=\xi_{ik}(t)$ for all $t\in \mathbb{R}$. \end{remark} \begin{remark} \label{rmk2.3}\rm It is easy from (H1)--(H4) to show that solutions of \eqref{1.1}-\eqref{1.2} are well defined for all $t\geq 0$ and satisfy $x_i(t)>0$ and $u_i(t)>0$ for all $t\geq 0$ and $i=1,2,\dots,n$. \end{remark} \section{Main Results} \begin{theorem}\label{thm3.1} Assume that {\rm (H1)--(H4)} hold. Let \begin{gather}\label{3.1} \int_0^\omega\Big[\beta_i(s)+\sum_{k=1}^mp_{ik}(s)+v^*_i(s) \Big]ds>0 , \quad i=1,2,\dots,n,\\ \label{3.2} A_i:=\bar a_{ii}+\sum_{k=1}^m\bar b_{iik}+\sum_{k=1}^m\bar c^*_{iik} +\bar P_i +\bar Q_i +\bar R_i >0, \quad i=1,2,\dots,n, \\ \label{3.3} \bar r_i>\sum_{j\ne i}^n\Big(\bar a_{ij}+\sum_{k=1}^m\bar b_{ijk} +\sum_{k=1}^m\bar c^*_{ijk} +\bar P_j+\bar Q_j+\bar R_j \Big)\varphi_j(B_j), \quad i=1,2,\dots,n, \end{gather} where $B_i=h_i(\bar r_i/A_i)+(\bar r_i +\overline{|r_i|})\omega$, $i=1,2,\dots,n$. Then system \eqref{1.1} has at least one positive $\omega$-periodic solution. \end{theorem} \begin{proof} Consider the system \begin{equation}\label{3.4} \begin{aligned} \dot y_i(t) &=r_i(t)-\sum_{j=1}^na_{ij}(t)\varphi_j(y_j(t)) -\sum_{j=1}^n\sum_{k=1}^mb_{ijk}(t)\varphi_j(y_j(t-\tau_{ijk}(t)))\\ &-\sum_{j=1}^n\sum_{k=1}^m\int_{-\infty}^tc_{ijk}(t,s)\varphi_j(y_j(s) )d s -d_{i}(t)(V_i\varphi_i(y_i))(t)\\ &-\sum_{k=1}^me_{ik}(t)(V_ i\varphi_i(y_i))(t-\sigma_{ik}(t)) -\int_{-\infty}^tf_{i}(t,s)(V_i\varphi_i(y_i))(s)ds. \end{aligned} \end{equation} By \eqref{1.3}, \eqref{2.2} and \eqref{3.1}, if system \eqref{3.4} has an $\omega$-periodic solution $(y_1^*(t),\dots,y^*_n(t))$, then \begin{align*} u^*_i(t)&=(V_i\varphi_i(y^*_i))(t) \\ &\geqslant \int_t^{t+\omega} \Big(\frac{1}{\exp\{\bar \alpha_i\omega\}-1}\min_{\tau \in [0,\omega ]} \varphi_i(y^*_i(\tau))\Big)\Big[\beta_i(s)\\ &\quad +\sum_{k=1}^mp_{ik}(s)+v^*_i(s) \Big]ds>0,\quad t\in \mathbb{R},\; i=1,2,\dots,n. \end{align*} Thus, $(x^*_1(t),\dots,x^*_n(t),u^*_1(t),\dots,u_n^*(t))$ with values $x_i^*(t)=\varphi_i(y^*_i(t))$ and $u^*_i(t)=(V_i\varphi_i(y^*_i))(t)$ for $i=1,2,\dots,n$ is a positive $\omega$-periodic solution of system \eqref{2.1}. So, by Lemma \ref{lem2.2}, we only need to show that system \eqref{3.4} has at least one $\omega$-periodic solution in order to complete the proof. To apply the continuation theorem of coincidence degree theory to the existence of an $\omega$-periodic solution of system \eqref{3.4}, we take $$ Y=Z=\Big\{y(t)=(y_1(t),\dots,y_n(t)) \in C(\mathbb{R},\mathbb{R}^n): y(t+\omega)=y(t)\text{ for all } t \in \mathbb{R}\Big\}. $$ Denote $\|y\|_0=\sum_{i=1}^n\|y_i\|_0$, where $\|y_i\|_0=\max_{t\in [0,\omega]}|y_i(t)|$. Then $Y$ and $Z$ are Banach spaces when they endowed with the norm $\|\cdot\|_0$. We define $L:\operatorname{Dom}L\subset Y\to Z$ and $N:Y \to Z$ by setting $Ly=\dot y$ and $Ny=Fy=( F_1y,\dots,F_ny)$, where \begin{equation} \begin{aligned} F_iy(t)=&r_i(t)-\sum_{j=1}^na_{ij}(t)\varphi_j(y_j(t)) -\sum_{j=1}^n\sum_{k=1}^mb_{ijk}(t)\varphi_j(y_j(t-\tau_{ijk}(t)))\\ &-\sum_{j=1}^n\sum_{k=1}^m\int_{-\infty}^tc_{ijk}(t,s)\varphi_j(y_j(s) )d s -d_{i}(t)(V_i\varphi_i(y_i))(t)\\ &-\sum_{k=1}^me_{ik}(t)(V_ i\varphi_i(y_i))(t-\sigma_{ik}(t)) -\int_{-\infty}^tf_{i}(t,s)(V_i\varphi_i(y_i))(s)ds. \end{aligned} \end{equation} Further, we define continuous projectors $P:Y\to Y$ and $Q:Z\to Z$ as follows $$ Py = \frac{1}{\omega}\int_0^\omega y(s)ds,\quad Qz=\frac{1}{\omega}\int_0^\omega z(s)ds. $$ We easily see that $ \operatorname{Im}L=\{z\in Z:\int_0^\omega z(s)ds=0\}$ and $\ker L=\mathbb{R}^n$. So, $\operatorname{Im}L$ is closed in $Z$ and $\dim\ker L =n = \operatorname{codim\,Im}L$. Hence, $L$ is a Fredholm mapping of index zero. Clearly that $\operatorname{Im}P = \ker L$, $\operatorname{Im}L=\ker Q=\operatorname{Im}(I-Q)$/ Furthermore, the generalized inverse (to $L$) $K_P:\operatorname{Im}L\to \ker P\cap \operatorname{Dom}L$ has the form $$ K_Pz(t)=\int_0^tz(s)ds-\frac{1}{\omega}\int_0^\omega\int_0^tz(s)\,ds\,dt. $$ We know that $$ QNy(t)=\frac{1}{\omega}\int_0^\omega Fy(t)dt. $$ Thus, \begin{align*} K_P(I-Q)Ny(t) &=(K_PN-K_PQN)y(t)\\ &=\int_0^tFy(s)ds-\frac{1}{\omega}\int_0^\omega\int_0^tFy(s)\,ds\,dt +\Big(\frac{1}{2}-\frac{t}{\omega} \Big)\int_0^\omega Fy(s)ds. \end{align*} It is easy to see that $QN$ and $K_p(I-Q)N$ are continuous. Furthermore, it can be verified that $\overline{K_P(I-Q)N(\bar{\Omega})}$ is compact for any open bounded set $\Omega \subset Y$ by using Arzela-Ascoli theorem and $QN(\bar{\Omega})$ is bounded. Therefore, $N$ is $L$-compact on $\bar \Omega$ for any open bounded subset $\Omega \subset Y$. Now we are in a position to search for an appropriate open bounded subset $\Omega$ for the application of the continuation theorem (Lemma \ref{lem2.1}) to system \eqref{3.4}. Corresponding to the operator equation $Ly=\lambda Ny$ ($\lambda \in (0,1)$), we have \begin{equation}\label{3.6} \begin{aligned} \dot y_i(t) &=\lambda \Big[r_i(t)-\sum_{j=1}^na_{ij}(t)\varphi_j(y_j(t)) -\sum_{j=1}^n\sum_{k=1}^mb_{ijk}(t)\varphi_j(y_j(t-\tau_{ijk}(t)))\\ &\quad -\sum_{j=1}^n\sum_{k=1}^m\int_{-\infty}^tc_{ijk}(t,s)\varphi_j(y_j(s) )d s -d_{i}(t)(V_i\varphi_i(y_i))(t)\\ &\quad -\sum_{k=1}^me_{ik}(t)(V_ i\varphi_i(y_i))(t-\sigma_{ik}(t)) -\int_{-\infty}^tf_{i}(t,s)(V_i\varphi_i(y_i))(s)ds\Big]. \end{aligned} \end{equation} Integrating \eqref{3.6} from 0 to $\omega$ and simplifying, we obtain \begin{equation}\label{3.7} \begin{aligned} \bar r_i \omega &= \sum_{j=1}^n\int_0^\omega a_{ij}(t)\varphi_j(y_j(t))dt +\sum_{j=1}^n\sum_{k=1}^m\int_0^\omega b_{ijk}(t) \varphi_j(y_j(t-\tau_{ijk}(t)))dt\\ &\quad +\sum_{j=1}^n\sum_{k=1}^m\int_0^\omega \int_{-\infty}^tc_{ijk}(t,s)\varphi_j(y_j(s) )\,ds\,dt +\int_0^\omega d_{i}(t)(V_i\varphi_i(y_i))(t)dt\\ &\quad +\sum_{k=1}^m\int_0^\omega e_{ik}(t)(V_ i\varphi_i(y_i)) (t-\sigma_{ik}(t))dt\\ &\quad +\int_0^\omega \int_{-\infty}^tf_{i}(t,s)(V_i\varphi_i(y_i))(s)\,ds\,dt. \end{aligned} \end{equation} Let \begin{equation}\label{3.8} y_i(\eta _i)=\max_{t\in [0,\omega ]}y_i(t), y_i(\theta _i)=\min_{t\in [0,\omega ]}y_i(t),\quad \eta _i,\theta _i\in [0,\omega ],\; i=1,2,\dots,n. \end{equation} It is easy to see from \eqref{1.3}, \eqref{2.2} and \eqref{3.8} that \begin{equation}\label{3.9} \begin{gathered} \int_0^\omega d_{i}(t)(V_i\varphi_i(y_i))(t)dt \geq \bar P_i \omega \varphi_i(y_i(\theta_i)),\\ \sum_{k=1}^m\int_0^\omega e_{ik}(t)(V_ i\varphi_i(y_i))(t-\sigma_{ik}(t))dt \geq \bar Q_i \omega \varphi_i(y_i(\theta_i)),\\ \int_0^\omega \int_{-\infty}^tf_{i}(t,s)(V_i\varphi_i(y_i))(s)\,ds\,dt \geq \bar R_i\omega \varphi_i(y_i(\theta_i)) \end{gathered} \end{equation} and \begin{equation}\label{3.10} \begin{gathered} \int_0^\omega d_{i}(t)(V_i\varphi_i(y_i))(t)dt \leq \bar P_i \omega \varphi_i(y_i(\eta_i)),\\ \sum_{k=1}^m\int_0^\omega e_{ik}(t)(V_ i\varphi_i(y_i))(t-\sigma_{ik}(t))dt \leq \bar Q_i \omega \varphi_i(y_i(\eta_i)),\\ \int_0^\omega \int_{-\infty}^tf_{i}(t,s)(V_i\varphi_i(y_i))(s)\,ds\,dt \leq \bar R_i\omega \varphi_i(y_i(\eta_i)). \end{gathered} \end{equation} It follows from \eqref{1.3}, \eqref{3.7}, \eqref{3.8} and \eqref{3.9} that \begin{equation}\label{3.11} \bar r_i \geq \Big(\bar a_{ii}+\sum_{k=1}^m\bar b_{iik} +\sum_{k=1}^m\bar c^*_{iik} +\bar P_i +\bar Q_i +\bar R_i\Big)\varphi_i(y_i(\theta_i)) =A_i \varphi_i(y_i(\theta_i)), \end{equation} for $i=1,2,\dots,n$. Thus, by \eqref{3.2} and Remark \ref{rmk2.1}, we have \begin{equation}\label{3.12} y_i(\theta _i)\leq h_i(\frac{\bar r_i}{A_i}), \quad i=1,2,\dots,n. \end{equation} From \eqref{3.6} and \eqref{3.7}, we know that \begin{equation}\label{3.13} \int_0^\omega |\dot y_i(t)|dt \leq (\bar r_i +\overline{|r_i|})\omega, \quad i=1,2,\dots,n, \end{equation} and thus, by \eqref{3.12}, \begin{equation}\label{3.14} y_i(t)\leq y_i(\theta_i)+ \int_0^\omega |\dot y_i(t)|dt \leq h_i(\frac{\bar r_i}{A_i}) + (\bar r_i +\overline{|r_i|})\omega =B_i, \quad t\in [0,\omega ], \end{equation} for $i=1,2,\dots,n$. It is easy to see from \eqref{3.7}, \eqref{3.8}, \eqref{3.10} and \eqref{3.14} that \begin{equation}\label{3.15} \begin{aligned} &\Big(\bar a_{ii}+\sum_{k=1}^m\bar b_{iik}+\sum_{k=1}^m\bar c^*_{iik} +\bar P_i +\bar Q_i +\bar R_i \Big) \varphi_i(y_i(\eta_i))\\ &\geqslant \bar r_i -\sum_{j\ne i}^n \Big(\bar a_{ij} +\sum_{k=1}^m\bar b_{ijk}+\sum_{k=1}^m\bar c^*_{ijk} +\bar P_j+\bar Q_j+\bar R_j \Big)\varphi_j(y_j(\eta_j)) , \end{aligned} \end{equation} for $ i=1,2,\dots,n$. Thus, by \eqref{3.3} and \eqref{3.14}, we have \[ \varphi_i(y_i(\eta_i))\geq \frac{\bar r_i -\sum_{j\ne i}^n \Big(\bar a_{ij}+\sum_{k=1}^m[\bar b_{ijk}+\bar c^*_{ijk}] +\bar P_j+\bar Q_j+\bar R_j \Big)\varphi_j(B_j)}{ \bar a_{ii} +\sum_{k=1}^m[\bar b_{iik}+\bar c^*_{iik}]+\bar P_i +\bar Q_i +\bar R_i }=:C_i, \] for $ i=1,2,\dots,n$; or \begin{equation}\label{3.16} y_i(\eta_i)\geq h_i(C_i), \quad i=1,2,\dots,n, \end{equation} From \eqref{3.13} and \eqref{3.16}, it follows that \begin{equation}\label{3.17} y(t) \geq y_i(\eta_i)-\int_0^\omega |\dot y_i(t)|dt \geq h_i(C_i)-(\bar r_i +\overline{|r_i|})\omega =:D_i, t\in [0,\omega ], \end{equation} for $i=1,2,\dots,n$. From \eqref{3.12} and \eqref{3.16} we see that \begin{equation}\label{3.18} \|y\|_0\leq M:= \sum_{i=1}^n (|B_i|+|D_i|). \end{equation} By \eqref{3.3}, Lemma \ref{lem2.3} implies that the following system of algebraic equations \begin{equation}\label{3.19} \bar r_i=\sum_{j=1}^n \Big[ \bar a_{ij}+\sum_{k=1}^m\bar b_{ijk} +\sum_{k=1}^m\bar c^*_{ijk}\Big]\varphi_j(y_j) +(\bar P_i+\bar Q_i+\bar R_i)\varphi_i(y_i), \end{equation} for $i=1,2,\dots,n$, has a unique solution $y^*=(y^*_1,\dots,y^*_n)\in \mathbb{R}^n$. Let $S=\|y^*\|_0+M$. Evidently, $S$ is independent of the choice of $\lambda$. Let $\Omega :=\{ y \in Y: \|y\|_10, \end{aligned}\\ \min_{t\in [0,\omega]}\Big\{\alpha_i(t)-d_i(t)-\sum_{k=1}^m \frac{e_{ik}(\zeta_{ik}(t))}{1-\dot \sigma_{ik}(\zeta_{ik}(t))} - \int_0^{+\infty}f_i(t+\tau,t)d\tau \Big\}>0, \end{gathered} \end{equation} for $i=1,2,\dots,n$, then system \eqref{1.1} has a unique positive $\omega$-periodic solution which is globally asymptotically stable. \end{theorem} \begin{proof} From \eqref{3.20}, we conclude that $\bar a_{ii}>0$ for $i=1,2,\dots,n$, which means that \eqref{3.2} holds. By Theorem \ref{thm3.1}, system \eqref{1.1} has a positive $\omega$-periodic solution $(\tilde x(t),\tilde u(t))$. Let $( x(t),u(t))$ be any other positive solution of \eqref{1.1} with initial condition \eqref{1.2}. Consider the Liapunov functional $V(t)=V(\tilde x(t), \tilde u(t)),(x(t),u(t)))$ defined by \begin{equation}\label{3.21} \begin{aligned} V(t)&=\sum_{i=1}^n\nu_i\Big\{V_i^{(1)}(t)+V_i^{(2)}(t) + \sum_{j=1}^n\sum_{k=1}^m\Big[V_{ijk}^{(3)}(t)+V_{ijk}^{(4)}(t)\Big]\\ &\quad +\sum_{k=1}^m\Big[V_{ik}^{(5)}(t)+V_{ik}^{(6)}(t)\Big] +V_i^{(7)}(t)+V_i^{(8)}(t) \Big\}, \end{aligned} \end{equation} where, for $i,j=1,2,\dots,n$, $k=1,2,\dots,m$, we have \begin{gather*} V_i^{(1)}(t)=\Big|\int_{\tilde x_i(t)}^{x_i(t)}\frac{ds}{g_i(s)}\Big|,\quad V_i^{(2)}(t)= |u_i(t)-\tilde u_i(t)|,\\ V_{ijk}^{(3)}(t)=\int_{t-\tau_{ijk}(t)}^t \frac{b_{ijk} (\mu_{ijk}(s))}{1-\dot \tau_{ijk}(\mu_{ijk}(s))}|x_j(s)-\tilde x_j(s)|\,ds,\\ V_{ijk}^{(4)}(t)=\int_0^{+\infty}\int_{t-\tau}^t c_{ijk} (s+\tau,s)|x_j(s)-\tilde x_j(s)|\,ds\,d\tau,\\ V_{ik}^{(5)}(t)=\int_{t-\sigma_{ik}(s)}^t\frac{e_{ik} (\zeta_{ik}(s))}{1-\dot \sigma_{ik}(\zeta_{ik}(s))}|u_i(s)-\tilde u_i(s)|\,ds,\\ V_{ik}^{(6)}(t)=\int_{t-\gamma_{ik}(t)}^t\frac{p_{ik} (\xi_{ik}(s))}{1-\dot \gamma _{ik}(\xi_{ik}(s))}|x_i(s)-\tilde x_i(s)|\,ds,\\ V_i^{(7)}(t)=\int_0^{+\infty}\int_{t-\tau}^t f_i (s+\tau ,s) |u_i(s)-\tilde u_i(s)|\,ds\,d\tau, \\ V_i^{(8)}(t)=\int_0^{+\infty}\int_{t-\tau}^t v_i(s+\tau,s)|u_i(s) -\tilde u_i(s)|\,ds\,d\tau \end{gather*} Clearly $V(t)$ is continuous on $[0,+\infty)$. Calculating the upper right derivative of $V_i^{(1)}(t),\dots,V_i^{(8)}(t)$ along the solutions of system \eqref{1.1} for $t>0$, we obtain \begin{align*} &D^+V_i^{(1)}\\ &=\Big[\frac{\dot x_i(t)}{g_i(x_i(t))} -\frac{\dot {\tilde x}_i(t)}{g_i(\tilde x_i(t))}\Big] \operatorname{sgn}[x_i(t)-\tilde x_i(t)]\\ &=\operatorname{sgn}[x_i(t)-\tilde x_i(t)] \Big[-\sum_{j=1}^na_{ij}(x_j(t)-\tilde x_j(t))\\ &\quad -\sum_{j=1}^n\sum_{k=1}^mb_{ijk}(t)(x_j(t-\tau_{ijk}(t)) -\tilde x_j(t-\tau_{ijk}(t)))\\ &\quad -\sum_{j=1}^n\sum_{k=1}^m\int_{-\infty}^tc_{ijk}(t,\tau)(x_j(\tau) -\tilde x_j(t))d\tau -d_i(t)(u_i(t)-\tilde u_i(t))\\ &\quad -\sum_{k=1}^me_{ik}(t)(u_i(t-\sigma_{ik}(t)) -\tilde u_i(t-\sigma_{ik}(t))) -\int_{-\infty}^t f_i(t,\tau)(u_i(\tau)-\tilde u_i(\tau))d\tau\Big]; \end{align*} and thus, \begin{equation}\label{3.22} \begin{aligned} D^+ V_i^{(1)}&\leqslant -a_{ii}(t)|x_i(t)-\tilde x_i(t)| +\sum_{j\ne i}^na_{ij}(t)|x_j(t)-\tilde x_j(t)|\\ &\quad +\sum_{j=1}^n\sum_{k=1}^mb_{ijk}(t)|x_j(t-\tau_{ijk}(t)) -\tilde x_j(t-\tau_{ijk}(t))|\\ &\quad + \sum_{j=1}^n\sum_{k=1}^m\int_{-\infty}^tc_{ijk}(t,\tau)|x_j(\tau) -\tilde x_j(\tau)|d\tau -d_i(t)|u_i(t)-\tilde u_i(t)|\\ &\quad +\sum_{k=1}^me_{ik}(t)|u_i(t-\sigma_{ik}(t)) -\tilde u_i(t-\sigma_{ik}(t))|\\ &\quad +\int_{-\infty}^t f_i(t,\tau)|u_i(\tau) -\tilde u_i(\tau)|d\tau, \end{aligned} \end{equation} \begin{equation}\label{3.23} \begin{aligned} D^+ V_i^{(2)} &=[\dot u_i(t)-\dot{\tilde u}_i(t)]\operatorname{sgn}[u_i(t) -\tilde u_i(t)]\\ &=\operatorname{sgn}[u_i(t)-\tilde u_i(t)]\Big[-\alpha_i(t)(u_i(t) -\tilde u_i(t))+\beta_i(t)(x_i(t)-\tilde x_i(t))\\ &\quad +\sum_{k=1}^mp_{ik}(t)(x_i(t-\gamma_{ik}(t)) -\tilde x_i(t-\gamma_{ik}(t)))\\ &\quad +\int_{-\infty}^t v_i(t,\tau)(x_i(\tau)- \tilde x_i(\tau))d\tau\Big]\\ &\leq -\alpha_i(t)|u_i(t)-\tilde u_i(t)|+\beta_i(t)|x_i(t)-\tilde x_i(t)|\\ &\quad +\sum_{k=1}^mp_{ik}(t)|x_i(t-\gamma_{ik}(t)) -\tilde x_i(t-\gamma_{ik}(t))|\\ &\quad +\int_{-\infty}^t v_i(t,\tau)|x_i(\tau)- \tilde x_i(\tau)|d\tau; \end{aligned} \end{equation} \begin{gather}\label{3.24} \begin{aligned} \dot V_{ijk}^{(3)} &=\frac{b_{ijk}(\mu_{ijk}(t))}{1-\dot \tau_{ijk}(\mu_{ijk}(t)))} |x_j(t)-\tilde x_j(t)|\\ &\quad -b_{ijk}(t)|x_j(t-\tau_{ijk}(t))-\tilde x_j(t-\tau_{ijk}(t))|, \end{aligned} \\ \label{3.25} \begin{aligned} \dot V_{ijk}^{(4)} &= \int_0^{+\infty}c_{ijk}(t+\tau,t)|x_j(t)-\tilde x_j(t)|d\tau \\ &\quad -\int_0^{+\infty}c_{ijk}(t,t-\tau)|x_j(t-\tau)-\tilde x_j(t-\tau)|d\tau; \end{aligned}\\ \label{e3.26} \dot V_{ik}^{(5)}= \frac{e_{ik}(\zeta_{ik}(t))}{1-\dot \sigma_{ik} (\zeta_{ik}(t)))}|u_i(t)-\tilde u_i(t)| -e_{ik}(t)|u_i(t-\sigma_{ik}(t))-\tilde u_i(t-\sigma_{ik}(t))|; \\ \label{e3.27} \dot V_{ik}^{(6)}= \frac{p_{ik}(\xi_{ik}(t))}{1-\dot \gamma_{ik}(\xi_{ik}(t)))} |x_i(t)-\tilde x_i(t)| -p_{ik}(t)|x_i(t-\gamma_{ik}(t))-\tilde x_i(t-\gamma_{ik}(t))|; \\ \label{e3.28} \begin{aligned} \dot V_{i}^{(7)} &= \int_0^{+\infty}f_i(t+\tau,t)|u_i(t)-\tilde u_i(t)|d\tau\\ &\quad -\int_0^{+\infty}f_i(t,t-\tau)|u_i(t-\tau)-\tilde u_i(t-\tau)|d\tau; \end{aligned}\\ \label{e3.29} \begin{aligned} \dot V_{i}^{(8)}&= \int_0^{+\infty}v_i(t+\tau,t)|x_i(t)-\tilde x_i(t)|d\tau\\ &\quad -\int_0^{+\infty}v_i(t,t-\tau)|x_i(t-\tau)-\tilde x_i(t-\tau)|d\tau. \end{aligned} \end{gather} From \eqref{3.21}-\eqref{e3.29} it follows that \begin{align} D^+V &\leq \sum_{i=1}^n\nu_i\Big\{ \Big[-a_{ii}(t)+\beta_i(t) +\sum_{k=1}^m\frac{p_{ik}(\xi_{ik}(t))}{1-\dot \gamma_{ik}(\xi_{ik}(t)))}\notag\\ &\quad +\int_0^{+\infty}v_i(t+\tau,t)d\tau\Big]|x_i(t)-\tilde x_i(t)| \notag\\ &\quad +\sum_{j\ne i}^na_{ij}(t)|x_j(t)-\tilde x_j(t)|+\sum_{j=1}^n \sum_{k=1}^m\frac{b_{ijk}(\mu_{ijk}(t))}{1-\dot \tau_{ijk} (\mu_{ijk}(t)))}|x_j(t)-\tilde x_j(t)| \notag\\ &\quad +\sum_{j=1}^n\sum_{k=1}^m\Big[\int_0^{+\infty}c_{ijk} (t+\tau,t)d\tau \Big]|x_j(t)-\tilde x_j(t)|\Big\} +\sum_{i=1}^n\nu_i\Big\{-\alpha_i(t)+d_i(t) \notag\\ &\quad +\sum_{k=1}^m \frac{e_{ik}(\zeta_{ik}(t))}{1-\dot \sigma_{ik} (\zeta_{ik}(t)))} +\int_0^{+\infty}f_i(t+\tau,t)d\tau\Big\}|u_i(t)-\tilde u_i(t)| \notag\\ &=\sum_{i=1}^n\Big\{ \nu_i\Big[- a_{ii}(t)+\beta_i(t) +\sum_{k=1}^m\frac{p_{ik}(\xi_{ik}(t))}{1-\dot \gamma _{ik}(\xi_{ik}(t))} +\int_0^{+\infty}v_i(t+\tau,t)d\tau \Big] \notag\\ &\quad + \sum_{j\ne i}^n\nu_ja_{ji}(t) +\sum_{j=1}^n\nu_j\sum_{k=1}^m\frac{b_{jik} (\mu_{jik}(t))}{1-\dot \tau_{jik}(\mu_{jik}(t))} \notag\\ &\quad +\sum_{j=1}^n\nu_j\sum_{k=1}^m\int_0^{+\infty}c_{jik} (t+\tau,t)d\tau\Big\}|x_i(t)-\tilde x_i(t)| \notag \\ &\quad +\sum_{i=1}^n\Big\{\nu_i\Big[ -\alpha_i(t)+d_i(t) +\sum_{k=1}^m \frac{e_{ik}(\zeta_{ik}(t))}{1-\dot \sigma_{ik}(\zeta_{ik}(t))} \notag\\ &\quad + \int_0^{+\infty}f_i(t+\tau,t)d\tau \Big]\Big\}|u_i(t)-\tilde u_i(t)|. \label{3.30} \end{align} By \eqref{3.20}, there exists positive number $\delta$ such that \begin{equation}\label{3.31} \begin{gathered} \begin{aligned} &\min_{t\in [0,\omega]}\Big\{ \nu_i\Big[ a_{ii}(t)-\beta_i(t) -\sum_{k=1}^m\frac{p_{ik}(\xi_{ik}(t))}{1-\dot \gamma _{ik}(\xi_{ik}(t))} -\int_0^{+\infty}v_i(t+\tau,t)d\tau \Big] \\ &- \sum_{j\ne i}^n\nu_ja_{ji}(t)-\sum_{j=1}^n\nu_j\sum_{k=1}^m\frac{b_{jik} (\mu_{jik}(t))}{1-\dot \tau_{jik}(\mu_{jik}(t))}\\ &-\sum_{j=1}^n\nu_j\sum_{k=1}^m\int_0^{+\infty}c_{jik}(t+\tau,t)d\tau\Big\}>\delta, \end{aligned}\\ \min_{t\in [0,\omega]}\Big\{\nu_i\Big[ \alpha_i(t)-d_i(t) -\sum_{k=1}^m \frac{e_{ik}(\zeta_{ik}(t))}{1-\dot \sigma_{ik}(\zeta_{ik}(t))} - \int_0^{+\infty}f_i(t+\tau,t)d\tau \Big]\Big\}>\delta, \end{gathered} \end{equation} for $i=1,2,\dots,n$. In the view of \eqref{3.30} and \eqref{3.31} we have \begin{equation}\label{3.32} D^+V (t)\leq - \delta \sum_{i=1}^n\Big\{|x_i(t)-\tilde x_i(t)| + |u_i(t)-\tilde u_i(t)|\Big\},\quad t\geq 0. \end{equation} Integrating both sides of \eqref{3.32} from 0 to $t$, we obtain $$ V(t)-V(0)\leq -\delta \int_0^t\sum_{i=1}^n\Big\{|x_i(s) -\tilde x_i(s)|+ |u_i(s)-\tilde u_i(s)|\Big\} ds, t\geq 0. $$ Thus, $$ \int_0^t\sum_{i=1}^n\Big\{|x_i(s)-\tilde x_i(s)| + |u_i(s)-\tilde u_i(s)|\Big\} ds\leq \frac{V(0)}{\delta}, \quad t\geq 0, $$ which implies \begin{equation}\label{3.33} \int_0^{+\infty} \sum_{i=1}^n\Big\{|x_i(s)-\tilde x_i(s)| + |u_i(s)-\tilde u_i(s)|\Big\}ds\leq \frac{V(0)}{\delta}. \end{equation} Since $$ \nu_i\Big\{\Big|\int_{\tilde x_i(t)}^{x_i(t)}\frac{ds}{g_i(s)}\Big| +|u_i(t)-\tilde u_i(t)|\Big\}\leq V(t)\leq V(0), \quad t \geq 0, $$ it follows from (H3) that $x_i(t)$ and $u_i(t)$ are bounded on $[0,+\infty)$, and hence from \eqref{1.1} we can conclude that $\dot x_i(t)$ and $\dot u_i(t)$ are also bounded on $[0,+\infty)$. This implies that $x_i(t)$ and $u_i(t)$ are uniformly continuous on $[0,+\infty)$. Therefore, $\sum_{i=1}^n|x_i(t)-\tilde x_i(t)|+ |u_i(t)-\tilde u_i(t)|$ is uniformly continuous on $[0,+\infty)$. Thus, \eqref{3.33} implies that $$ \lim_{t\to +\infty}\sum_{i=1}^n\Big\{|x_i(t)-\tilde x_i(t)| + |u_i(t)-\tilde u_i(t)|\Big\}=0 $$ and $(\tilde x(t),\tilde u(t))$ is the unique positive $\omega$-periodic solution of system \eqref{1.1}. The proof is complete. \end{proof} As an example we consider system \eqref{1.1} with \begin{gather*} n=2, \quad m=1,\quad r_1(t)=r_2(t)\equiv \frac{\ln 5}{2},\quad \alpha _1(t)=\alpha_2(t)\equiv 6,\\ a_{11}(t)=a_{22}(t)=21 + \sin 2\pi t,\quad a_{12}(t)=a_{21}(t)=1+\sin 2\pi t,\\ b_{111}(t)=b_{121}(t)=b_{211}(t)=b_{221}(t)=1+2\sin \pi t,\\ c_{111}(t,s)=c_{121}(t,s)=c_{211}(t,s)=c_{221}(t,s)=v_1(t,s)=v_2(t,s) =\exp\{-(t-s)\},\\ e_{11}(t)= e_{21}(t)=1+\cos 2\pi t, \quad d_1(t)=d_2(t)=1-\sin 2\pi t,\\ \beta_1(t)=\beta_2(t)= 1+\cos 2\pi t,\quad p_{11}(t)=p_{21}(t)=1-\cos 2\pi t,\\ \tau_{111}(t)=\tau_{121}(t)=\tau_{211}(t)=\tau_{221}(t)\equiv \tau^*>0,\\ \sigma_{11}(t)=\sigma_{21}(t)\equiv \sigma^* >0,\quad \gamma_{11}(t)=\gamma_{21}(t)\equiv \gamma^* >0,\ g_1(v)=g_2(v)=v. \end{gather*} It is easy to see that (H1)--(H5) hold. By straightforward computation, we have \begin{gather*} c^*_{ij1}(t)=f^*_i(t)=v^*_i(t)=1,\quad \bar P_i=\bar Q_i=\bar R_i=\frac{3}{5},\\ A_i= 24.8,\quad B_i=\ln \frac{\ln 5}{49.6}+\ln 5, \quad \varphi_i(B_i)=\frac{5\ln 5}{49.6}, \quad i,j=1,2. \end{gather*} Let $\nu_1=\nu_2=1$. We can easily see that \begin{gather*} \int_0^1\Big[\beta_i(s)+p_{i1}(s)+v^*_i(s) \Big]ds= 3 >0 ,\\ \sum_{j\ne i}^2\Big(\bar a_{ij}+\bar b_{ij1}+\bar c^*_{ij1}+\bar P_j +\bar Q_j+\bar R_j \Big)\varphi_j(B_j)=\frac{30}{31}\times \frac{\ln 5}{2} < \frac{\ln 5}{2}=\bar r_i,\\ \begin{aligned} &\min_{t\in [0,2 \pi ]}\Big\{ \nu_i\Big[ a_{ii}(t)-\beta_i(t) -\frac{p_{i1}(\xi_{i1}(t))}{1-\dot \gamma _{i1}(\xi_{i1}(t))} -\int_0^{+\infty}v_i(t+\tau,t)d\tau \Big] - \sum_{j\ne i}^2\nu_ja_{ji}(t)\\ &-\sum_{j=1}^2\nu_j\frac{b_{ji1}(\mu_{ji1}(t))}{1-\dot \tau_{ji1}(\mu_{ji1}(t))} -\sum_{j=1}^2\nu_j\int_0^{+\infty}c_{ji1}(t+\tau,t)d\tau\Big\}\\ &=\min_{t\in[0,2\pi ]}[14-\cos 2\pi (t+\gamma^*)-2\sin 2\pi (t+\tau^*)]>0, \end{aligned} \\ \begin{aligned} &\min_{t\in [0,2\pi ]}\Big\{\alpha_i(t)-d_i(t) - \frac{e_{i1}(\zeta_{i1}(t))}{1-\dot \sigma_{i1}(\zeta_{i1}(t))} - \int_0^{+\infty}f_i(t+\tau,t)d\tau \Big\}\\ &=\min_{t\in [0,2\pi ]}[3+\sin 2\pi t - \cos 2\pi (t+\sigma^* )]>0 , \quad i=1,2 \end{aligned} \end{gather*} Thuerefore, conditions \eqref{3.1}, \eqref{3.3} and \eqref{3.30} hold. Hence, by Theorem \ref{thm3.2}, the system has a unique positive 1-periodic solution which is globally asymptotically stable. \subsection*{Acknowledgements} The authors would like to thank the editors and the anonymous reviewers for their constructive comments. This work was supported by Hanoi National University of Education and the Minister of Education and Training of Vietnam. \begin{thebibliography}{00} \bibitem{tk4} Fan, M.; Wang, K.; Wong, P.J.Y.; Agarwal, R.P.; \emph{Periodicity and stability in periodic $n$-species Lotka-Volterra competition systems with feedback controls and deviating arguments}. Acta Mathematica Sinica, Vol. 19, 2003, pp. 801 - 822. \bibitem{tk3} Gains, R.E.; Mawhin, J.K.; \emph{Coincidence Degree and Nonlinear Differential Equations}. Springer-Verlag, Berlin. 1977. \bibitem{tk1} Liu, Z.J.; Tan, R.H.; Chen, L.S.; \emph{Global stability in a periodic delayed predator-prey system}. Applied Mathematics and Computation, Vol. 186, 2007, pp. 389 - 403. \bibitem{tk2} Yan, J.; Liu, G.; \emph{Periodicity and stability for a Lotka-Volterra type competition with feedback controls and deviating arguments}. Nonlinear Analysis, Vol. 74, 2011, pp. 2916 - 2928. \end{thebibliography} \end{document}