\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 27, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/27\hfil Oscillation for hyperbolic equations] {Oscillation of solutions to neutral nonlinear impulsive hyperbolic equations with \\ several delays} \author[J. C. Yang, A. P. Liu, G. J. Liu \hfil EJDE-2013/27\hfilneg] {Jichen Yang, Anping Liu, Guangjie Liu} \address{Jichen Yang \newline School of Mathematics and Physics, China University of Geosciences, Wuhan, Hubei, 430074, China} \email{ yjch\_0102@hotmail.com} \address{Anping Liu (corresponding author) \newline School of Mathematics and Physics, China University of Geosciences, Wuhan, Hubei, 430074, China} \email{wh\_apliu@sina.com} \address{Guangjie Liu \newline School of Mathematics and Physics, China University of Geosciences, Wuhan, Hubei, 430074, China} \email{guangjieliu@foxmail.com} \thanks{Submitted October 1, 2012. Published January 27, 2013.} \subjclass[2000]{35B05, 35L70, 35R10, 35R12} \keywords{Oscillation; hyperbolic equation; impulsive; neutral type; delay} \begin{abstract} In this article, we study oscillatory properties of solutions to neutral nonlinear impulsive hyperbolic partial differential equations with several delays. We establish sufficient conditions for oscillation of all solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{example}[theorem]{Example} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} The theory of partial differential equations can be applied to many fields, such as to biology, population growth, engineering, generic repression, control theory and climate model. In the last few years, the fundamental theory of partial differential equations with deviating argument has undergone intensive development. The qualitative theory of this class of equations, however, is still in an initial stage of development. Many srudies have been done under the assumption that the state variables and system parameters change continuously. However, one may easily visualize situations in nature where abrupt change such as shock and disasters may occur. These phenomena are short-time perturbations whose duration is negligible in comparison with the duration of the whole evolution process. Consequently, it is natural to assume, in modeling these problems, that these perturbations act instantaneously, that is, in the form of impulses. In 1991, the first paper \cite{4} on this class of equations was published. However, on oscillation theory of impulsive partial differential equations only a few of papers have been published. Recently, Bainov, Minchev, Liu and Luo \cite{1,2,6,7,8,9,10,11} investigated the oscillation of solutions of impulsive partial differential equations with or without deviating argument. But there is a scarcity in the study of oscillation theory of nonlinear impulsive hyperbolic equations of neutral type with several delays. In this article, we discuss oscillatory properties of solutions for the nonlinear impulsive hyperbolic equation of neutral type with several delays. \begin{gather} \label{1.1} \begin{aligned} &\frac{\partial^2}{\partial t^2}\Big[u(t,x)+\sum^m_{i=1}g_iu(t-\tau_i,x)\Big] \\ &= a(t)h(u)\Delta u-q(t,x)f(u(t,x))+\sum^l_{r=1}a_r(t)h_r(u(t-\sigma_r,x)) \Delta u(t-\sigma_r,x)\\ &\quad -\sum^n_{j=1}q_j(t,x)f_j(u(t-\rho_j,x)),\quad t\neq t_k,\; (t,x)\in \mathbb{R}^+\times\Omega=G, \end{aligned} \\ \label{1.2} u(t^+_k,x)=h_k(t_k,x,u(t_k,x)),\quad k=1,2,\dots, \\ \label{1.3} u_t(t^+_k,x)=p_k(t_k,x,u_t(t_k,x)),\quad k=1,2,\dots, \end{gather} with the boundary conditions \begin{gather}\label{1.4} u=0,\quad (t,x)\in\mathbb{R}^+\times\partial\Omega,\\ \label{1.5} \frac{\partial u}{\partial n}+\varphi(t,x)u=0,\quad (t,x)\in\mathbb{R}^+\times\partial\Omega, \end{gather} and the initial condition $$ u(t,x)=\Phi(t,x),\ \frac{\partial u(t,x)}{\partial t}=\Psi(t,x),\quad (t,x)\in[-\delta,0]\times\Omega. $$ Here $\Omega\subset\mathbb{R}^N$ is a bounded domain with boundary $\partial\Omega$ smooth enough and $n$ is a unit exterior normal vector of $\partial\Omega,\ \delta=\max\{\tau_i,\sigma_r,\rho_j\}$, $\Phi(t,x)\in C^2([-\delta,0]\times\Omega,\mathbb{R})$, $\Psi(t,x)\in C^1([-\delta,0]\times\Omega,\mathbb{R})$. This article is organized as follows. in Section 2, we study the oscillatory properties of solutions for problems \eqref{1.1}, \eqref{1.4}. In Section 3, we discuss oscillatory properties of solutions for problems \eqref{1.1}, \eqref{1.5}. We will use the following conditions: \begin{itemize} \item[(H1)] $a(t),a_i(t)\in PC(\mathbb{R}^+,\mathbb{R}^+)$, $\tau_i,\sigma_r,\rho_j$ are positive constants, $q(t,x),q_j(t,x)$ are functions in $C(\mathbb{R}^+\times\bar{\Omega},(0,\infty))$, $g_i$ is a non-negative constant, $\sum^m_{i=1}g_i<1$, $i=1,2,\dots,m$, $j=1,2,\dots,n$, $r=1,2,\dots,l$; where $PC$ denote the class of functions which are piecewise continuous in $t$ with discontinuities of first kind only at $t=t_k$, $k=1,2,\dots$, and left continuous at $t=t_k$, $k=1,2,\dots$. \item[(H2)] $h(u),h_r(u)\in C^1(\mathbb{R},\mathbb{R})$, $f(u),f_r(u)\in C(\mathbb{R},\mathbb{R})$; $f(u)/u\geq C$ a positive constant, $f_j(u)/u\geq C_j$ a positive constant, $u\neq0$; $h(0)=0$, $h_r(0)=0$, $uh'(u)\geq0$, $uh'_r(u)\geq0$, $\varphi(t,x)\in C(\mathbb{R}^+\times\partial\Omega,\mathbb{R})$, $h(u)\varphi(t,x)\geq0$, $h_r(u)\varphi(t-\sigma_r,x)\geq0$, $r=1,2,\dots,l$, $00$, $t_0>T$ such that $u(t,x)>0$, $u(t-\tau_i,x)>0$, $i=1,2,\dots,m$, $u(t-\sigma_r,x)>0$, $r=1,2,\dots,l$, $u(t-\rho_j,x)>0$, $j=1,2,\dots n$, for any $(t,x)\in[t_0,\infty)\times\Omega$. For $t\geq t_0$, $t\neq t_k$, $k=1,2,\dots$, integrating \eqref{1.1} with respect to $x$ over $\Omega$ yields \begin{align*} &\frac{d^2}{dt^2}\Big[\int_\Omega u(t,x)\,dx+\sum^m_{i=1}g_i \int_\Omega u(t-\tau_i,x)\,dx\Big]\\ &= a(t)\int_\Omega h(u)\Delta u\,dx -\int_\Omega q(t,x)f(u(t,x))\,dx\\ &\quad +\sum^l_{r=1}a_r(t)\int_\Omega h_r(u(t-\sigma_r,x)) \Delta u(t-\sigma_r,x)\,dx\\ &\quad -\sum^n_{j=1}\int_\Omega q_j(t,x)f_j(u(t-\rho_j,x))\,dx. \end{align*} By Green's formula and the boundary condition, we have \begin{align*} \int_\Omega h(u)\Delta u\,dx &= \int_{\partial\Omega} h(u)\frac{\partial u}{\partial n}ds-\int_\Omega h'(u)|\mathrm{grad}u|^2\,dx\\ &= -\int_\Omega h'(u)|\mathrm{grad}u|^2\,dx\leq0, \end{align*} \[ \int_\Omega h_r(u(t-\sigma_r,x))\Delta u(t-\sigma_r,x)\,dx\leq0. \] From condition (H2), we can easily obtain \begin{gather*} \int_\Omega q(t,x)f(u(t,x))\,dx \geq Cq(t)\int_\Omega u(t,x)\,dx,\\ \int_\Omega q_j(t,x)f_j(u(t-\rho_j,x))\,dx \geq C_jq_j(t)\int_\Omega u(t-\rho_j,x)\,dx. \end{gather*} From the above it follows that \[ \frac{d^2}{dt^2}\Big[v(t)+\sum^m_{i=1}g_iv(t-\tau_i)\Big] +Cq(t)v(t)+\sum^n_{j=1}C_jq_j(t)v(t-\rho_j)\leq0. \] Set $w(t)=v(t)+\sum^m_{i=1}g_iv(t-\tau_i)$, we have $w(t)\geq v(t)$, then we can obtain \[ w''(t)+Cq(t)v(t)+\sum^n_{j=1}C_jq_j(t)v(t-\rho_j)\leq0,\quad t\neq t_k. \] From this inequality, we have $w''(t)<0$, and $w'(t)>0,\ w(t)>0$ for $t\geq t_0$. In fact, if $w'(t)<0$, there exists $t_1\geq t_0$ such that $w'(t_1)<0$. Hence we have \begin{gather*} w(t)-w(t_1)=\int^t_{t_1}w'(s)ds\leq\int^t_{t_1}w'(t_1)ds=w'(t_1)(t-t_1),\\ \lim_{t\to+\infty}w(t)=-\infty. \end{gather*} This is a contradiction, so $w'(t)>0$. Because \begin{align*} v(t) &= w(t)-\sum^m_{i=1}g_iv(t-\tau_i) \\ &= w(t)-\sum^m_{i=1}g_i\Big[w(t-\tau_i)-\sum^m_{i=1}g_iv(t-2\tau_i)\Big]\\ &= w(t)-\sum^m_{i=1}g_iw(t-\tau_i)+\sum^m_{i=1}g_i \Big[\sum^m_{i=1}g_iv(t-2\tau_i)\Big]\\ &\geq \Big(1-\sum^m_{i=1}g_i\Big)w(t), \end{align*} \[ v(t-\rho_j)\geq \Big(1-\sum^m_{i=1}g_i\Big)w(t-\rho_j). \] Hence, we obtain \[ w''(t)+C\Big(1-\sum^m_{i=1}g_i\Big)q(t)w(t) +\sum^n_{j=1}C_j\Big(1-\sum^m_{i=1}g_i\Big)q_j(t)w(t-\rho_j)\leq0,\quad t\neq t_k. \] For $t\geq t_0,\ t=t_k,\ k=1,2,\dots$, from \eqref{1.2}, \eqref{1.3} and condition (H4), we obtain \begin{gather}\label{2.4} \underline{a}_k\leq\frac{u(t^+_k,x)}{u(t_k,x)}\leq\overline{a}_k,\\ \label{2.5}\underline{b}_k\leq\frac{u_t(t^+_k,x)}{u_t(t_k,x)}\leq\overline{b}_k. \end{gather} According to the $v(t)=\int_\Omega u(t,x)\,dx$, we obtain \[ \underline{a}_k\leq\frac{v(t^+_k)}{v(t_k)}\leq\overline{a}_k,\quad \underline{b}_k\leq\frac{v'(t^+_k)}{v'(t_k)}\leq\overline{b}_k. \] Because $w(t)=v(t)+\sum^m_{i=1}g_iv(t-\tau_i),$ we finally have \[ \underline{a}_k\leq\frac{w(t^+_k)}{w(t_k)}\leq\overline{a}_k,\quad \underline{b}_k\leq\frac{w'(t^+_k)}{w'(t_k)}\leq\overline{b}_k. \] Hence we obtain that $w(t)$ is a solution of impulsive differential inequality \eqref{2.1}--\eqref{2.3}. This completes the proof. \end{proof} \begin{lemma}[{\cite[Theorem 1.4.1]{5}}]\label{lem2.2} Assume that \begin{itemize} \item[(A1)] the sequence $\{t_k\}$ satisfies $00\ (w(t)<0)$ for $t\geq T$. If \begin{equation}\label{2.6} \lim_{t\to+\infty}\int^t_{t_0}\prod_{t_00$, $t_0\geq T$, such that $u(t,x)>0$, $u(t-\tau_i,x)>0$, $i=1,2,\dots,m$, $u(t-\sigma_r,x)>0$, $r=1,2,\dots,l$, $u(t-\rho_j,x)>0$, $j=1,2,\dots,n$ for any $(t,x)\in[t_0,\infty)\times\Omega$. From Lemma \ref{lem2.1}, we know that $w(t)$ is a solution of \eqref{2.1}--\eqref{2.3}. For $t\geq t_0$, $t\neq t_k$, $k=1,2,\dots$, define \begin{equation}\label{2.8} z(t)=\frac{w'(t)}{w(t)},\quad t\geq t_0. \end{equation} From Lemma \ref{lem2.3}, we have $z(t)\geq0$, $t\geq t_0, w'(t)-z(t)w(t)=0$. We may assume that $w(t_0)=1$, thus in view of \eqref{2.1}--\eqref{2.3} we have that for $t\geq t_0$, \begin{gather}\label{2.9} w(t)=\exp\Big(\int^t_{t_0}z(s)ds\Big),\\ \label{2.10}w'(t)=z(t)\exp\Big(\int^t_{t_0}z(s)ds\Big),\\ \label{2.11}w''(t)=z^2(t)\exp\Big(\int^t_{t_0}z(s)ds\Big)+z'(t) \exp\Big(\int^t_{t_0}z(s)ds\Big). \end{gather} We substitute \eqref{2.9}--\eqref{2.11} into \eqref{2.1} and obtain \begin{align*} &z^2(t)\exp\Big(\int^t_{t_0}z(s)ds\Big) +z'(t)\exp\Big(\int^t_{t_0}z(s)ds\Big)\\ &+C\Big(1-\sum^m_{i=1}g_i\Big)q(t)\exp\Big(\int^t_{t_0}z(s)ds\Big)\\ &+\sum^n_{j=1}C_j\Big(1-\sum^m_{i=1}g_i\Big)q_i(t) \exp\Big(\int^{t-\rho_j}_{t_0}z(s)ds\Big)\leq0. \end{align*} Hence we have \begin{align*} &z^2(t)+z'(t)+C\Big(1-\sum^m_{i=1}g_i\Big)q(t)\\ &+\sum^n_{j=1}C_j\Big(1-\sum^m_{i=1}g_i\Big)q_j(t) \exp\Big(-\int^t_{t-\rho_j}z(s)ds\Big)\leq0,\quad t\neq t_k, \end{align*} then we have \begin{align*} &z'(t)+C\Big(1-\sum^m_{i=1}g_i\Big)q(t)\\ &+\sum^n_{j=1}C_j\Big(1-\sum^m_{i=1}g_i\Big)q_j(t)\exp \Big(-\int^t_{t-\rho_j}z(s)ds\Big)\leq0,\quad t\neq t_k. \end{align*} From above inequality and condition $\overline{b}_k\leq \underline{a}_k$, we know that $z(t)$ is non-increasing, then $z(t)\leq z(t_0)$, for $t\geq t_0$, we obtain \[ z'(t)+C\Big(1-\sum^m_{i=1}g_i\Big)q(t)+\sum^n_{j=1}C_j \Big(1-\sum^m_{i=1}g_i\Big)q_j(t)\exp(-\delta z(t_0))\leq0,\quad t\neq t_k. \] From \eqref{2.2}, \eqref{2.3} and \eqref{2.8}, we obtain \[ z(t^+_k)=\frac{w'(t^+_k)}{w(t^+_k)} \leq\frac{\overline{b}_kw'(t_k)}{\underline{a}_kw(t_k)} =\frac{\overline{b}_k}{\underline{a}_k}z(t_k), \] so we can easily obtain \begin{gather*} z'(t)\leq-C\Big(1-\sum^m_{i=1}g_i\Big)q(t) -\sum^n_{j=1}C_j\Big(1-\sum^m_{i=1}g_i\Big)q_j(t)\exp(-\delta z(t_0))\quad t\neq t_k,\\ z(t^+_k)\leq\frac{\overline{b}_k}{\underline{a}_k}z(t_k). \end{gather*} Let $$ -F(t)=-C\Big(1-\sum^m_{i=1}g_i\Big)q(t)-\sum^n_{j=1}C_j \Big(1-\sum^m_{i=1}g_i\Big)q_j(t)\exp(-\delta z(t_0)). $$ Then according to Lemma \ref{lem2.2}, we have \begin{align*} z(t)&\leq z(t_0)\prod_{t_00$, $t_0>T$ such that $u(t,x)>0$, $u(t-\tau_i,x)>0$, $i=1,2,\dots,m$, $u(t-\sigma_r,x)>0$, $r=1,2,\dots,l$, $u(t-\rho_j,x)>0$, $j=1,2,\dots n$, for any $(t,x)\in[t_0,\infty)\times\Omega$. For $t\geq t_0$, $t\neq t_k$, $k=1,2,\dots$, integrating \eqref{1.1} with respect to $x$ over $\Omega$ yields \begin{align*} &\frac{d^2}{dt^2}\Big[\int_\Omega u(t,x)\,dx +\sum^m_{i=1}g_i\int_\Omega u(t-\tau_i,x)\,dx\Big]\\ &= a(t)\int_\Omega h(u)\Delta u\,dx -\int_\Omega q(t,x)f(u(t,x))\,dx\\ &\quad +\sum^l_{r=1}a_r(t)\int_\Omega h_r(u(t-\sigma_r,x)) \Delta u(t-\sigma_r,x)\,dx\\ &\quad -\sum^n_{j=1}\int_\Omega q_j(t,x)f_j(u(t-\rho_j,x))\,dx. \end{align*} By Green's formula and the boundary condition, we have \begin{align*} \int_\Omega h(u)\Delta u\,dx &= \int_{\partial\Omega} h(u)\frac{\partial u}{\partial n}ds -\int_\Omega h'(u)|\mathrm{grad}u|^2\,dx\\ &= -\int_{\partial\Omega}h(u)\varphi(t,x)u\,ds -\int_\Omega h'(u)|\mathrm{grad}u|^2\,dx\\ &\leq -\int_\Omega h'(u)|\mathrm{grad}u|^2\,dx\leq0, \end{align*} \[ \int_\Omega h_r(u(t-\sigma_r,x))\Delta u(t-\sigma_r,x)\,dx\leq0. \] The rest of the proof is similar to the one in Lemma \ref{lem2.1}. We omit it. \end{proof} The following theorem is the second main result of this article. \begin{theorem}\label{thm3.2} If conditions \eqref{2.6} and \eqref{2.7} hold, then each solution of \eqref{1.1}--\eqref{1.3}, \eqref{1.5} oscillates in $G$. \end{theorem} The proof of the above theorem is similar to that of Theorem \ref{thm2.4}. We omit it. \section{Examples} \begin{example}\label{exa4.1}\rm Consider the equation \begin{gather*} \begin{aligned} \frac{\partial^2}{\partial t^2}\Big[u(t,x)+\frac{1}{2}u(t-\frac{\pi}{2},x)\Big] &=u^2\Delta u-ue^{u^2}+e^tu^2(t-\frac{\pi}{2},x)\Delta u(t-\frac{\pi}{2},x)\\ &\quad -(x^2+1)e^tu(t-\frac{3\pi}{2},x)e^{u^2(t-\frac{3\pi}{2},x)}, \end{aligned}\\ t>1,\quad t\neq 2^k,\quad (t,x)\in \mathbb{R}^+\times\Omega=G,\\ u((2^k)^+,x)=(4+\sin 2^k\cos x)u(2^k,x),\quad k=1,2,\dots, \\ u_t((2^k)^+,x)=(2+\sin 2^k\cos x)u_t(2^k,x),\quad k=1,2,\dots, \end{gather*} with the boundary condition \[ u=0,\quad (t,x)\in\mathbb{R}^+\times\partial\Omega, \] where $a(t)=1$, $a_1(t)=e^t$, $\tau_1=\frac{\pi}{2}$, $\sigma_1=\frac{\pi}{2}$, $\rho_1=\frac{3\pi}{2}$, $h(u)=u^2$, $h_1(u)=u^2$, $f(u)=ue^{u^2}$, $f_1(u)=ue^{u^2}$, $q(t,x)=1$, $q_1(t,x)=(x^2+1)e^t$, $g_1=\frac{1}{2}$, $t_k=2^k$. It is easy to verify that the condition (H1)--(H4) and the conditions of Theorem \ref{thm2.4} are satisfied. Hence the all solutions of above problem oscillate. \end{example} \begin{example}\label{exa4.2} \rm Consider the equation \begin{gather*} \begin{aligned} &\frac{\partial^2}{\partial t^2} \Big[u(t,x)+\frac{1}{2}u(t-\frac{\pi}{2},x)\Big]\\ &=u^2\Delta u-ue^{u^2}+e^tu^2(t-\frac{\pi}{2},x)\Delta u(t-\frac{\pi}{2},x) -(x^2+1)e^tu(t-\frac{3\pi}{2},x)e^{u^2(t-\frac{3\pi}{2},x)}, \end{aligned}\\ t>1,\quad t\neq 3k,\quad (t,x)\in \mathbb{R}^+\times\Omega=G, \\ u((3k)^+,x)=(4+\sin 3k\cos x)u(3k,x),\quad k=1,2,\dots, \\ u_t((3k)^+,x)=(2+\sin 3k\cos x)u_t(3k,x),\quad k=1,2,\dots, \end{gather*} with the boundary condition \[ \frac{\partial u}{\partial n}+t^2x^2u=0,\quad (t,x)\in\mathbb{R}^+\times\partial\Omega, \] where $a(t)=1$, $a_1(t)=e^t$, $\tau_1=\frac{\pi}{2}$, $\sigma_1=\frac{\pi}{2}$, $\rho_1=\frac{3\pi}{2}$, $h(u)=u^2$, $h_1(u)=u^2$, $f(u)=ue^{u^2}$, $f_1(u)=ue^{u^2}$, $q(t,x)=1$, $q_1(t,x)=(x^2+1)e^t$, $g_1=\frac{1}{2}$, $t_k=3k$, $\varphi(t,x)=t^2x^2$. It is easy to verify that the condition $\mathrm{H})$ and condition of Theorem \ref{thm3.2} are satisfied. Hence the all solutions of the above problem oscillate. \end{example} \subsection*{Acknowledgments} This research was partially supported by grants from the National Basic Research Program of China, nos. 2010CB950904 and 2011CB710604. \begin{thebibliography}{99} \bibitem{1} D. D. Bainov, E. Minchev; Oscillation of solutions of impulsive nonlinear parabolic differential-difference equations. \emph{International Journal of Theoretical Physics}, 1996, {\bf 35}(1): 207--215. \bibitem{2} D. D. Bainov, E. Minchev; Forced oscillations of solutions of impulsive nonlinear parabolic differential-difference equations. \emph{Journal of the Korean Mathematical Society}, 1998, {\bf 35}(4): 881--890. \bibitem{3} B. T. Cui, Y. Q. Liu, F. Q. Deng; Some oscillation problems for impulsive hyperbolic differential systems with several delays. \emph{Applied Mathematics and Computation}, 2003, {\bf 146}(2--3):667--679. \bibitem{4} L. Erbe, H. Freedman, X. Liu, J .H. Wu; Comparison principles for impulsive parabolic equations with application to models of single species growth. \emph{Journal of the Australian Mathematical Society}, 1991, {\bf 32}, 382--400. \bibitem{5} V. Lakshmikantham, D. D. Bainov, P. S. Simeonov; Theory of impulsive differential equations. \emph{Singapore, World Scientific}, 1989. \bibitem{6} A. P. Liu, M. X. He; Oscillatory properties of the solutions of nonlinear delay hyperbolic differential equations of neutral type. \emph{Applied Mathematics and Mechanics}, 2002, {\bf 23}(6): 678--685. \bibitem{7} A. P. Liu, T. Liu, Q. X. Ma, M. Zou; Oscillation of nonlinear hyperbolic equation with impulses. \emph{International Journal of Mathematical Analysis}, 2007, {\bf 1}(15): 719--725. \bibitem{8} A. P. Liu, Q.X. Ma, M. X. He; Oscillation of nonlinear impulsive parabolic equations of neutral type. \emph{Rocky Mountain Journal of Mathematics}, 2006, {\bf 36}(3): 1011--1026. \bibitem{9} A. P. Liu, L. Xiao, M. X. He; Oscillation of nonlinear hyperbolic differential equations with impulses. \emph{Nonlinear Oscillations}, 2004, {\bf 7}(4):425--431. \bibitem{10} A. P. Liu, L. Xiao, T. Liu; Oscillation of nonlinear impulsive hyperbolic equations with several delays. \emph{Electronic Journal of Differential Equations}, 2004, {\bf 2004} (24): 1--6. \bibitem{11} J. W. Luo; Oscillation of hyperbolic partial differential equations with impulses. \emph{Applied Mathematics and Computation}, 2002, {\bf 133}: 309--318. \bibitem{12} D. P. Mishev, D. D. Bainov; A necessary and sufficient condition for oscillation of neutral type hyperbolic equations[J]. \emph{Journal of Computational and Applied Mathematics}, 1992, {\bf 42}(2): 215--220. \bibitem{13} Y. Shoukaku, N. Yoshida; Oscillations of nonlinear hyperbolic equations with functional arguments via Riccati method. \emph{Applied Mathematics and Computation}, 2010, {\bf 217}: 143--151. \bibitem{14} J. R. Yan, C. H. Kou; Oscillation of solutions of impulsive delay differential equations[J]. \emph{Journal of Mathematical Analysis and Applications}, 2001, {\bf 254}: 358--370. \bibitem{15} Y. H. Yu, B. Liu, Z. R. Liu; Oscillation of solutions of nonlinear partial differential equations of neutral type. \emph{Acta Mathematica Sinica, New Series}, 1997, {\bf 13}(4): 563--570. \end{thebibliography} \end{document}