\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 269, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/269\hfil Value distribution] {Value distribution of difference polynomials of meromorphic functions} \author[Y. Liu, X. Qi, H. Yi \hfil EJDE-2013/269\hfilneg] {Yong Liu, Xiaoguang Qi, Hongxun Yi} % in alphabetical order \address{Yong Liu \newline Department of Mathematics, Shaoxing College of Arts and Sciences, Shaoxing, Zhejiang 312000, China.\newline Department of Physics and Mathematics, Joensuu Campus, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101, Finland} \email{liuyongsdu@aliyun.com} \address{Xiaoguang Qi \newline Department of Mathematics, Jinan University, 250022 Jinan Shandong, China} \email{xiaoguangqi@yahoo.cn} \address{Hongxun Yi \newline School of Mathematics, Shandong University, 250100 Jinan Shandong, China} \email{hxyi@sdu.edu.cn} \thanks{Submitted June 18, 2013. Published December 5, 2013.} \subjclass[2000]{30D35, 39B12} \keywords{Meromorphic function; difference polynomial; uniqueness; finite order} \begin{abstract} In this article, we study the value distribution of difference polynomials of meromorphic functions, and obtain some results which can be viewed as discrete analogues of the results given by Yi and Yang \cite{y2}. We also consider the value distribution of $$ \varphi(z)=f(z)(f(z)-1)\prod_{j=1}^{n}f(z+c_j). $$ \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction and main results} In this article, we assume that the reader is familiar with the fundamental results and the standard notation of the Nevanlinna theory (see, e.g., \cite{h5,y1}). Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions in the complex plane. By $S(r,f)$, we denote any quantity satisfying $S(r,f)=o(T(r,f))$ as $r \to \infty$, possibly outside a set of finite logarithmic measure. Then the meromorphic function $\alpha$ is called a small function of $f(z)$, if $T(r,\alpha)=S(r,f)$. If $f(z)-\alpha$ and $g(z)-\alpha$ have same zeros, counting multiplicity (ignoring multiplicity), then we say $f(z)$ and $g(z)$ share the small function $\alpha$ CM (IM). Denote $$ \delta(\alpha, f)= \liminf_{r\to\infty}\frac{m(r, \frac{1}{f-\alpha})}{T(r, f)}, $$ where $\alpha$ is a small function related to $f(z)$. In the following sections, we denote by $E$ a set of finite logarithmic measure, it is not necessarily the same at each appearance. In 1991, Yi and Yang \cite{y2} obtained the following theorem. \begin{theorem} \label{thmA} Let $f(z)$ and $g(z)$ be meromorphic functions satisfying $\delta(\infty, f)=\delta(\infty, g)=1$. If $f'$ and $g'$ share $1$ CM and $\delta(0, f)+\delta(0, g)>1$, then either $f\equiv g$ or $f'g'\equiv 1$. \end{theorem} Lately, there has been an increasing interest in studying difference equations in the complex plane. For example, Halburd and Korhonen \cite{h1,h2} established a version of Nevanlinna theory based on difference operators. Ishizaki and Yanagihara \cite{i1} developed a version of Wiman-Valiron theory for difference equations of entire functions of small growth. Also Chiang and Feng \cite{c1} has a difference version of Wiman-Valiron. The main purpose of this article is to establish partial difference counterparts of Theorem \ref{thmA}. Our results can be stated as follows. \begin{theorem} \label{thm1.1} Let $c_j, a_j, b_j (j=1,2,\dots,k)$ be complex constants, and let $f(z)$ and $g(z)$ be two nonconstant finite order meromorphic functions satisfying $\delta(\infty, f)=\delta(\infty, g)=1$. Let $L(f)=\sum _{i=1}^{k}a_if(z+c_i)$ and $ L(g)=\sum _{i=1}^{k}b_ig(z+c_i)$. Suppose that $L(f) \cdot L(g)\not \equiv 0$. If $L(f)$ and $ L(g)$ share $1$ CM and $\delta(0, f)+\delta(0, g)>1$, then $L(f)L(g)\equiv 1$ or $L(f)\equiv L(g)$. \end{theorem} \begin{theorem} \label{thm1.2} Suppose that $f(z)$ is a nonconstant meromorphic function. Let $\delta_f=\sum_{a\in \mathbb{C}}\delta(a, f)$. If $\Delta_cf(z)=f(z+c)-f(z)\not\equiv 0$ $(c\in\mathbb{C}\setminus \{0\})$, then $$ N\Big(r, \frac{1}{\Delta_cf(z)}\Big) \leq \Big((1-\frac{\delta_f}{2}+\varepsilon)T(r, \Delta_cf(z)\Big)\quad (r\not\in E), $$ where $\varepsilon$ is any fixed positive number. \end{theorem} Recently, Zhang \cite{z1} considered the value distribution of difference polynomial of entire functions, and obtain the following result. \begin{theorem} \label{thmB} Let $f(z)$ be a transcendental entire function of finite order, and $\alpha(z)$ be a small function with respect to $f(z)$. Suppose that $c$ is a non-zero complex constant and $n$ is an integer. If $n\geq 2$, then $f^{n}(z)(f(z)-1)f(z+c)-\alpha(z)$ has infinitely many zeros. \end{theorem} A natural question arises: If $n=1$, whether we can get a similar conclusion? The following theorems give a partial answer to this question. \begin{theorem} \label{thm1.3} Let $f(z)$ be a finite order transcendental entire function with one Borel exceptional value $d$ according to the condition or its proof described. Let $c_j(j=1,\dots, n), b$ be complex constants. If $d^{n+2}-d^{n+1}-b\neq 0$, then $\varphi(z)=f(z)(f(z)-1)\prod_{j=1}^{n}f(z+c_j)-b$ has infinitely many zeros and $\lambda(\varphi(z)-b)=\rho(f)$. \end{theorem} \begin{theorem} \label{thm1.4} Let $f(z)$ be a finite order transcendental entire function, and let $c_j$ $(j=1,\dots, n)$, $b_j$ $(j=1,\dots, n), b$ be complex constants. If $f(z)$ or $f(z)-1$ has infinitely many multi-order zeros, then $f(z)(f(z)-1)\prod_{i=1}^{n}(f(z+c_i)-b_i)-b$ has infinitely many zeros. \end{theorem} \section{Proof of Theorem \ref{thm1.1}} We need the following lemmas. The first lemma is a difference analogue of the logarithmic derivative lemma. \begin{lemma}[\cite{h1}] \label{lem2.1} Let $f(z)$ be a meromorphic function of finite order and let $c$ be a non-zero complex number. Then for any small periodic function $a(z)$ with period $c$, $$ m\Big(r, \frac{f(z+c)-f(z)}{f(z)-a(z)}\Big)=S(r, f). $$ \end{lemma} The following lemma is essential for our proof and is due to Heittokangas et al., see \cite[Theorems 6 and 7]{h6}. \begin{lemma}[\cite{h3}] \label{lem2.2} Let $f(z)$ be a meromorphic function of finite order, $c\neq 0$ be fixed. Then \begin{gather*} \overline{N}(r, f(z+c))\leq \overline{N}(r, f(z))+S(r, f), \\ N(r, f(z+c))\leq N(r, f(z))+S(r, f). \end{gather*} \end{lemma} \begin{lemma} \label{lem2.3} Let $f$ be a nonconstant meromorphic function of finite order such that $\delta(\infty, f)=1$ and $\delta(0, f)>0$. Let $L(f)$ be as in Theorem \ref{thm1.1}. Then $$ T(r, f)\leq \Big(\frac{1}{\delta(0, f)}+\varepsilon\Big)T(r, L(f)),\quad r\not\in E, $$ and $$ N\Big(r, \frac{1}{L(f)}\Big)<(1-\delta(0, f)+\varepsilon+o(1))T(r, L(f)), \quad r\not\in E, $$ where $\varepsilon>0$ can be fixed arbitrarily. \end{lemma} \begin{proof} From $\delta(\infty, f)=1$, we have $$ N(r, f)=o(T(r, f)). $$ Then from Lemmas \ref{lem2.1} and \ref{lem2.2}, we obtain \begin{equation} \begin{aligned} T(r, L(f))&=m(r, L(f))+N(r, L(f))\\ &\leq m(r, f)+m\Big(r, \frac{L(f)}{f}\Big)+k N(r, f)+o(T(r, f))\\ &\leq (1+o(1))T(r, f)),\;\;r\not\in E. \end{aligned}\label{e2.1} \end{equation} On the other hand, \begin{equation} \begin{aligned} m\Big(r, \frac{1}{f}\Big) &\leq m\Big(r, \frac{1}{L(f)}\Big)+m\Big(r, \frac{L(f)}{f}\Big)\\ &= m\Big(r, \frac{1}{L(f)}\Big)+o(T(r, f))\\ &= T(r, L(f))-N\Big(r, \frac{1}{L(f)}\Big)+o(T(r, f)),\quad r\not\in E. \label{e2.2} \end{aligned} \end{equation} By the definition of $\delta(0, f)$, we obtain \begin{equation} m\Big(r, \frac{1}{f}\Big)\geq (\delta(0, f)-\varepsilon)T(r, f),\label{e2.3} \end{equation} where $\varepsilon>0$ can be fixed arbitrarily. Combining \eqref{e2.2} and \eqref{e2.3} yields $$ (\delta(0, f)-\varepsilon)T(r, f)1$, it follows that $\delta(0, f)>0$ and $\delta(0, g)>0$. Lemma \ref{lem2.3} yields \begin{gather*} T(r, f)=O(T(r, L(f))), \quad r\in I_1\backslash E, \\ T(r, g)=O(T(r, L(g)))=O(T(r, L(f))),\;\;\;r\in I_1\backslash E. \end{gather*} Thus, \begin{gather*} N(r, f)=o(T(r, L(f))),\quad r\in I_1\backslash E, \\ N(r, g)=o(T(r, L(f))),\quad r\in I_1\backslash E. \end{gather*} Since $L(f)=\sum _{i=1}^{k}a_if(z+c_i)$ and $L(g)=\sum _{i=1}^{k}b_ig(z+c_i)$ share $1$ CM, we have \begin{equation} \frac{L(f)-1}{L(g)-1}=h(z), \label{e2.4} \end{equation} where $$ N(r, h)+N(r, \frac{1}{h})\leq kN(r, f)+kN(r, g)+o(T(r, f))+o(T(r, g)) =o(T(r, L(f))), $$ for $r\in I_1\backslash E$. Let $f_1=L(f)$, $f_2=h(z)$, $f_3=-L(g)h(z)$. Then we obtain $f_1+f_2+f_3\equiv1$, and $$ \sum_{i=1}^{3}N(r, f_i)\leq kN(r, f)+kN(r, g)+2N(r, h)=o(T(r)),\quad r\in I_1\backslash E, $$ where $T(r)=\max_{1\leq i\leq 3}\{T(r, f_j)\}$. For any $\varepsilon$ satisfying $0<\varepsilon<\frac{\delta(0, f)+\delta(0, g)-1}{4}$, by Lemma \ref{lem2.3}, we obtain \begin{align*} \sum_{i=1}^{3} N_2\Big(r, \frac{1}{f_j}\Big) &\leq N\Big(r, \frac{1}{L(f)}\Big)+N\Big(r, \frac{1}{L(g)}\Big)+2N(r, h)\\ &\leq (2-\delta(0, f)-\delta(0, g)+o(1)+2\varepsilon)T(r)\\ &=(\lambda+o(1))T(r),\quad r\in I_1\backslash E, \end{align*} where $\lambda=2-\delta(0, f)-\delta(0, g)+2\varepsilon<1$. If $f_1(z)=L(f)$ is a constant, by Lemma \ref{lem2.3}, we see that $f(z)$ is also a constant, a contradiction. Hence, $f_1(z)$ is not constant. By Lemma \ref{lem2.4}, we obtain $f_2\equiv 1$ or $f_3\equiv 1$. If $f_2\equiv 1$, then we obtain $L(f)\equiv L(g)$. If $f_3\equiv 1$, we have $L(f)\equiv-\frac{1}{h}$, $L(g)\equiv -h$, and so $L(f)L(g)\equiv 1$. \end{proof} \section{Proof of Theorem \ref{thm1.2}} We need the following lemmas. \begin{lemma}[\cite{h3,h4}] \label{lem3.1} Let $f(z)$ be a nonconstant finite order meromorphic function and let $c\neq 0$ be an arbitrary complex number. Then $$ T(r, f(z+|c|))=T(r, f(z))+S(r, f). $$ \end{lemma} \begin{remark} \label{rmk1}\rm It is shown in \cite[p. 66]{g1}, that for $c\in \mathbb{C}\setminus \{0\}$, we have $$ (1+o(1))T(r-|c|, f(z))\leq T(r, f(z+c))\leq (1+o(1))T(r+|c|, f(z)) $$ hold as $r\to \infty$, for a general meromorphic function. By this and Lemma \ref{lem3.1}, we obtain $$ T(r, f(z+c))=T(r, f(z))+S(r, f) $$ \end{remark} \begin{proof}[Proof of Theorem \ref{thm1.2}] Without loss of generality, we assume that there exist infinitely many values $a$ such that $\delta(a, f)>0$. Then there is an sequence $\{a_i\}_{i=1}^{\infty}$ satisfying $a_i\neq a_j (i\neq j)$ and $\sum_{i=1}^{\infty}\delta(a_i, f)=\delta_f$. Hence for any fixed positive number $\varepsilon$, there exists an integer $q$ such that \begin{equation} \delta=\sum_{i=1}^{q}\delta(a_i, f)>\delta_f-\frac{\varepsilon}{3}.\label{e3.1} \end{equation} Set $$ F(z)=\sum_{i=1}^{q}\frac{1}{f(z)-a_i}. $$ Then \begin{equation} \sum_{i=1}^{q}m\Big(r, \frac{1}{f-a_i}\Big)=m(r, F)+O(1).\label{e3.2} \end{equation} Hence by Lemma \ref{lem2.1}, we obtain \begin{equation} \begin{aligned} m(r, F) &\leq m\Big(r, \frac{1}{\Delta_cf(z)}\Big)+\sum_{i=1}^{q}m \Big(r, \frac{\Delta_cf(z)}{f-a_i}\Big)+O(1)\\ &=T(r, \Delta_cf(z))-N\Big(r, \frac{1}{\Delta_cf(z)}\Big)+S(r, f).\label{e3.3} \end{aligned} \end{equation} and \begin{equation} \sum_{i=1}^{q}m\Big(r, \frac{1}{f-a_i}\Big) \geq \Big(\delta_f-\frac{\varepsilon}{3}\Big)T(r, f),\quad r\not\in E.\label{e3.4} \end{equation} From \eqref{e3.1}-\eqref{e3.4} and Remark 1, we have \begin{align*} N(r, \frac{1}{\Delta_cf(z)}) &\leq T(r, \Delta_cf(z))-(\delta_f-\frac{2}{3}\varepsilon)T(r, f)\\ &\leq T(r, \Delta_cf(z))-(\frac{\delta_f}{2}-\varepsilon)T(r, \Delta_cf(z))\\ &= (1-\frac{\delta_f}{2}+\varepsilon)T(r, \Delta_cf(z)), \quad r\not\in E. \end{align*} \end{proof} \section{Proof of Theorem \ref{thm1.3}} The following lemma is a generalization of Borel's Theorem on linear combinations of entire functions. \begin{lemma}[{\cite[pp. 79-80]{y1}}] \label{lem4.1} Let $f_j(z)$ $(j=1,2,\dots,n; n\geq 2)$ be meromorphic functions, $g_j(z)$ $(j=1,2,\dots,n)$ be entire functions, and assume they satisfy \begin{itemize} \item[(i)] $f_1(z)e^{g_1(z)}+\dots+ f_k(z)e^{g_k(z)}\equiv 0$; \item[(ii)] when $1\leq j