\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 275, pp. 1--21.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/275\hfil Approximate controllability] {Approximate controllability of abstract impulsive fractional neutral evolution equations with infinite delay in Banach spaces} \author[D. N. Chalishajar, K. Malar, K. Karthikeyan \hfil EJDE-2013/275\hfilneg] {Dimplekumar N. Chalishajar, Kandasamy Malar,\\ Kulandhivel Karthikeyan} \address{Dimplekumar N. Chalishajar \newline Department of Mathematics and Computer Science Virginia Military Institute (VMI) 417, Mallory Hall, Lexington, VA 24450, USA} \email{dipu17370@yahoo.com, chalishajardn@vmi.edu} \address{Kandasamy Malar \newline Department of Mathematics, Erode Arts and Science College, Erode 638 009, Tamil Nadu. India} \email{malarganesaneac@gmail.com} \address{Kulandhivel Karthikeyan \newline Department of Mathematics, K.S.R. College of Technology, Tiruchengode 637 215, Tamil Nadu, India} \email{karthi\_phd2010@yahoo.co.in} \thanks{Submitted July 26, 2013. Published December 18, 2013.} \subjclass[2000]{34A37, 34K30, 47D09, 93C15} \keywords{Impulsive conditions; approximate controllability;\hfill\break\indent neutral evolution equations; phase space} \begin{abstract} In this article, we study the approximate controllability of impulsive abstract fractional neutral evolution equations in Banach spaces. The main results are obtained by using Krasnoselkii's fixed point theorem, fractional calculus and methods of controllability theory. An application is provided to illustrate the theory. Here we have provided new definition of phase space for the impulsive and infinite delay term. Our result is new for the approximate controllability with infinite delay in Hilbert space. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Differential equations of fractional order have proved to be valuable tools in the modelling of many phenomena in various fields of science and engineering. Indeed, we can find numerous applications in viscoelasticity, electrochemistry, control, porous media, electromagnetic, etc. (see \cite{DNC3,DNC4,DiFr,BaSi,GlNo,Hil,Mai,MeScKiNo,OlPs}). Now a days, controllability theory for linear systems has already been well established, for finite and infinite dimensional systems (see \cite{rf}). Several authors have extended these concepts to infinite dimensional systems represented by nonlinear evolution equations in infinite-dimensional spaces, (see \cite{ad,X.L,ni1,rs1,rs2,ns,jw}). On the other hand, approximate controllability problems for fractional evolution equations in Hilbert spaces is not yet sufficiently investigated and there are only few works on it (see \cite{rs1,rs2,jw}). On the other hand, it has been observed that the existence or the controllability results proved by different authors are through an axiomatic definition of the phase space given by Hale and Kato \cite{HK}. However, as remarked by Hino, Murakami, and Naito \cite{HMN}, it has come to our attention that these axioms for the phase space are not correct for the impulsive systems with infinite delay, refer the work in \cite{DNC1,DNC2}. Benchohra et al.~\cite{BGN} discussed the controllability of first and second order neutral functional differential and integro-differential inclusions in a Banach space with non-local conditions, without impulse effect. Chang and Li \cite{CL} obtained the controllability result for functional integro-differential inclusions on an unbounded domain without impulse term. Benchohra et al.~\cite{BHNO} studied the existence result for damped differential inclusion with impulse effect. Hernandez et al.~\cite{HRH} proved the existence of solutions for impulsive partial neutral functional differential equations for first and second order systems with infinite delay. In last couple of years, JinRong Wang et al.~\cite{0,2,3,4,5,6,7,8} discussed various development in the theory of boundary value problems, optimal feedback control, and new concept of solutions for impulsive fractional evolution/differential equations. Impulsive differential equations have become important in recent years as mathematical models of phenomena in both the physical and social sciences. There has been significant development in impulsive theory especially in the area of impulsive differential equations with fixed moments; see for instance the monographs by Benchohra et al.~\cite{BeHeNt1}, Lakshmikantham et al.~\cite{LBS}, and Samoilenko and Perestyuk \cite{SaPe}, and the references therein. A neutral generalization of impulsive differential equations is abstract impulsive differential equations in Banach spaces. For general aspects of impulsive differential equations, see monographs given in \cite{yvr1,yvr2}. The purpose of this paper is to study the approximate controllability of impulsive fractional neutral evolution differential system with infinite delay using the new definition of the phase space for impulsive term and infinite delay term. In this article, Section 2 provides the definitions and some preliminary results to be used in the main theorems stated and proved. In Section 3, we focus on existence of the solutions of \eqref{e2.1}. We study the main results in Section 4. Finally an application is given in Section 5 to justify the theory. \section{Preliminaries} Recently, in \cite{cc} the existence of solutions for an impulsive neutral functional differential equations of the form \begin{gather*} \frac{d}{dt}(u(t)+F(t,u_t))= A(t)u(t)+G(t,u_t) , \quad t\in I,\; t\neq t_i \\ \Delta u(t_i)=I_i(u_{t_i}),\\ u_0=\varphi \in \mathcal{B}, \end{gather*} was studied using Leray-Schauder's alternative theorem. We consider the following impulsive fractional neutral evolution differential system with infinite delay: \begin{equation} \label{e2.1} \begin{gathered} \frac{d^\alpha}{dt^\alpha}[x(t)-h(t,x_t)]= Ax(t)+Bu(t)+f(t,x_t) , \quad t\in[0,T], \; t\neq t_i \\ x(t)=\phi(t) \in{{\mathcal{B}}_h},\\ \Delta x(t_i)=I_i(x_{t_i}) \end{gathered} \end{equation} where the state $x$ takes values in a Banach space $X$, the control function takes values in a Hilbert space $U$. The functions $h, f$ will be specified in the sequel and $I$ is an interval of the form $[0,T)$; $00$, $\phi(\theta)$ is bounded and}\\ \\ &\quad \text{ measurable function on $ [-r,0]$ and } \int_{-\infty}^0h(s)\sup_{s\leq \theta \leq 0}|\phi(\theta)|ds<+\infty\}. \end{align*} Here, ${\mathcal{B}}_h$ is endowed with the norm \[ \|\phi\|_{{\mathcal{B}}_h}=\int_{-\infty}^0h(s)\sup_{s \leq \theta \leq 0}|\phi(\theta)|ds,\quad \forall \phi \in {\mathcal{B}}_h. \] Then it is easy to show that $({\mathcal{B}}_h,\|.\|_{{\mathcal{B}}_h})$ is a Banach space. \begin{lemma} \label{lem2.1} Suppose $y \in {\mathcal{B}}_h$; then, for each $t \in J$, $y_{t}\in {\mathcal{B}}_h$. Moreover, \[ l|y(t)|\leq \|y_{t}\|_{{\mathcal{B}}_h} \leq l \sup_{s\leq \theta \leq 0} (|y(s)|+\|y_0\|_{{\mathcal{B}}_h}), \] where $l:=\int_{-\infty}^0h(s)ds < +\infty$. \end{lemma} \begin{proof} For any $t \in [0,a]$, it is easy to see that $y_{t}$ is bounded and measurable on $[-a,0]$ for $a>0$, and \begin{align*} \|y_{t}\|_{{\mathcal{B}}_h} &= \int_{-\infty}^0 h(s) \sup_{\theta \in [s,0]}|y_{t}(\theta)|ds \\ &= \int_{-\infty}^{-t}h(s)\sup_{\theta \in [s,0]}|y(t+\theta)|ds + \int_{-t}^0h(s)\sup_{\theta \in [s,0]}|y(t+\theta)|ds\\ &= \int_{-\infty}^{-t}h(s)\sup_{\theta_{1} \in [t+s,t]}|y(\theta_{1})|ds + \int_{-t}^0h(s)\sup_{\theta_{1} \in [t+s,t]}|y(\theta_{1})|ds\\ &\leq \int_{-\infty}^{-t}h(s)\Big[\sup_{\theta_{1} \in [t+s,0]}|y(\theta_{1})| + \sup_{\theta_{1} \in [0,t]}|y(\theta_{1})|\Big]ds + \int_{-t}^0h(s) \sup_{\theta_{1} \in [0,t]}|y(\theta_{1})|ds \\ &= \int_{-\infty}^{-t} h(s) \sup_{\theta_{1} \in [t+s,0]}|y(\theta_{1})|ds + \int_{-\infty}^0h(s)ds. \sup_{s \in [0,t]}|y(s)| \\ &\leq \int_{-\infty}^{-t} h(s)\sup_{\theta_{1}\in [s,0]}|y(\theta_{1})|ds + l. \sup_{s \in [0,t]}|y(s)|\\ &\leq \int_{-\infty}^0h(s) \sup_{\theta_{1} \in [s,0]}|y(\theta_{1})| ds + l \sup_{s \in [0,t]}|y(s)| \\ &= \int_{-\infty}^0h(s) \sup_{\theta_{1} \in [s,0]}|y_0(\theta_{1})| ds + l \sup_{s \in [0,t]}|y(s)| \\ &= l \sup_{s \in [0,t]}|y(s)| + \|y_0\|_{{\mathcal{B}}_h} \end{align*} Since $ \phi \in {{\mathcal{B}}_h}$, then $y_{t} \in {{\mathcal{B}}_h}$. Moreover, \[ \|y_{t}\|_{{\mathcal{B}}_h} =\int_{-\infty}^0h(s) \sup_{\theta \in [s,0]}|y_{t}(\theta)|ds \geq |y_{t}(\theta)|\int_{-\infty}^0h(s)ds=l |y(t)| \] The proof is complete. \end{proof} The phase space ${\mathcal{B}}_h$ defined above also satisfies the following properties: \begin{itemize} \item[(B1)] If $x : (-\infty,\sigma+a] \to X$, $a>0$, $\sigma\in \mathbb{R}$ such that $x_{\sigma} \in{ {\mathcal{B}}_h}$, and $x[\sigma, \sigma+a] \in PC([\sigma, \sigma+a],X)$, then for every $t \in[\sigma, \sigma+a)$ the following conditions hold: \begin{itemize} \item[(i)] $x_t$ is in ${\mathcal{B}}_h$; \item[(ii)] $\|x(t)\|_X \leq H\|x_t\|_{{\mathcal{B}}_h}$; \item[(iii)] $ \|x_t\|_{{\mathcal{B}}_h} \leq K(t-\sigma) \sup\{\|x(s)\|_X : \sigma \leq s\leq t\} + M(t-\sigma)\|x_\sigma\|{{\mathcal{B}}_h}$, where $H>0$ is a constant; $K,M : [0,\infty) \to[1,\infty)$, $K$ is continuous, $M$ is locally bounded and $H,K,M$ are independent of $x$. \end{itemize} \item[(B2)] The space ${\mathcal{B}}_h$ is complete. \end{itemize} \begin{example} \label{examp2.2} \rm The $PC_r \times L^2(g,X)$ be the phase space. Let $r>0$ and $g : (-\infty,-r] \to R$ be a non- negative, locally Lebesgue integrable function. Assume that there is a non-negative measurable, locally bounded function $\eta(\cdot)$ on $(-\infty,0]$ such that $g(\xi+\theta) \leq \eta(\xi)g(\theta)$ for all $\xi\in (-\infty,0]$ and $\theta \in (-\infty,-r] \backslash N_{\xi}$, where $ N_{\xi} \subset(-\infty,-r]$ is a set with Lebesgue measure zero. We denote by $PC_R \times L^2(g,X)$ the set of all functions $\varphi : (-\infty,0] \to X$ such that $\varphi|[-r,0] \in PC([-r,0],X)$ and $\int_{-\infty}^{-r} g(\theta)\|\varphi(\theta)\|_{X}^{2} d\theta < +\infty$. In $PC_r \times L^2(g,X)$, we consider the seminorm defined by \[ \|\varphi\|_{{\mathcal{B}}_h} = \sup_{\theta \in [-r,0]} \|\varphi(\theta)\|_X+ \Big( \int_{-\infty}^{-r} g(\theta)\|\varphi(\theta)\|_{X}^{2} d\theta \Big)^{1/2}. \] From the proceeding conditions, the space $PC_r \times L^2(g,X)$ satisfies (B1) and (B2). Moreover, when $ r=0$, we can take $ H = 1$, $K(t) = \big(1+\int_{-t}^0 g(\theta)\big)^\frac {1}{2}$ and $M(t) = \eta (-t) $ for $t\geq 0$. \end{example} Let $00$, of uniformly bounded linear operator in $X$, that is, there exists $ M>1$ such that $\|S(t)\|_{L(X)} \leq M$ for all $t\geq 0$. Without loss of generality, let $0 \in \rho(-A)$, where $\rho(-A)$ is the resolvent set of $-A$. Then for any $\beta>0$, we can define $A^{-\beta}$ by $A^{-\beta} :=\frac{1}{\Gamma(\beta)}\int _0^{\infty} t^{\beta-1} S(t) dt$. It follows that each $A^{-\beta}$ is an injective continuous and homorphism of $ X$. Hence we can define $A^{\beta} := (A^{-\beta})^{-1}$, which is a closed bijective linear operator in $ X$. It can be shown that each $A^{\beta}$ has dense domain and that $D(A^{\gamma}) \subset D(A^{\beta})$ for $0\leq \beta \leq \gamma$. Moreover $A^{\beta+\gamma}x = A^{\beta}A^{\gamma}x = A^{\gamma}A^{\beta}x $ for every $\beta,\gamma \in \mathbb{R}$ and $x\in D(A^{\mu})$ with $\mu := \max (\beta,\gamma, \beta + \gamma)$, where $A^0 = I$, $I$ is the identity in $X$. We denote by $X_{\beta}$ the Banach space of $D(A^{\beta})$ equipped with norm $\|x\|_{\beta} := \|A^{\beta}x\|$ for $x\in D(A^{\beta})$, which is equivalent to the graph norm of $A^{\beta}$. Then we have $X_{\gamma} \hookrightarrow X_{\beta}$, for $0 \leq \beta \leq \gamma$ (with $X_0=X)$, and the embedding is continuous. Moreover, $A^{\beta}$ has the following basic properties. \begin{lemma}[\cite{ap}] \label{lem2.4} $A^{\beta}$ has the following properties \begin{itemize} \item[(i)] $ S(t) : X\to X_{\beta}$ for each $t>0$ and $\beta \geq 0$. \item[(ii)] $A^{\beta}S(t)x= S(t)A^{\beta}x$ for each $x\in D(A^{\beta})$ and $t\geq0$. \item[(iii)] for every $t, ~A^{\beta}S(t)$ is bounded in $ X$ and there exists $M_{\beta}>0$ such that $$ \|A^{\beta}S(t)\| \leq M_{\beta}t^{-\beta}. $$ \item[(iv)] $A^{-\beta}$ is a bounded linear operator for $0 \leq\beta \leq 1$ in X, there exists a constant $C_{\beta}$ such that $\|A^{-\beta}\| \leq C_{\beta}$ for $ 0 \leq\beta \leq 1$. \end{itemize} \end{lemma} We recall the following known definitions from fractional calculus. For more details, see \cite{DNC3,Sa}. \begin{definition} \label{def2.5} \rm The fractional integral of order $\alpha>0$ with the lower limit $0$ for a function $f$ is defined as \begin{align*} I^{\alpha}f(t) = \frac{1}{\Gamma(\alpha)}\int_0^t \frac{f(s)}{(t-s)^{1-\alpha}} ds, \quad t>0, \; \alpha>0, \end{align*} provided the right-hand side is pointwise defined on $ [0,\infty)$, where $\Gamma$ is the gamma function. \end{definition} \begin{definition} \label{def2.6} \rm The Riemann- Liouville derivative of order $\alpha$ with the lower limit 0 for a function $f : [0,\infty) \to R$ is written as \[ ^LD^{\alpha}f(t)= \frac{1}{\Gamma(n-\alpha)}\frac{d^n}{dt^n} \int_0^t \frac{f^{(n)}(s)}{(t-s)^{\alpha+1-n}} ds, \quad t>0, \; n-1< \alpha0, \; n-1< \alpha0$; \item[(iv)] $S_{\alpha}(t)$ and $\mathfrak A_{\alpha}(t)$ are compact operators in $X$ for $t>0$; \item[(v)] For any $t>0$, the restriction of $S_{\alpha}(t)$ to $X_{\beta}$ and the restriction of $\mathfrak A_{\alpha}(t)$ to $X_{\beta}$ are norm-continuous; \item[(vi)] For every $t>0$ the restriction of $S_{\alpha}(t)$ to $X_{\beta}$ and the restriction of $\mathfrak A_{\alpha}(t)$ to $X_{\beta}$ are compact operators in $X_{\beta}$; \item[(vii)] For all $x\in X$ and $t\in [0,T]$, $$ \|A^{\beta}\mathfrak A_{\alpha}(t)x\| \leq C_{\beta}t^{-\alpha\beta}\|x\|, \quad C_{\beta} := \frac{M_{\beta}\alpha\Gamma(2-\beta)}{\Gamma(1+\alpha(1-\beta))}. $$ \end{itemize} \end{lemma} In the following definition, we introduce the concept of a mild solution for \eqref{e2.1}. \begin{definition} \label{def2.9} \rm A function $x(.^., u) \in PC([0,T],X)$ is said to be mild solution of \eqref{e2.1} if for any $u \in L_2([0,T],U)$, and $t\in I$ the integral equation \begin{equation}\label{e2.2} \begin{aligned} x(t)&= \mathfrak T_{\alpha}(t) [\phi(0)+g(0,\phi)] - g(t,x_t) - \int_0^t(t-s)^{\alpha - 1}A\mathfrak A_{\alpha} (t-s)g(s,x_s) ds \\ &\quad + \int_0^t(t-s)^{\alpha - 1}\mathfrak A_{\alpha} (t-s) [Bu(s)+ f(s,x_s)]ds +\sum_{t_i 0$ it is possible to steer the system from the initial point $x_0$ to within a distance $\varepsilon$ from all points in the space $X$ at time $T$. \end{definition} To investigate the approximate controllability of system \eqref{e2.1}, we assume the following conditions: \begin{itemize} \item[(H1)] $-A$ is the infinitesimal generator of an analytic semigroup of bounded linear operators $S(t)$ in $X$, $0 \in \rho(-A)$, $S(t)$ is compact for $t>0$, and there exists a positive constant $M$ such that $\|S(t)\| \leq M$; \item[(H2)] The function $g : [0,T] \times {\mathcal{B}}_h \to X$ is continuous and there exists some constant $M_g>0$, $0<\beta<1$, such that $g$ is $X_{\beta}$-valued and \begin{gather*} \|A^{\beta}g(t,x) - A^{\beta}g(t,y)\| \leq M_{g}\|x-y\|_{{\mathcal{B}}_h}, \quad x,y \in {{\mathcal{B}}_h}, \; t\in[0,T], \\ \|A^{\beta}g(t,x)\| \leq M_{g} (1+ \|x\|_{{\mathcal{B}}_h}). \end{gather*} \item[(H3)] The function $f : [0,T] \times {\mathcal{B}}_h \to X$ satisfies following properties: \begin{itemize} \item[(a)] $f(t_1,.) : {\mathcal{B}}_h \to X$ is continuous for each $t \in [0,T]$ and for each $x\in {\mathcal{B}}_h, f(.,x) : [0,T]\to X$ is strongly measurable; \item[(b)] There is a positive integrable function $ n\in L^{\infty}([0,T],[0,+\infty))$ and a continuous nondecreasing function $\Lambda_f : [0,\infty)\to (0,\infty)$ such that for every $(t,x) \in [0,T] \times{{\mathcal{B}}_h}$, we have \[ \|f(t,x)\| \leq n(t)\Lambda_f(\|x\|_{{\mathcal{B}}_h)}, \quad \lim \inf_{r\to \infty}\frac{{\Lambda_f}(r)}{r} = \sigma_f < \infty. \] \end{itemize} \item[(H4)] The following inequality holds \begin{align*} &\Big(1+ \frac{1}{\varepsilon}M_B^{2}M_{\mathfrak A}^{2} \frac{T^{2\alpha-1}}{2\alpha-1}\Big) \Big(M_g\|A^{-\beta}\|l+K(\alpha,\beta)M_{g} \frac{T^{\alpha\beta}}{\alpha\beta}l \\ &+\frac{M}{\Gamma(\alpha)}\frac{T^{\alpha}}{\alpha}\sigma_f \sup_{s\in J} n(s)\Big) + M \sum_{i=1}^{N} \sigma_{i} <1, \end{align*} where $ M_B := \|B\|$, $ M_{\mathfrak A} :=\|\mathfrak A_{\alpha}\|$, and $K(\alpha,\beta) = \frac{\alpha M_{1-\beta}\Gamma(1+\beta)} {\Gamma(1+\alpha\beta)}$; \item[(H5)] The maps $I_i : {\mathcal{B}}_h\to X$ are completely continuous and uniformly bounded, $i\in F = \{1,2,\dots,N\}$. In what follows, we denote $N_i =\sup\{\|I_i(\phi)\| : \phi \in {\mathcal{B}}_h\}$ and \[ \liminf_{r\to \infty}\frac{N_i}{r} = \sigma_i < \infty\,; \] \item[(H6)] There are positive constants $L_i$ such that \[ \|I_i(\psi_1) - I_i(\psi_2)\| \leq L_i\|\psi_1 - \psi_2\|_{{\mathcal{B}}_h}, \quad \psi_1,\psi_2 \in {\mathcal{B}}_h, \; i\in F; \] \item[(H7)] For every $h\in X$, $z_{\alpha}(h)= \varepsilon(\varepsilon I + \Gamma_0^{T}J)^{-1}(h)$ converges to zero as $\varepsilon \to 0^+$ in strong topology, where \[ \Gamma_0^{T} := \int_0^{T}(T-s)^{2(\alpha-1)}\mathfrak A_{\alpha}(T-s) BB^* \mathfrak A_{\alpha}^*(T-s)ds, \] and $z_{\varepsilon}(h)$ is a solution of the equation $\varepsilon z_{\varepsilon} + \Gamma_0^{T}J(z_{\varepsilon}) =\varepsilon h$. \end{itemize} Let $PC_T = \{x : x\in PC((-\infty,T],X), \quad x_0 = \phi\in {\mathcal{B}}_h\}$. Let $\|\cdot\|$ be the seminorm \[ \|x\|_T = \|x_0\|_{{\mathcal{B}}_h} + \sup_{0\leq s \leq T} \|x(s)\|, \quad x\in PC_T. \] \section{Existence theorem} To formulate the controllability problem in a form suitable for applying a fixed point theorem, it is assumed that the corresponding linear system is approximately controllable. Then it will be shown that the system \eqref{e2.1} is approximately controllable if for all $\varepsilon> 0$ there exists a continuous function $x(\cdot) \in PC([0,T],X)$ such that \begin{equation} \label{e3.1} \begin{gathered} u_{\varepsilon}(t,s) = (T-t)^{\alpha-1}B^* \mathfrak A_{\alpha}^*(T-t)J((\varepsilon I + \Gamma_0^{T}J)^{-1}p(x)),\\ \begin{aligned} x(t)&= \mathfrak T_{\alpha}(t) [\phi(0)+g(0,\phi)] - g(t,x_t) - \int_0^t(t-s)^{\alpha - 1}A\mathfrak A_{\alpha} (t-s)g(s,x_s) ds \\ &\quad + \int_0^t(t-s)^{\alpha - 1}\mathfrak A_{\alpha} (t-s) [Bu_{\varepsilon}(s,x) + f(s,x_s)] ds +\sum_{t_i0$ consider the operator $\varPhi_{\varepsilon}: PC_T \to PC_T$ defined by \[ (\varPhi_{\varepsilon}x)(t) := \begin{cases} \phi(t), \quad t\in (-\infty,0];\\ \mathfrak T_{\alpha}(t) [\phi(0)+g(0,\phi)] - g(t,x_t) - \int_0^t(t-s)^{\alpha - 1}A\mathfrak A_{\alpha} (t-s)g(s,x_s) ds \\ + \int_0^t(t-s)^{\alpha - 1}\mathfrak A_{\alpha} (t-s) [Bu_{\varepsilon}(s,x) + f(s,x_s)] ds \\ +\sum_{t_i 0$ the operator $\varPhi_{\varepsilon}$: $PC_T \to PC_T$ has a fixed point. Suppose that $x(t) =\Tilde{\phi}(t) + z(t)$, $t\in (-\infty,T]$, where \[ \tilde{\phi}(t) = \begin{cases} \phi(t), & \text{for } t\in (-\infty,0],\\ \mathfrak T_{\alpha}(t)\phi(0), &\text{for} t \in [0,T]. \end{cases} \] Set $PC_T^0 = \{z\in C_T : z_0 = 0\in {{\mathcal{B}}_h}\}$. For any $z\in PC_T^0$, we have \[ \|z\|_T = \|z_0\|_{{\mathcal{B}}_h} + \sup_{0\leq s\leq T} \|z(s)\| =\sup_{0\leq s\leq T} \|z(s)\|\,. \] Thus $(PC_T^0,\|\cdot\|_T)$ is a Banach space. For each positive number $r>0$, set \begin{align*} B_r := \{z\in PC_T^0 : \|z\|_T \leq r\}. \end{align*} It is clear that $B_r$ is bounded closed convex set in $PC_T^0$. For any $z\in B_r$ we have \begin{align*} \| \Tilde{\phi}_t+ z_t\|_{{\mathcal{B}}_h} &\leq \|\Tilde{\phi}_t\|_{{\mathcal{B}}_h} + \|z_t\|_{{\mathcal{B}}_h}\\ &\leq l \sup_{0\leq s\leq T}\| \Tilde{\phi}(s)\| + \|\Tilde{\phi_0} \|_{{\mathcal{B}}_h} + l \sup_{0\leq s\leq T}\|z(s)\| + \|Z_0\|_{{\mathcal{B}}_h}\\ &\leq l (M\|\phi(0)\| + r) + \|\phi\|_{{\mathcal{B}}_h} := R(r). \end{align*} Consider the maps $\prod_{\varepsilon}, \Theta_{\varepsilon}, \varUpsilon_{\varepsilon} : PC_T^0 \to PC_T^0$ defined by \begin{gather*} \big(\prod_{\varepsilon}z\big)(t) :=\begin{cases} 0, &t\in (-\infty,0];\\ \mathfrak T_{\alpha}(t) - g(0,\phi)] - g(t,\Tilde{\phi}_t+z_t)\\ - \int_0^t(t-s)^{\alpha - 1}A\mathfrak A_{\alpha} (t-s)g(s,\Tilde{\phi}_s+z_s) ds, &t\in [0,T] \end{cases} \\ \big(\Theta_{\varepsilon}z\big)(t):=\begin{cases} 0, \quad t\in (-\infty,0];\\ \int_0^t(t-s)^{\alpha - 1}\mathfrak A_{\alpha} (t-s) \big[Bu_{\varepsilon}(s,\Tilde{\phi}+z) + f(s,\Tilde{\phi}_s+z_s)\big] ds, \;\; t\in [0,T] \end{cases} \\ \big(\varUpsilon_{\varepsilon}z\big)(t) :=\begin{cases} 0, & t\in (-\infty,0];\\ \sum_{0 0$ there exists a positive number $r:=r(\varepsilon)$ such that ($\prod_{\varepsilon}+ \Theta_{\varepsilon}+ \varUpsilon_{\varepsilon}) (B_r) \subset B_r$. \end{lemma} \begin{proof} Let $\varepsilon >0$ be fixed. If the statement were not true, then for each $r>0$, there exists a function $z_r \in B_r$, but ($\prod_{\varepsilon}+ \Theta_{\varepsilon}+ \varUpsilon_{\varepsilon}) (z_r)\notin B_r$. So for some $t = t(r) \in [0,T]$ one can show that \begin{equation} \label{e3.2} \begin{aligned} r &\leq\big \|(( \prod_{\varepsilon}+ \Theta_{\varepsilon} + \varUpsilon_{\varepsilon})z_r)(t)\big\|\\ &\leq \big\| \mathfrak T_{\alpha}(t) g(0,\phi)\big\| +\big\| g(t,\Tilde{\phi}_t+z_t)\big\| +\| \int_0^t(t-s)^{\alpha - 1}A\mathfrak A_{\alpha} (t-s)g(s,\Tilde{\phi}_s+z_s) ds \|\\ &\quad +\| \int_0^t(t-s)^{\alpha - 1}\mathfrak A_{\alpha} (t-s)f(s,\Tilde{\phi}_s+z_s) ds\|\\ &\quad +\| \int_0^t(t-s)^{\alpha - 1}\mathfrak A_{\alpha} (t-s) Bu_{\varepsilon}(s,\phi+z) ds\| \\ &+\|\sum_{0 0$. \end{proof} \begin{lemma} \label{lem3.3} Let Assumptions {\rm (H1)--(H4)} hold. Then $\Theta_1$ is contractive. \end{lemma} \begin{proof} Let $x,y \in B_r$. Then \begin{align*} &\|(\prod_{\varepsilon}x)(t) - (\prod_{\varepsilon}y)(t)\|\\ &\leq \|g\big(t,\Tilde{\phi}_t+x_t\big) - g\big(t,\Tilde{\phi}_t+y_t\big)\|\\ & \leq \| \int_0^t (t-s)^{\alpha - 1} A \mathfrak A_{\alpha} (t-s) \Big( g\big(s,\Tilde{\phi}_s+x_s\big) - g\big(s,\Tilde{\phi}_s+y_s\big)\Big) \| ds \\ & \leq \|A^{-\beta}\|M_g\|x_t - y_t\|_{{\mathcal{B}}_h} \\ &\quad + K(\alpha, \beta) \int_0^t (t-s)^{\alpha \beta-1}\|A^{\beta}\Big( g\big(s,\Tilde{\phi}_s+x_s\big) - g\big(s,\Tilde{\phi}_s+y_s\big)\Big) \| ds \\ &\leq \|A^{-\beta}\|M_g\|x_t - y_t\|_{{\mathcal{B}}_h}+ K(\alpha, \beta) M_g \int_0^t (t-s)^{\alpha \beta-1}\|x_s - y_s\|_{{\mathcal{B}}_h} ds. \end{align*} Hence \[ \|(\prod_{\varepsilon}x)(t)-(\prod_{\varepsilon}y)(t)\| \leq M_gl \Big(\|A^{-\beta}\| + K(\alpha, \beta) \frac{T^{\alpha \beta}} {\alpha \beta}\Big) \sup_{0 \leq s \leq T}\|x(s) - y(s)\|, \] where we have used the fact that $x_0=y_0=0$. Thus \[ \sup_{0 \leq t \leq T}\|(\prod_{\varepsilon}x)(t) - (\prod_{\varepsilon}y)(t)\| \leq M_gl \Big(\|A^{-\beta}\| + K(\alpha, \beta) \frac{T^{\alpha \beta}} {\alpha \beta}\Big) \sup_{0 \leq s \leq T}\|x(s) - y(s)\|, \] so $\Theta_1$ is a contraction by Assumption (H4). \end{proof} \begin{lemma} \label{lem3.4} Let Assumptions {\rm (H1)--(H4)} hold. Then $\theta_{\varepsilon}$ maps bounded sets to bounded sets in $B_r$. \end{lemma} \begin{proof} By a similar argument as Lemma \ref{lem3.2}, we obtain \[ \|(\Theta_{\varepsilon}z)(t)\| < \Big(1+ \frac{1}{\varepsilon} M_B^{2}M_{\mathfrak A}^{2} \frac{T^{2\alpha-1}}{2\alpha-1}\Big) \frac{M}{\Gamma(\alpha)} \frac{T^\alpha}{\alpha}\Lambda_f(R(r)) \sup_{s\in J} n(s) :=r_1(\varepsilon) \] which implies that $(\Theta_{\varepsilon}z) \in B_{{r_1}(\varepsilon)}$. \end{proof} \begin{lemma} \label{lem3.5} Let Assumptions {\rm (H1)--(H4)} hold. Then the set $ \{\Theta_{\varepsilon}z) : z \in B_r\}$ is an equicontinuous family of functions on [0,T]. \end{lemma} \begin{proof} Let $0< \eta 0$ such that $ \|\mathfrak A_{\alpha}(s_1) - \mathfrak A_{\alpha}(s_2)\| < \eta $ for every $s_1, s_2 \in [0,T]$ with $|{s_1} -{ s_2}| < \delta$. For $z \in B_r, 0< |h| <\delta, t+h \in [0,T]$, we have \begin{align*} &\|(\Theta_{\varepsilon})(t+h) - (\Theta_{\varepsilon})(t)\|\\ &\leq \| \int _0^t\Big((t+h-s)^{\alpha-1} - (t-s)^{\alpha-1}\Big) \mathfrak A_{\alpha}(t+h-s) \big[(T-s)^{\alpha-1}Bv_{\varepsilon} \big(s,\Tilde{\phi} + z\big)\\ &\quad + f\big(s,\Tilde{\phi_s} + z_s\big)\big]ds\| \\ &\leq \| \int _0^{t+h}(t+h-s)^{\alpha-1} \mathfrak A_{\alpha}(t+h-s) \big[(T-s)^{\alpha-1}Bv_{\varepsilon} \big(s,\Tilde{\phi} + z\big)\\ &\quad + f\big(s,\Tilde{\phi_s} + z_s\big)\big]ds\| \\ &\leq \| \int _0^t(t-s)^{\alpha-1}\big(\mathfrak A_{\alpha}(t+h-s) - \mathfrak A_{\alpha}(t-s)\big) \big[(T-s)^{\alpha-1}Bv_{\varepsilon} \big(s,\Tilde{\phi} + z\big)\\ &\quad + f\big(s,\Tilde{\phi_s} + z_s\big)\big]ds\| \end{align*} Applying Lemma \ref{lem2.4} and H\"older inequality, we have \begin{equation} \label{e3.12} \begin{aligned} &\|(\Theta_{\varepsilon}z)(t+h) - (\Theta_{\varepsilon}z)(t)\|\\ &\leq \frac{M}{\Gamma(\alpha)} \Lambda_f (R(r)) \int _0^t\Big((t+h-s)^{\alpha-1} - (t-s)^{\alpha-1}\Big)n(s) ds\\ &+ \frac{M}{\Gamma(\alpha)}\frac{1}{\varepsilon} M_B M_{\mathfrak A} \Delta \int _0^t\Big((t+h-s)^{\alpha-1} - (t-s)^{\alpha-1}\Big)(T-s)^{\alpha-1} ds\\ & + \frac{M}{\Gamma(\alpha)}\Lambda_f (R(r)) \int _0^t\Big((t-s)^{\alpha-1}n(s)ds\\ & + \frac{M}{\Gamma(\alpha)}\frac{1}{\varepsilon} M_B M_{\mathfrak A} \Delta \int _{t}^{t+h}((t+h-s)^{\alpha-1} (T-s)^{\alpha-1} ds\\ &+\frac{\eta T^{\alpha}}{\alpha} \Lambda_f (R(r)) \int _0^t(t-s)^{\alpha-1}n(s)ds\\ & +\frac{\eta T^{\alpha}}{\alpha}\frac{1}{\varepsilon} M_B M_{\mathfrak A} \Delta \int _0^t(t-s)^{\alpha-1}(T-s)^{\alpha-1} ds \end{aligned} \end{equation} Therefore, for $\varepsilon$ sufficiently small, the right- hand side of \eqref{e3.12} tends to zero as $h \to0$. On the other hand, the compactness of $\mathfrak A_{\alpha}(t), t>0$, implies the continuity in the uniform operator topology. Thus, the set $\{\Theta_{\varepsilon}z : z \in B_r\}$ is equicontinuous. \end{proof} \begin{lemma} \label{lem3.6} Let Assumptions {\rm (H1)--(H6)} hold. Then the set $ \{\varUpsilon_{\varepsilon}z) : z \in B_r\}$ is an equicontinuous family of functions on $[0,T]$. \end{lemma} \begin{proof} For $z \in B_r, 0< |h| <\delta$ and $t+h \in [0,T]$, we have \begin{align*} &\|(\varUpsilon_{\varepsilon}z) (t+h) - (\{\varUpsilon_{\varepsilon}z) (t)\|\\ &\leq \| \sum _{0 < t_i < t+h}\mathfrak T_{\alpha} (t+h-t_i) I_i(\Tilde{\phi}_{t_i}+z_{t_i}) - \sum_{00 $ and Hypothesis (H5). \end{proof} \begin{lemma} \label{lem3.7} Let Assumptions {\rm (H1)-(H6)} hold. Then $ (\Theta_{\varepsilon} + \varUpsilon_{\varepsilon})$ maps $B_r$ onto a precompact set in $B_r$. \end{lemma} \begin{proof} Let $ 00$ define an operator $(\Theta_{\varepsilon}^{\lambda, \delta}z +\varUpsilon_{\varepsilon}^{\lambda, \delta}z)$ on $B_r$ by \begin{align*} &\Big(\Theta_{\varepsilon}^{\lambda, \delta}z +\varUpsilon_{\varepsilon}^{\lambda, \delta}z\Big)(t)\\ &= \alpha \int_0^{t-\lambda} \int_{\delta}^{\infty} \theta(t-s)^{\alpha -1} \eta _{\alpha}(\theta) S(t-s)^{\alpha} \theta) \big[Bu_{\varepsilon} \big(s, \Tilde{\phi} + z\big) \\ &\quad + f\big( s, \Tilde{\phi}_s + z_s\big) \big]d\theta ds + \sum_{0<\lambda0$ is a compact operator, the set $\Big\{\Big (\Theta_{\varepsilon}^{\lambda, \delta}z +\varUpsilon_{\varepsilon}^{\lambda, \delta}z\Big)(t) : z\in B_r\Big\} $ is precompact in $H$ for every $0<\lambda0$. Moreover, for each $z\in B_r$, we have \begin{align} &\|\big(\Theta_{\varepsilon}z +\varUpsilon_{\varepsilon}z\big)(t) -\big(\Theta_{\varepsilon}^{\lambda, \delta}z +\varUpsilon_{\varepsilon}^{\lambda, \delta}z\big)(t)\| \nonumber \\ & \leq \alpha E\| \int_0^t \int_0^{\delta} \theta(t-s)^{\alpha -1} \eta _{\alpha}(\theta) S(t-s)^{\alpha} \theta) \big[Bu_{\varepsilon}\big(s, \Tilde{\phi} + z\big) + f\big( s, \Tilde{\phi}_s + z_s\big)\big]d\theta ds\| \nonumber \\ &\quad + \alpha E\| \int_{t-\lambda}^t \int_{\delta}^{\infty} \theta(t-s)^{\alpha -1} \eta _{\alpha}(\theta) S(t-s)^{\alpha} \theta) \big[Bu_{\varepsilon}\big(s, \Tilde{\phi} + z\big) \nonumber \\ &\quad + f\big( s, \Tilde{\phi}_s + z_s\big)\big]d\theta ds\| \nonumber\\ &\quad +\| \sum_{00 $ for all nonzero $z^* \in X^*$; \item[(ii)] For all $h \in X, J(z_{\varepsilon}(h))$ coverges to the zero as $\varepsilon \to 0^+$ in the weak topology, where $z_{\varepsilon}(h) = \varepsilon(\varepsilon I + \Gamma_0^{T}J)^{-1}(h)$ is a solution of the equation $\varepsilon z_{\varepsilon} + \Gamma_0^{T}J(z_{\varepsilon}(h) ) = \alpha h$; \item[(iii)] For all $h\in X, z_{\varepsilon}(h) = \varepsilon(\varepsilon I + \Gamma_0^{T}J)^{-1}(h)$ converges to the zero as $\varepsilon \to 0^+$ in the strong topology. \end{itemize} \end{theorem} \begin{remark} \label{rmk4.2} \rm It is known that Theorem \ref{thm4.1}(i) holds if and only if $\overline{\operatorname{Im} L_0^{T}} = X$. In other words, Theorem \ref{thm4.1}(i) holds if and only if the corresponding linear system is approximately controllable on $[0,T]$. \end{remark} \begin{theorem}[\cite{ni1}] \label{thm4.3} Let $p: X\to X$ be a nonlinear operator, Assume $z_{\varepsilon}$ is a solution of the following equation $\varepsilon z_{\varepsilon} + \Gamma_0^{T}J(z_{\varepsilon}(h) ) = \alpha p(z_{\varepsilon})$ and $\| p(z_{\varepsilon}) -p\| \to 0$ as $\varepsilon \to 0^{+}, p\in X$. Then there exists a subsequence of the sequence $\{z_{\varepsilon}\}$ strongly converging to zero as $ \varepsilon \to 0^{+}$. \end{theorem} We are now in a position to state and prove our main result. \begin{theorem} \label{thm4.4} Let $1/2 <\alpha \leq1$. Suppose that Assumptions {\rm (H1)--(H7)} are satisfied. Also assume that \begin{itemize} \item[(H8)] $g: [0,T] \times X \to X$ and $A^{\beta} g(T,\cdot)$ is continuous from the weak topology of $X$; \item[(H9)] There exists $N\in L^{\infty}([0,T],[0,+\infty))$ such that $$ \sup_{x\in B_{t}} \|f(t,x)\| +\sup _{y \in X} \|A^{\beta} g(t,y)\| \leq N(t), \quad \text{for a.e. } t\in [0,T]. $$ \end{itemize} Then system \eqref{e2.1} is approximately controllable on $[0,T]$. \end{theorem} \begin{proof} Let $x^{\varepsilon}$ be a fixed point of $\Phi_{\varepsilon}$ in $B_{r(\varepsilon)}$. Then $x^{\varepsilon}$ is a mild solution of \eqref{e2.1} $[0,T]$ under the control given by \begin{gather*} u_{\varepsilon} (t,x^{\varepsilon}) = (T-t)^{\alpha -1} B^{*} S^{*} (T-t) J \big(((\varepsilon I + \Gamma_0^{T}J)^{-1} p(x^{\varepsilon})\big)\\ \begin{aligned} p(x^{\varepsilon}) &= h - \mathfrak T_{\alpha}(T) [\phi(0)+g(0,\phi)] + g(T,x^{\varepsilon}(T))\\ &\quad + \int_0^{T}(T-s)^{\alpha - 1}A\mathfrak A_{\alpha} (T-s)g(s,x_{s}^{\varepsilon}) ds\\ &\quad - \int_0^{T}(T-s)^{\alpha - 1}\mathfrak A_{\alpha} (T-s) + f(s,x_{s}^{\varepsilon}) ds \end{aligned} \end{gather*} and satisfies the equality \begin{align*} &x^{\varepsilon}(T) \\ &= \mathfrak T_{\alpha}(T) [\phi(0)+g(0,\phi)] - g(T,x^{\varepsilon}(T))\\ &\quad -\int_0^{T}(T-s)^{\alpha - 1}A\mathfrak A_{\alpha} (T-s) g(s,x_{s}^{\varepsilon}) ds \\ &\quad + \int_0^{T}(T-s)^{\alpha - 1}\mathfrak A_{\alpha} (T-s)[Bu_{\varepsilon}(s,x) + f(s,x_{s}^{\varepsilon})] ds\\ &\quad +\sum_{t_i 0$, on $X$ which is analytic compact and self-adjoint, the eigenvalues are $-n^2$, $n \in\mathbb{N}$, with corresponding normalized eigenvectors $e_n (\xi) := (2/{ \pi})^{1/2}\sin(n \xi)$ and \[ S(t) e_n = e^{-n^{2}t} e_n,\quad n=1,2,\dots . \] Moreover the following statements hold: \begin{itemize} \item[(a)] $\{e_n : n \in\mathbb{N}\}$ is an orthonormal basis of $X$; \item[(b)] If $z \in D(A)$ then $ A(z) = - \sum_{n=1}^{\infty} n^2 \langle{ z,e_n} \rangle{ e_n}$; \item[(c)] For $z\in \mathbb{H}$, $(-A) ^{-1/2} z = \sum_{n=1}^{\infty} \frac {1}{n} \langle{z,e_n} \rangle {e_n}$; \item[(d)] The operator $(-A)^{1/2}$ is given as $(-A)^{1/2} z = \sum_{n=1}^{\infty} n\langle{ z,e_n }\rangle e_n$ on the space $D\Big[(-A)^{1/2}\Big] = \{ z \in X : \sum_{n=1}^{\infty} n\langle{ z,e_n }\rangle e_n \in X\}$ \end{itemize} Consider the neutral system \begin{gather} \frac {\partial^{\alpha}}{\partial t^{\alpha}}\Big[ x(t, \xi) + \int_0^{\pi} b(\theta, \xi) x(t, \theta) d \theta \Big] = \frac {\partial^{2}}{\partial {\xi}^{2}}x(t, \xi) + p(t,x(t, \xi)) + Bu(t, \xi), \label{e5.1}\\ x(t,0) = x(t, \pi) = 0, \quad t \geq0, \label{e5.2} \\ x(t,\xi) = \phi(\xi), \quad 0 \leq \xi \leq \pi, \label{e5.3} \\ \Delta x(t_i,\cdot) = x(t_i^{+},\cdot) - x(\cdot,t_i^{-}) = \int _0^{\pi} (\xi, x(t_i,s)) ds, \label{e5.4} \end{gather} where $p : [0,T] \times R \to R$ is continuous functions and $ (t_i)_{i \in\mathbb{N}}$ is a strictly increasing sequence of positive real numbers. $B$ is a linear continuous mapping from \[ U = \Big\{u= \sum_{n=2}^{\infty} u_n {e_n} | \|u\|_{U}^{2} = \sum_{n=2}^{\infty} u_n^2 < \infty\Big\} \] to $X$ as follows \[ Bu = 2u_{2} + \sum_{n=2}^{\infty} u_n {e_n}. \] To write problem \eqref{e5.1}-\eqref{e5.4} in the abstract form, we assume the following: \begin{itemize} \item[(A1)] The function $b$ is measurable and \[ \int_0^{\pi}\int_0^{\pi} b^2(\theta, \xi) d\theta d\xi <\infty. \] \item[(A2)] The function $\frac{\partial}{\partial \xi} b(\theta, \xi)$ is measurable, $b(\theta,0) = b(\theta, \pi) = 0$, and let \[ L_1 = \Big[\int_0^{\pi}\int_0^{\pi} \Big(\frac{\partial}{\partial \xi} b(\theta, \xi)\Big)^{2} d\theta d\xi \Big]^{1/2}. \] \item[(A3)] The functions $p_i : [0,\pi] \times \mathbb{R} \to \mathbb{R}$, $i \in {\mathbb{N}}$, are continuous and there are positive constants $L_i$ such that \[ |p_i(\xi,s) - p_i(\xi, \bar{s})| \leq L_i|s - \bar{s}|, \quad \xi \in [0,\pi], \; s,\bar{s} \in {\mathbb{R}}. \] \end{itemize} We now define the functions $g,f : [0,T] \times X \to X $, $ I_i : {X} \to {X}$ by \begin{gather*} g(x)(\xi) = \int_0^{\pi} \int_0^{\pi} b(\theta, \xi) x(\theta) d\theta, \quad \xi \in[0,\pi],\\ f(t, x)(\xi) = p(t, x(\xi)), \quad t\geq 0, \; \xi \in[0,\pi],\\ I_i(\phi) \xi = \int_0^{\pi} p_i (\xi), \phi(0,s))ds,\quad i\in {\mathbb{N}}, \quad \xi \in[0,\pi] \end{gather*} From (A1), it is clear that $g$ is bounded linear operator on $X$. Furthermore, $g(x) \in D\big[A^{1/2}\big]$, and $\|A^{1/2}\| \leq L_1$. In fact from the definition of $g$ and (A2) it follows that \begin{align*} \langle g(x),e_n \rangle &= \int_0^{\pi} \Big[ \int_0^{\pi} b(\theta, \xi) x(\theta)d\theta\Big]e_n(\xi)d\xi\\ & = \frac{1}{n} \big(\frac{2}{\pi}\big)^{1/2} \Big{\langle} \int_0^{\pi}\frac{\partial}{\partial \xi} b(\theta, \xi)x(\theta) d\theta, \cos(n \xi) \Big{\rangle}\\ &= \frac{1}{n} \big(\frac{2}{\pi}\big)^{1/2}\langle g_1(x), \cos(n \xi)\rangle, \end{align*} where $g_1(x) = \int_0^{\pi} b(\theta, \xi) x(\theta)d\theta$. From (A2) we know that $g_1 : X \to X $ is a bounded linear operator with $\|g_1\| \leq L_1$. Hence $\|A^{1/2} g(x)\| = \|g_1(x)\|$, which implies the assertion. Moreover, assume that $f$ and $g$ satisfy conditions of Theorem \ref{thm4.3}. Thus the problem \eqref{e5.1}-\eqref{e5.2} can be written in the abstract form \begin{gather*} \frac{d^ {\alpha}}{dt^{\alpha}}\big(x(t) + g(t,x(t)\big) = Ax(t) + f(t,x(t)) + Bu(t),\\ x(0) = x_0,\quad t \in [0,T],\\ \Delta x(t_i) = x(t_i^{+} - x(t_i^{-}). \end{gather*} Now consider the associated linear system \begin{gather} \label{e5.5} \frac{d^ {\alpha}}{dt^{\alpha}}x(t) = Ax(t) + Bu(t),\\ x(0) = x_0, \quad t \in [0,T], \label{e5.6}\\ \Delta x(t_i) = x(t_i^{+} - x(t_i^{-}). \label{e5.7} \end{gather} So that it is approximately controllable on $[0,T]$ for $1/2< \alpha <1$. It is easy to see that if $z = \sum_{n=1}^{\infty} \langle z,e_n \rangle e_n$ then $$ B^* v = (2v_1 + v_2) e_2 + \sum_{n=3}^{\infty}{v_n}{ e_n}, $$ \begin{align*} &B^* \mathfrak A_{\alpha}^{*} (T-s)z \\ &= B^{*} \alpha \int_0^{\infty} \theta \varPsi_{\alpha} (\theta)S^{*} ((T-s)^{\alpha} \theta)z d\theta\\ &= \alpha \int_0^{\infty} \theta \varPsi_{\alpha} (\theta) \Big(\Big(2 \langle{z,e_1}\rangle e^{{-(T-s)}^{{\alpha}\theta}} {e_1} + \langle {z,e_2}\rangle e^{{-4(T-s)}^{{\alpha}\theta}} \\ &\quad + \sum _{n=3}^{\infty} e^{-n^{2}{(T-s)}^{{\alpha}{\theta}}} \langle{z,e_n}\rangle {e_n} \Big) d\theta \\ &= \Big(2 \langle{z,e_1}\rangle \alpha \int_0^{\infty}\theta \varPsi_{\alpha} (\theta)e^{{-(T-s)}^{{\alpha}\theta}} d\theta+\langle{z,e_2}\rangle \alpha \int_0^{\infty}\theta \varPsi_{\alpha} (\theta)e^{{-4(T-s)}^{{\alpha} \theta}} d\theta\Big) e_2\\ &\quad + \alpha \sum_{n=3}^{\infty} \int_0^{\infty}\theta \varPsi_{\alpha} (\theta) e^{-n^{2}{(T-s)}^{{\alpha}{\theta}}}d\theta \langle{z,e_n}\rangle {e_n}, \end{align*} \begin{align*} &\big\|(T-s)^{\alpha-1} B^{*} \mathfrak A_{\alpha}^{*} (T-s)z\big\|^2 \\ &= (T-s)^{2(\alpha -1)}\Big(2 \alpha \int_0^{\infty} \theta \varPsi_{\alpha} (\theta) e^{{-(T-s)}^{{\alpha}\theta}}d\theta \langle{z,e_1}\rangle\\ &\quad + \alpha \int_0^{\infty} \theta \varPsi_{\alpha} (\theta) e^{{-4(T-s)}^{{\alpha}\theta}}d\theta \langle {z,e_2}\rangle\Big)^2\\ &+ (T-s)^{2(\alpha -1)} \sum_{n=3}^{\infty} \Big(\alpha \sum_{n=3}^{\infty} \int_0^{\infty}\theta \varPsi_{\alpha} (\theta) e^{-n^{2}{(T-s)}^{{\alpha}{\theta}}} d\theta\Big)^2 \langle {z,e_2}\rangle^2 = 0. \end{align*} It follows that $ \langle {z,e_1}\rangle = \langle {z,e_2}\rangle = \dots = \langle {z,e_n}\rangle =0$, consequently $z=0$, which means that system \eqref{e5.5}-\eqref{e5.7} is approximaely controllable on $[0,T]$. Therefore, from Theorem \ref{thm4.4}, system \eqref{e5.1}-\eqref{e5.4} is approximately controllable on $[0,T]$. \begin{thebibliography}{99} \bibitem{BaSi} D. D. Bainov, P. S. Simeonov; \emph{Systems with Impulsive effect,} Horwood, Chichister, 1989. \bibitem{BGN} M. Benchohra, L. Gorniewicz, S. K. Ntouyas; \emph{Controllability of neutral functional differential and integro differential inclusions in a Banach spaces with nonlocal conditions;} Nonlinear Analysis Forum, (2006), 1-15. \bibitem{BHNO} M. Benchohra, J. Henderson, S. K. Ntouyas, A. Quahab; \emph{Existence results for impulsive semilinear damped differential inclusions;} Electron. J. Qual. Theory Differ. Equns., 11, (2003), 1-19. \bibitem{BeHeNt1} M. Benchohra, J. Henderson, S. K. Ntouyas; \emph{Impulsive Differential Equations and Inclusions}, Hindawi Publishing Corporation, Vol. 2, New York, 2006. \bibitem{DNC3} D. N. Chalishajar, K. Karhtikeyan; \emph{Existence and uniqueness results for boundary value problems of higher order fractional integro-differential equations involving grownwall's inequality in Banach spaces;} Acta Mathematica Scientia, 33B(3), (2013), 758-772. \bibitem{DNC4} D. N. Chalishajar, K. Karhtikeyan, J. J. Trujillo ; \emph{Existence of mild solutions for fractional impulsive semilinear integrodifferential equations in Banach spaces;} Communication on Applied Nonlinear Analysis, 19 No.4 (2012), 45-56. \bibitem{DNC1} D. N. Chalishajar; \emph{Controllability of Second Order Impulsive Neutral Functional Differential Inclusions with Infinite Delay;} Journal of Optimization Theory and Application. 154, No.2, (2012), 672-684. DOI: 10.1007/s10957-012-0025-6. \bibitem{DNC2} D. N. Chalishajar, F. S. Acharya; \emph{Controllability of second order semi linear neutral impulsive differential inclusions on unbounded domain with infinite delay in Banach spaces;} Bulletin of Korean Mathematical Society, 48, No.4, (2011), 813-838. \bibitem{CL} Y. K. Chang, W.T. Li; \emph{Controllability of functional integro differential inclusion with an unbounded delay;} J. Optim. Theory Appl., 32 (1) (2007), 125-142. \bibitem{cc} C. Cuevas, E. Hern\'{a}ndez and M.Rabelo; \emph{ The existence of solutions for impulsive neutral functional differential equations}, Comput. Math. Appl., 58 (2009), 744-757. \bibitem{rf} R. F. Curtain, H. J. Zwart; \emph{An introduction to Infinite-Dimensional Liner Systems Theory, } Springer- Verlag, Newyork, Berlin, Heidelberg, Tokyo, 1995. \bibitem{ad} A. Debbouche, D. Baleanu; \emph{Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems}, Computers \& Mathematics with Applications, 62 (2011), 1442-1450. \bibitem{DiFr} K. Diethelm, A. D. Freed; \emph{On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity}, in Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties (F. Keil, W. Mackens, H. Voss, and J. Werther, Eds), Springer-Verlag, Heidelberg, (1999), 217-224. \bibitem{GlNo} W. G. Glockle, T. F. Nonnenmacher; \emph{A fractional calculus approach of self-similar protein dynamics,} Biophys. J. 68, (1995), 46-53. \bibitem{HK} J. K. Hale, J. Kato; \emph{Phase space for retarded equations with infinite delay;} Funck. Ekvacioj. 21 (1), (1978), 11-41. \bibitem{HRH} E. Hernandez, M. Rabello, H. R. Henriquez; \emph{Existence of solutions for impulsive partial neutral functional differential equations}; J. Math. Anal. Appl., 331, (2007), 1135-1158. \bibitem{eh} E. Hern\'{a}ndez; M. Pierri, G. Goncalves, \emph{Existence results for an impulsive abstract partial differential equations with state-dependent delay,} Comput. Math. Appl., 52, (2006), 411-420. \bibitem{Hil} R. Hilfer; \emph{Applications of Fractional Calculus in Physics}, World Scientific, Singapore, 2000. \bibitem{HMN} Y. Hino, S. Murakami, and T. Naito; \emph{Functional differential equations with infinite delay;} Lecture Notes in Mathematics, Springer, 1473, New York 1991. \bibitem{LBS} V. Lakshmikantham, D. D. Bainov, P. S. Simeonov; \emph{Theory of Impulsive Differntial Equations}, Worlds Scientific, Singapore, 1989. \bibitem{X.L} X. Li, J. Yong; \emph{Optimal Control Theory for Infinite Dimentional Systems,} Birkhauser Boston, Boston, 1995. \bibitem{Mai} F. Mainardi; \emph{Fractional calculus: Some basic problems in continuum and statistical mechanics}, in Fractals and Fractional Calculus in Continuum Mechanics, (A. Carpinteri and F. Mainardi, Eds), Springer-Verlag, Wien, (1997), 291-348. \bibitem{MeScKiNo} F. Metzler, W. Schick, H. G. Kilian, T. F. Nonnenmacher; \emph{ Relaxation in filled polymers: A fractional calculus approach}, J. Chem. Phys., 103, (1995), 7180-7186. \bibitem{ni1} N. I. Mahmudov; \emph{Approximate Controllability of Semilinear Deterministic and Stochastic Evolution Equations in Abstract Spaces,} SIAM J. Control Optim., 42(5), (2003), 1604-1622. \bibitem{OlPs} K. B. Oldham, J. Spanier; \emph{The Fractional Calculus}, Academic Press, New York, London, 1974. \bibitem{ap} A. Pazy; \emph{Semigroups of linear operators and applications to partial differential equations,} Applied Mathematical Sciences, 44. Springer- Verlag, New York, 1983. \bibitem{yvr1} Y. V. Rogovchenko; \emph{Nonlinear impulsive evolution systems and application to population models}, J. Math. Anal. Appl., 207(2), (1997), 300-315. \bibitem{yvr2} Y. V. Rogovchenko; \emph{ Impulsive evolution systems: Main results and new trends}, Dynm. Contin. Discretr Impuls. Syst., 3(1), (1997), 57-88. \bibitem{rs1} R. Sakthivel, N. I. Mahmudov, J. J. Nieto; \emph{Controllability for a class of fractional - order neutral evolution control systems,} Appl. Math. and Comp., 218 (2012), 10334-10340. \bibitem{rs2} R. Sakthivel, J. J. Nieto and N. I. Mahmudov; \emph{Approximate Controllability of nonlinear deterministic and stochastic systems with unbounded delay,} Taiwanese J.Math. 14 (5) (2010), 1777-1797. \bibitem{Sa} S. G. Samko, A. A. Kilbas and O. I. Marichev; \emph{Fractional Integrala and Derivatives'} Theory and Applications (London: Gordon and Breach), 1993. \bibitem{SaPe} A. M. Samoilenko, N. A. Perestyuk; \emph{Impulsive Differential Equations} World Scientific, Singapore, 1995. \bibitem{ns} N. Sukavanam, S. Kumar; \emph{Approximate Controllability of fractional order semilinear delay systems,} Optim. Theory Appl. 151 (2) (2011), 373-384. \bibitem{jw} J. Wang, Z. Fan, Y. Zhou; \emph{Nonlocal Controllability of semilinear dynamic systems with fractional derivative in Banach spaces,} Journal of Optimization Theory and Applications, 154 (2012), 292-302. \bibitem {0} JinRong Wang, Yong Zhou; \emph{A class of fractional evolution equations and optimal controls,} Nonlinear Analysis: RWA,12 (2011), 262-272. \bibitem {2} JinRong Wang; \emph{On recent developments in the theory of boundary value problems for impulsive fractional differential equations,} Comput. Math. Appl. 64 (2012) 3008-3020. \bibitem {3} JinRong Wang, Yong Zhou, and Wei Wei; \emph{Optimal Feedback Control for Semilinear Fractional Evolution Equations in Banach Spaces,} Systems \& Control Letters 61 (2012) 472-476. \bibitem {4} JinRong Wang; \emph{On the Solvability and Optimal Controls of Fractional Integrodifferential Evolution Systems with Infinite Delay,} J. Optim. Theory Appl., 152(2012) 31-50. \bibitem {5} JinRong Wang, Yong Zhou, Michal Feckan; \emph{Nonlinear Impulsive Problems for Fractional Differential Equations and Ulam Stability,} Comp. Math. Appl., 64 (2012) 3389-3405. \bibitem {6} JinRong Wang; \emph{Relaxed Controls for Nonlinear Fractional Impulsive Evolution Equations,} J. Optim. Theory Appl., 156 (2013), 13-32. \bibitem {7} JinRong Wang; \emph{Abstract Cauchy Problem for Fractional Differential Equations, Nonlinear Dynamics,} 71 (2013), 685-700. \bibitem {8} JinRong Wang, Yong Zhou, Wei Wei; \emph{Fractional Schrodinger Equations with Potential and Optimal Controls,} Nonlinear Analysis: Real World Applications 13 (2012) 2755-2766. \bibitem{yz1} Y. Zhou and F. Jiao; \emph{Existence of mild solutions for fractional neutral evolution equations}, Comuters and Mathematics with Applications, 59 (2010), 1063-1077. \end{thebibliography} \end{document}