\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 32, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/32\hfil Positive solutions] {Positive solutions for anisotropic discrete boundary-value problems} \author[M. Galewski, S. G\l \c{a}b, R. Wieteska \hfil EJDE-2013/32\hfilneg] {Marek Galewski, Szymon G\l \c{a}b, Renata Wieteska} % in alphabetical order \address{Marek Galewski \newline Institute of Mathematics, Technical University of Lodz, Wolczanska 215, 90-924 Lodz, Poland} \email{marek.galewski@p.lodz.pl} \address{Szymon G\l \c{a}b \newline Institute of Mathematics, Technical University of Lodz, Wolczanska 215, 90-924 Lodz, Poland} \email{szymon.glab@p.lodz.pl} \address{Renata Wieteska \newline Institute of Mathematics, Technical University of Lodz, Wolczanska 215, 90-924 Lodz, Poland} \email{renata.wieteska@p.lodz.pl} \thanks{Submitted August 12, 2012. Published January 30, 2013.} \subjclass[2000]{39A10, 34B18, 58E30} \keywords{Discrete boundary value problem; mountain pass theorem; \hfill\break\indent variational methods; Karush-Kuhn-Tucker Theorem; positive solution; anisotropic problem} \begin{abstract} Using mountain pass arguments and the Karsuh-Kuhn-Tucker Theorem, we prove the existence of at least two positive solution for anisotropic discrete Dirichlet boundary-value problems. Our results generalized and improve those in \cite{TG}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} In this note we consider an anisotropic difference equation with Dirichlet type boundary condition on the form \begin{equation} \begin{gathered} \Delta (|\Delta y(k-1)|^{p(k-1)-2}\Delta y(k-1)) +f(k,y(k))=0, \quad k\in [1,T] , \\ y(0)=y(T+1)=0, \end{gathered} \label{zad} \end{equation} where $T\geq 2$ is a integer, $f:[1,T]\times\mathbb{R} \to (0,+\infty )$ is a continuous function; $[1,T]$ is a discrete interval $\{1,2,\dots ,T\}$, $\Delta y(k-1)=y(k) -y(k-1)$ is the forward difference operator; $y(k) \in\mathbb{R}$ for all $k\in [1,T] $; $p:[0,T+1] \to [ 2,+\infty )$. Let $p^{-}=\min_{k\in [0,T+1] }p(k) $; $p^{+}=\max_{k\in [0,T+1] }p(k) $. About the nonlinear term, we assume the following condition \begin{itemize} \item[(C1)] There exist a number $m>p^{+}$ and functions $\varphi_1,\varphi_2:[1,T]\to (0,\infty )$, $\psi_1,\psi_2:[1,T]\to (0,\infty ) $ such that \[ \psi_1(k)+\varphi_1(k)|y|^{m-2}y\leq f(k,y)\leq \varphi _2(k)|y|^{m-2}y+\psi_2(k) \] for all $y\geq 0$ and all $k\in [1,T]$. \end{itemize} Now, we show an example of a function that satisfies condition (C1). \begin{example} \label{przyklad} \rm Let $f:[1,T]\times\mathbb{R}\to (0,\infty )$ be given by \[ f(k,y)=| y|^{m-2}y\frac{2+\arctan(y)}{T^{2}k}+ \frac{\sin^{2}(k)e^{-| y| }+1}{T^{3}} \] for $(k,y) \in [ 1,T]\times\mathbb{R}$; here $m>p^{+}$. We see that for $y\geq 0$ we have \[ \frac{1}{T^{3}}+\frac{2}{T^{2}k}| y|^{m-2}y\leq f(k,y)\leq \frac{4+\pi }{2T^{2}k}| y|^{m-2}y+\frac{2}{T^{3}}. \] Thus we may put \[ \varphi_1(k)=\frac{2}{T^{2}k};\quad \varphi_2(k)=\frac{4+\pi }{2T^{2}k};\quad \psi_1(k)=\frac{1}{T^{3}};\quad \psi_2(k)=\frac{2}{T^{3}}. \] \end{example} Solutions to \eqref{zad} will be investigated in a space \[ Y=\{y:[0,T+1]\to \mathbb{R}:y(0)=y(T+1)=0\} \] with a norm \[ \| y\| =\Big(\sum_{k=1}^{T+1}|\Delta y(k-1)|^{2}\Big)^{1/2} \] with which $Y$ becomes a Hilbert space. For $y\in Y$, let \[ y_{+}=\max \{y,0\},\quad y_{-}=\max \{-y,0\}. \] Note that $y_{+}\geq 0$, $y_{-}\geq 0$, $y=y_{+}-y_{-}$, and $y_{+}\cdot y_{-}=0$. In order to demonstrate that problem \eqref{zad} has at least two positive solutions we assume additionally the condition \begin{itemize} \item[(C2)] $$ T^{\frac{p^{+}-2}{2}}\Big(\frac{1}{\sqrt{T+1 }}\Big)^{p^{+}}>\sum_{k=1}^{T}(\varphi_2(k)+\psi_2(k)). $$ \end{itemize} \begin{example} \label{examp2}\rm We show that the function defined in Example \ref{przyklad} satisfies condition (C2), by taking $p^{+}=18$ and $T=200$: \[ T^{\frac{p^{+}-2}{2}}\Big(\frac{1}{\sqrt{T+1}}\Big) ^{p^{+}}=0.009>0.002=\sum_{k=1}^{T}(\varphi_2(k)+\psi _2(k)) . \] \end{example} \begin{theorem}\label{maintheorem} Suppose that assumptions {\rm (C1), (C2)} hold. Then \eqref{zad} has at least two positive solutions. \end{theorem} Discrete boundary-value problems received some attention lately. Let us mention, far from being exhaustive, the following recent papers on discrete BVPs investigated via critical point theory, \cite{agrawal,CIT,caiYu,Liu,sehlik,TianZeng,teraz,zhangcheng,nonzero}. The tools employed cover the Morse theory, mountain pass methodology, linking arguments; i.e. methods usually applied in continuous problems. Continuous versions of problems such as \eqref{zad} are known to be mathematical models of various phenomena arising in the study of elastic mechanics (see \cite{B}), electrorheological fluids (see \cite{A}) or image restoration (see \cite{C}). Variational continuous anisotropic problems have been started by Fan and Zhang in \cite{D} and later considered by many methods and authors (see \cite{hasto} for an extensive survey of such boundary value problems). The research concerning the discrete anisotropic problems of type \eqref{zad} have only been started (see \cite{KoneOuro}, \cite{MRT} where known tools from the critical point theory are applied in order to get the existence of solutions). When compared with \cite{TG} we see that our problem is more general since we consider variable exponent case instead of a constant one. While we do not include term depending on $\Phi_{p^{-}}(y)=|y|^{p^{-}-2}y$ in the nonlinear part as is the case in \cite{TG}, it is apparent that our results would also hold should we have made our nonlinearity more complicated. We note that term $\Phi_{p^{-}}(y)=|y|^{p^{-}-2}y$ does not influence the growth of the nonlinearity. \section{Auxiliary results} We connect positive solutions to \eqref{zad} with critical points of suitably chosen action functional. Let \[ F(k,y)=\int_0^{y}f(k,s)ds\quad \text{for $y\in \mathbb{R}$ and $k\in [1,T]$}. \] Let us define a functional $J:Y\to R$ by \[ J(y)=\sum_{k=1}^{T+1}\frac{1}{p(k-1)}|\Delta y(k-1)|^{p(k-1)}-\sum_{k=1}^{T}F(k,y_{+}(k)). \] Functional $J$ is slightly different from functionals applied in investigating the existence of positive solutions, compare with \cite{TianZeng}. Thus we indicate its properties. The functional $J$ is continuously G\^{a}teaux differentiable and its derivative at $y$ is \begin{equation} \begin{aligned} \langle J'(y),v\rangle &=\sum_{k=1}^{T+1}|\Delta y(k-1)|^{p(k-1)-2}\Delta y(k-1)\Delta v(k-1)\\ &\quad - \sum_{k=1}^{T}f(k,y_{+}(k))v(k) \end{aligned}\label{functional1} \end{equation} for all $v\in Y$. Suppose that $y$ is a critical point to $J$; i.e., $\langle J'(y),v\rangle =0$ for all $v\in Y$. Summing by parts and taking boundary values into account, see \cite{GW}, we observe that \[ 0=-\sum_{k=1}^{T+1}\Delta (|\Delta y(k-1)|^{p(k-1)-2}\Delta y(k-1))v(k)- \sum_{k=1}^{T}f(k,y_{+}(k))v(k). \] Since $v\in Y$ is arbitrary, we see that $y$ satisfies \eqref{zad}. Now, we recall some auxiliary material which we use later: For (A1)-(A3) see \cite{MRT}, for (A4)-(A5) see \cite{GW}, for (A6) see \cite{TianZeng}. \begin{itemize} \item[(A1)] For every $y\in Y$ with $\| y\| >1$, we have \[ \sum_{k=1}^{T+1}|\Delta y(k-1)|^{p(k-1)}\geq T^{\frac{2-p^{-}}{2}}\| y\|^{p^{-}}-T. \] \item[(A2)] For every $y\in Y$ with $\|y\| \leq 1$, we have \[ \sum_{k=1}^{T+1}| \Delta y(k-1)|^{p(k-1)}\geq T^{ \frac{p^{+}-2}{2}}\| y\|^{p^{+}}. \] \item[(A3)] For every $y\in Y$ and any $m\geq 2$, we have \[ (T+1)^{\frac{2-m}{2}}\| y\|^m\leq \sum_{k=1}^{T+1}| \Delta y(k-1)|^m\leq (T+1)\| y\|^m. \] \item[(A4)] If $p^{+}\geq 2$, there exists $C_{p^{+}}>0$ such that for every $y\in Y$, \[ \sum_{k=1}^{T+1}| \Delta y(k-1)|^{p(k-1)}\leq 2^{p^{+}}(T+1)(C_{p^{+}}\| y\|^{p^{+}}+1). \] \item[(A5)] For every $y\in Y$ and any $m\geq 2$, we have \[ \sum_{k=1}^{T+1}| \Delta y(k-1)|^m\leq 2^m\sum_{k=1}^{T}| y(k)|^m. \] \item[(A6)] For every $y\in Y$ and any $p,q>1$ such that $\frac{1}{p}+\frac{1}{q}=1$, we have \[ \| y\|_{C}=\max_{k\in [ 1,T]}| y(k)| \leq (T+1)^{\frac{1}{q}}(\sum_{k=1}^{T+1}|\Delta y(k-1)|^{p})^{1/p}. \quad \] \end{itemize} Let $E$ be a real Banach space. We say that a functional $J:E\to \mathbb{R}$ satisfies Palais-Smale condition if every sequence $(y_{n})$ such that $\{J(y_{n})\}$ is bounded and $J'(y_{n})\to 0$, has a convergent subsequence. \begin{lemma}[\cite{mp}] \label{lem2} Let $E$ be a Banach space and $J\in C^{1}(E,\mathbb{R}) $ satisfy Palais-Smale condition. Assume that there exist $x_0,x_1\in E $ and a bounded open neighborhood $\Omega $ of $x_0$ such that $ x_1\notin \overline{\Omega }$ and \[ \max \{J(x_0),J(x_1)\}<\inf_{x\in \partial \Omega }J(x). \] Let \begin{gather*} \Gamma =\{h\in C([0,1],E):h(0)=x_0,h(1)=x_1\},\\ c=\inf_{h\in \Gamma }\max_{s\in [ 0,1]}J(h(s)). \end{gather*} Then $c$ is a critical value of $J$; that is, there exists $x^{\star }\in E$ such that $J'(x^{\star })=0$ and $J(x^{\star })=c$, where $c>\max \{J(x_0),J(x_1)\}$. \end{lemma} Finally we recall the Karush-Kuhn-Tucker theorem with Slater qualification conditions (for one constraint), see \cite{borwein}. \begin{theorem}\label{KKT-THEO} Let $X$ be a finite-dimensional Euclidean space, $\eta,\mu:X\to\mathbb{R}$ be differentiable functions, with $\mu$ convex and $\inf_X \mu<0$, and $S=\{x\in X:\mu(x)\leq 0\}$. Moreover, let $\overline{x}\in S$ be such that $\eta(\overline{x})=\inf_S\eta$. Then, there exists $\sigma\geq 0$ such that \[ \eta'(\overline{x})+\sigma\mu'(\overline{x})=0 \quad\text{and}\quad \sigma\mu(\overline{x})=0. \] \end{theorem} We will provide now some results which are used in the proof of the Main Theorem. The following lemma may be viewed as a kind of a discrete maximum principle. \begin{lemma}\label{lem4} Assume that $y\in Y$ is a solution of the equation \begin{equation} \begin{gathered} \Delta (|\Delta y(k-1)|^{p(k-1)-2}\Delta y(k-1)) +f(k,y_{+}(k))=0,k\in [1,T] , \\ y(0)=y(T+1)=0, \end{gathered} \label{UKL2} \end{equation} then $y(k) >0$ for all $k\in [1,T] $ and moreover $y$ is a solution of \eqref{zad}. \end{lemma} \begin{proof} We will show that \[ \Delta y(k-1)\Delta y_{-}(k-1)\leq 0\quad \text{for every } k\in [ 1,T+1]. \] Indeed, \begin{align*} &\Delta y(k-1)\Delta y_{-}(k-1)\\ &=(y(k)-y(k-1))(y_{-}(k)-y_{-}(k-1))\\ &=[(y_{+}(k)-y_{+}(k-1)) -(y_{-}(k)-y_{-}(k-1)) ] (y_{-}(k)-y_{-}(k-1))\\ &= (y_{+}(k)-y_{+}(k-1)) (y_{-}(k)-y_{-}(k-1)) -(y_{-}(k)-y_{-}(k-1))^{2}\\ &= y_{+}(k)y_{-}(k)-y_{+}(k)y_{-}(k-1)-y_{+}(k-1)y_{-}(k)\\ &\quad +y_{+}(k-1)y_{-}(k-1)-(y_{-}(k)-y_{-}(k-1))^{2}\\ &= -[y_{+}(k)y_{-}(k-1)+y_{+}(k-1)y_{-}(k)+(y_{-}(k)-y_{-}(k-1))^{2} ] \leq 0. \end{align*} Assume that $y\in Y$ is a solution of \eqref{UKL2}. Taking $v=y_{-}$ in \eqref{functional1} we obtain \[ \sum_{k=1}^{T+1}|\Delta y(k-1)|^{p(k-1)-2}\Delta y(k-1)\Delta y_{-}(k-1)=\sum_{k=1}^{T}f(k,y_{+}(k))y_{-}(k). \] Since the term on the left is non-positive and the one on the right is non-negative, so this equation holds true if {the both terms are equal zero, which} leads to $y_{-}(k)=0$ for all $k\in [ 1,T]$. Then $y=y_{+}$. Therefore, $y$ is a positive solution of \eqref{zad}. Arguing by contradiction, assume that there exists $k\in [ 1,T]$ such that $y(k)=0 $, while we can assume $y(k-1)>0$. Then, by \eqref{UKL2} we have \[ |y(k+1)|^{p(k)-2}y(k+1)=-y(k-1)^{p(k-1)-1}-f(k,0)<0, \] which implies $y(k+1)<0$, a contradiction. So $y(k)>0$ for all $k\in [1,T]$. \end{proof} Finally we prove that $J$ satisfies Palais-Smale condition. \begin{lemma} \label{lem3} Assume that \textbf{(C1)} holds. Then the functional $J$ satisfies Palais-Smale condition. \end{lemma} \begin{proof} Assume that $\{y_{n}\}$ is such that $\{J(y_{n})\}$ is bounded and $J'(y_{n})\to 0$. Since $Y$ is finitely dimensional, it is sufficient to show that $\{y_{n}\}$ is bounded. Note that \[ \Delta y_{+}(k)\Delta y_{-}(k)\leq 0\quad \text{for every }k\in [0,T]. \] Using the above inequality we obtain \begin{equation} \begin{aligned} &-\sum_{k=1}^{T+1}|\Delta y(k-1)|^{p(k-1)-2}\Delta y(k-1)\Delta y_{-}(k-1)\\ &= -\sum_{k=1}^{T+1}|\Delta y(k-1)|^{p(k-1)-2}\Delta (y_{+}(k-1)-y_{-}(k-1))\Delta y_{-}(k-1)\\ &= -\sum_{k=1}^{T+1}|\Delta y(k-1)|^{p(k-1)-2}\Delta y_{+}(k-1)\Delta y_{-}(k-1) \\ &\quad + \sum_{k=1}^{T+1}|\Delta y(k-1)|^{p(k-1)-2}\Delta y_{-}(k-1)\Delta y_{-}(k-1)\\ &\geq \sum_{k=1}^{T+1}|\Delta y(k-1)|^{p(k-1)-2}(\Delta y_{-}(k-1))^{2}\\ &\geq \sum_{k=1}^{T+1}|\Delta y_{-}(k-1)|^{p(k-1)}. \end{aligned} \label{eq1} \end{equation} Since $y_{n}=(y_{n})_{+}-(y_{n})_{-}$, we will show that $\{ (y_{n})_{-}\} $ and $\{ (y_{n})_{+}\} $ are bounded. Suppose that $\{ (y_{n})_{-}\} $ is unbounded. Then we may assume that there exists $N_0>0$ such that for $n\geq N_0$ we have $\| (y_{n})_{-}\| \geq T\geq 2$. Using \eqref{eq1} we obtain \begin{align*} &\langle J'(y_{n}),(y_{n})_{-}\rangle\\ &=\sum_{k=1}^{T+1}|\Delta y_{n}(k-1)|^{p(k-1)-2}\Delta y_{n}(k-1)\Delta (y_{n})_{-}(k-1) \\ &\quad -\sum_{k=1}^{T}f(k,(y_{n})_{+}(k))(y_{n})_{-}(k)\\ &\leq -\sum_{k=1}^{T+1}|\Delta (y_{n})_{-}(k-1)|^{p(k-1)}. \end{align*} So by (A1) we obtain \begin{align*} T^{\frac{2-p^{-}}{2}}\| (y_{n})_{-}\|^{p^{-}}-T &\leq \sum_{k=1}^{T+1}|\Delta (y_{n})_{-}(k-1)|^{p(k-1)}\\ &\leq \langle J'(y_{n}),-(y_{n})_{-}\rangle \leq \| J'(y_{n})\| \, \| (y_{n})_{-}\| . \end{align*} Next, we see that \begin{align*} T^{\frac{2-p^{-}}{2}}\| (y_{n})_{-}\|^{p^{-}} &\leq \| J'(y_{n})\| \, \| (y_{n})_{-}\| +T\\ &\leq \| J'(y_{n})\| \, \| (y_{n})_{-}\| +\| (y_{n})_{-}\| \\ &\leq (\| J'(y_{n})\| +1) \|(y_{n})_{-}\| \end{align*} and \[ T^{\frac{2-p^{-}}{2}}\| (y_{n})_{-}\|^{p^{-}-1}\leq (\|J'(y_{n})\| +1) . \] Since, for a fixed $\varepsilon >0$, there exists some $N_1\geq N_0$ such that $\| J'(y_{n})\| <\varepsilon $ for every $n\geq N_1$, we obtain \[ \| (y_{n})_{-}\|^{p^{-}-1}\leq \frac{(\varepsilon +1) }{ T^{\frac{2-p^{-}}{2}}}. \] This means that $\{ (y_{n})_{-}\} $ is bounded$. $ Now, we will show that $\{(y_{n})_{+}\}$ is bounded. Suppose that $\{(y_{n})_{+}\}$ is unbounded. We may assume that $\| (y_{n})_{+}\|\to \infty $. Since \[ f(k,y)\geq \varphi_1(k)|y|^{m-2}y+\psi_1(k)\quad \text{for all } k\in [ 1,T], \] it follows that \[ F(k,y)\geq \frac{\varphi_1(k)}{m}|y|^m+\psi_1(k)y. \] Thus by (A3) and (A5), we obtain \[ \sum_{k=1}^{T}F(k,(y_{n})_{+}(k))\geq \frac{\varphi_1^{-}}{m} \sum_{k=1}^{T}|(y_{n})_{+}(k)|^m\geq \frac{\varphi_1^{-}}{m} 2^{-m}(T+1)^{\frac{2-m}{2}}\| (y_{n})_{+}\|^m, \] where $\varphi_1^{-}=\min_{k\in [1,T] }\varphi_1(k) $. Therefore by (A4), we have \begin{align*} J(y_{n}) &=\sum_{k=1}^{T+1}[\frac{1}{p(k-1)}|\Delta y_{n}(k-1)|^{p(k-1)}-F(k,(y_{n})_{+}(k))] \\ &\leq 2^{p^{+}}(T+1)(C_{p^{+}}\| \allowbreak (y_{n}) _{+}-(y_{n})_{-}\|^{p^{+}}+1) -\frac{\varphi _1^{-}}{m}2^{-m}(T+1)^{\frac{2-m}{2}}\| (y_{n})_{+}\| ^m\\ &\leq 2^{p^{+}}(T+1)(C_{p^{+}}2^{p^{+}-1}(\| \allowbreak (y_{n})_{+}\|^{p^{+}}+\| (y_{n}) _{-}\|^{p^{+}}) +1) \\ &\quad - \frac{\varphi_1^{-}}{m}2^{-m}(T+1)^{\frac{2-m}{2}}\| (y_{n})_{+}\|^m . \end{align*} Since $p^{+}1$ we have \[ J(y_{\lambda }) \leq \frac{\lambda^{p(0)}}{p(0)}+\frac{\lambda^{p(T)}}{p(T)} -\sum_{k=1}^{T}\frac{\varphi_1(k)\lambda^m}{m} \leq \frac{\lambda ^{p^{+}}}{p(0)}+\frac{\lambda^{p^{+}}}{p(T)} -\frac{\varphi_1^{-}\lambda^m}{m}T-\psi_1^{-}\lambda T. \] Since $m>p^{+}$, then $\lim_{\lambda \to \infty }J(y_{\lambda })=-\infty $. Thus there exists $\lambda_0$ with $J(y_{\lambda _0})<\min_{y\in \partial B}J(y)$. By Lemma \ref{lem2} and Lemma \ref{lem3} we obtain a critical value\ of the functional $J$ for some $y^{\star }\in Y\setminus \partial B$. Then $y_0$ and $y^{\star }$ are two different critical points of $J$ and therefore by Lemma \ref{lem4} these are positive solutions of problem \eqref{zad}. \end{proof} \subsection*{Acknowledgements} The authors would like to thank the anonymous referees for their suggestions which allowed us to improve both the results and their presentation. \begin{thebibliography}{99} \bibitem{agrawal} R. P. Agarwal, K. Perera, D. O'Regan; \emph{Multiple positive solutions of singular discrete p-Laplacian problems via variational methods}, Adv. Difference Equ. 2 (2005) 93--99. \bibitem{borwein} J. M. Borwein, A. S. Lewis; \emph{Convex analysis and nonlinear optimization}. Theory and examples. 2nd ed., CMS Books in Mathematics/Ouvrages de Math\'{e}matiques de la SMC 3. New York, NY: Springer. xii, 2006. \bibitem{CIT} A. Cabada, A. Iannizzotto, S. Tersian; \emph{Multiple solutions for discrete boundary value problems}. J. Math. Anal. Appl. 356 (2009), 418--428. \bibitem{caiYu} X. Cai, J. Yu; \emph{Existence theorems of periodic solutions for second-order nonlinear difference equations}, Adv. Difference Equ. 2008 (2008) Article ID 247071. \bibitem{C} Y. Chen, S. Levine, M. Rao; \emph{Variable exponent, linear growth functionals in image processing}, SIAM J. Appl. Math. 66 (2006), 1383-1406. \bibitem{mp} D. Guo; \emph{Nonlinear Functional Analysis}, Shandong science and technology Press, 1985. \bibitem{D} X. L. Fan , H. Zhang; \emph{Existence of Solutions for $p(x)$-Lapacian Dirichlet Problem}, Nonlinear Anal., Theory Methods Appl. 52 (2003), 1843-1852. \bibitem{GW} M. Galewski, R. Wieteska; \emph{On the system of anisotropic discrete BVPs}, to appear J. Difference Equ. Appl., DOI:10.1080/10236198.2012.709508. \bibitem{hasto} P. Harjulehto, P. H\"{a}st\"{o}, U. V. Le, M. Nuortio; \emph{Overview of differential equations with non-standard growth}, Nonlinear Anal. 72 (2010), 4551-4574 \bibitem{KoneOuro} B. Kone. S. Ouaro; \emph{Weak solutions for anisotropic discrete boundary value problems}, J. Difference Equ. Appl. 17 (2011), 1537-1547. \bibitem{Liu} J. Q. Liu, J. B. Su; \emph{Remarks on multiple nontrivial solutions for quasi-linear resonant problemes}, J. Math. Anal. Appl. 258 (2001) 209--222. \bibitem{MRT} M. Mih\v{a}ilescu, V. R\v{a}dulescu, S. Tersian; \emph{Eigenvalue problems for anisotropic discrete boundary value problems}. J. Difference Equ. Appl. 15 (2009), 557--567. \bibitem{A} M. R\r{u}\v{z}i\v{c}ka; \emph{Electrorheological fluids: Modelling and Mathematical Theory}, in: Lecture Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000. \bibitem{sehlik} P. Stehl\'{\i}k; \emph{On variational methods for periodic discrete problems}, J. Difference Equ. Appl. 14 (3) (2008) 259--273. \bibitem{TianZeng} Y. Tian, Z. Du, W. Ge; \emph{Existence results for discrete Sturm-Liouville problem via variational methods}, J. Difference Equ. Appl. 13 (6) (2007) 467--478. \bibitem{TG} Y. Tian, W. Ge; \emph{Existence of multiple positive solutions for discrete problems with p-Laplacian via variational methods}. Electron. J. Differential Equations, Vol. 2001 (2011), No. 45, 8 pp. \bibitem{B} V. V. Zhikov; \emph{Averaging of functionals of the calculus of variations and elasticity theory}, Math. USSR Izv. 29 (1987), 33-66. \bibitem{teraz} Y. Yang and J. Zhang, Existence of solution for some discrete value problems with a parameter, Appl. Math. Comput. 211 (2009), 293--302. \bibitem{zhangcheng} G. Zhang, S. S. Cheng; Existence of solutions for a nonlinear system with a parameter, J. Math. Anal. Appl. 314 (1) (2006), 311--319. \bibitem{nonzero} G. Zhang; \emph{Existence of non-zero solutions for a nonlinear system with a parameter}, Nonlinear Anal. 66 (6) (2007), 1400--1416. \end{thebibliography} \end{document}