\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 35, pp. 1--17.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/35\hfil Quasilinear elliptic systems] {Existence of solutions for quasilinear elliptic systems involving critical exponents and \\ Hardy terms} \author[D. L\"u \hfil EJDE-2013/35\hfilneg] {Dengfeng L\"u} % in alphabetical order \address{Dengfeng L\"u \newline School of Mathematics and Statistics, Hubei Engineering University, Hubei 432000, China} \email{dengfeng1214@163.com} \thanks{Submitted February 15, 2012. Published January 30, 2013.} \subjclass[2000]{35J92, 35J50, 35B33} \keywords{Quasilinear elliptic system; variational method; critical exponent; \hfill\break\indent Hardy term; multiple solutions} \begin{abstract} Using variational methods, including the Ljusternik-Schnirelmann theory, we prove the existence of solutions for quasilinear elliptic systems with critical Sobolev exponents and Hardy terms. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction and statement of main results} We consider the critical quasilinear elliptic system \begin{equation}\label{1.1} \begin{gathered} -\Delta_p u-\mu\frac{|u|^{p-2}u}{|x|^p}=\frac{1}{p^{*}}F_{u}(u,v) +G_{u}(u,v), \quad x\in\Omega,\\ -\Delta_p v-\mu\frac{|v|^{p-2}v}{|x|^p}=\frac{1}{p^{*}}F_{v}(u,v) +G_{v}(u,v), \quad x\in\Omega,\\ u=v=0,\quad x\in\partial\Omega, \end{gathered} \end{equation} where $\Omega\subset {\mathbb{R}}^N$ is a bounded domain with smooth boundary $\partial\Omega$, $0\in \Omega$, $\Delta_p u= \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the $p$-Laplacian operator, $N\geq p^{2},2\leq p\leq q1,\alpha+\beta=p^{*}$. Using standard tools of the variational theory and the Ljusternik-Schnirelmann category theory, in \cite{9} sufficient conditions on $\lambda, \delta$ are given for \eqref{1.3} to have at least $\operatorname{cat}_{\Omega}(\Omega)$ positive solutions. This result extended the result of Alves and Ding in \cite{2} where the single equation case was studied. Hsu \cite{17} obtained the existence of two positive solutions for \eqref{1.3} including a sublinear perturbation of $10)$ holds for all $(u,v)\in {\mathbb{R}}^{+}\times {\mathbb{R}}^{+}$, \item[(F1)] $F_{u}(0,1)=F_{v}(1,0)=0$, \item[(F2)] $F_{u}(u,v)\geq 0,F_{v}(u,v)\geq 0$ for all $u,v\geq 0$, \item[(F3)] the 1-homogeneous function $(u,v)\mapsto F(u^{\frac{1}{p^{*}}},v^{\frac{1}{p^{*}}})$ is concave for all $(u,v)\in {\mathbb{R}}^{+}\times {\mathbb{R}}^{+}$. \item[(G0)] $G$ is $q$-homogeneous for some $p\leq q 0$; \item[(II)] $q=p$, $0\leq \mu\leq \frac{N^{p-1}(N-p^{2})}{p^p}$ and $\lambda,\delta\in(0,\frac{1}{p}\Lambda_1)$, where $\Lambda_1$ is the first eigenvalue of $(-\Delta_p,W^{1,p}_0(\Omega))$. \end{itemize} Then problem \eqref{1.1} has at least one nonnegative solution. \end{theorem} \begin{theorem}\label{thm2} Suppose {\rm (F0)--(F3), (G0)--(G1)} are satisfied, and one of the following two conditions holds: \begin{itemize} \item[(I)] $\bar{p}0$ such that problem \eqref{1.1} has at least $\operatorname{cat}_{\Omega}(\Omega)$ distinct nonnegative solutions for $\lambda,\delta\in (0,\Lambda)$. \end{theorem} \begin{remark}\label{bl-L2.4}\rm Our Theorem \ref{thm1} is a generalization of \cite[Theorem 1.1]{16} from quasilinear elliptic equations to quasilinear elliptic systems. \end{remark} \begin{remark} \rm %\label{bl-L2.4} Theorem 1 in \cite{9} is the special case of our Theorem \ref{thm2} corresponding to $\mu=0,F(u,v)=2|u|^{\alpha}|v|^{\beta},\alpha+\beta=p^{*}$ and $G(u,v)=\lambda|u|^{q}+\delta|v|^{q}$. In this paper, different from \cite{25}, we can deal with $F(u,v)$ which possesses both coupled and uncoupled terms. For example, let $$ F(u,v)=au^{p^{*}}+\sum_{i=1}^{k}b_iu^{\alpha_i}v^{\beta_i}+cv^{p^{*}}, $$ where $a,b_i,c \geq 0$, $\alpha_i,\beta_i>1$, $\alpha_i+\beta_i=p^{*}$. $F(u,v)$ obviously satisfies (F0)--(F3). \end{remark} This article is organized as follows. In Section 2, some notation and the mountain pass levels are established and Theorem \ref{thm1} is proven. We present some technical lemmas which are crucial in the proof of Theorem \ref{thm2} in Section 3. Theorem \ref{thm2} is proven in Section 4. \section{Preliminaries and proof of Theorem \ref{thm1}} Throughout this paper, $C,C_i$ will denote various positive constants whose exact values are not important. And $\to$ (respectively $\rightharpoonup$) denotes strong (respectively weak) convergence. $O(\varepsilon^{t})$ denotes $|O(\varepsilon^{t})|/\varepsilon^{t}\leq C,o_{ m}(1)$ denotes $o_{m}(1)\to 0$ as $m\to\infty$. $L^{s}(\Omega), for (1\leq s<+\infty)$, denotes Lebesgue spaces, the norm $L^{s}$ is denoted by $|\cdot|_{s}$ for $1\leq s<+\infty$. Let $B_{r}(x)$ denote a ball centered at $x$ with radius $r$. The dual space of a Banach space $E$ will be denoted by $E^{-1}$. We define the product space $E:= W^{1,p}_0(\Omega)\times W^{1,p}_0(\Omega)$ endowed with the norm $ \|(u,v)\|_{E}=\big(\|u\|_{\mu}^p+ \|v\|_{\mu}^p\big)^{1/p}$. In view of (F1), (G1), we can extend the function $F(u,v)$ and $G(u,v)$ to the whole $\mathbb{R}^{2}$ by considering $F(u,v)=F(u^{+},v^{+})$, $G(u,v)=G(u^{+},v^{+})$, where $u^{+}=\max\{u,0\}$ and $v^{+}=\max\{v,0\}$. It is easy to check that $F(u,v)$ and $G(u,v)\in C^{1}(\mathbb{R}^{2})$. Therefore, we always consider $F(u,v)$ and $G(u,v)$ as these extensions. A pair of functions $(u,v)\in E$ is said to be a weak solution of problem \eqref{1.1} if \begin{align*} & \int_{\Omega}(|\nabla u|^{p-2}\nabla u\nabla\varphi_1 -\mu\frac{|u|^{p-2}u\varphi_1}{|x|^p} + |\nabla v|^{p-2}\nabla v\nabla\varphi_2-\mu\frac{|v|^{p-2}v\varphi_2}{|x|^p})dx\\ &- \frac{1}{p^{*}} \int_{\Omega}(F_{u}(u,v)\varphi_1+F_{v}(u,v)\varphi_2)dx - \int_{\Omega}(G_{u}(u,v)\varphi_1+G_{v}(u,v)\varphi_2)dx =0, \end{align*} for all $ (\varphi_1,\varphi_2)\in E$. Using (F0)-(G1) and well-known arguments, we know that the weak solutions of \eqref{1.1} are precisely the critical points of the $C^{1}$-functional $I_{\lambda,\delta}: E \to \mathbb{R}$ given by \begin{align*} &I_{\lambda,\delta}(u,v)\\ &=\frac{1}{p}\int_{\Omega}(|\nabla u|^p-\mu\frac{|u|^p}{|x|^p}+|\nabla v|^p-\mu\frac{|v|^p}{|x|^p})dx-\frac{1}{p^{*}} \int_{\Omega}F(u,v)dx-\int_{\Omega} G_{\lambda,\delta}(u,v)dx. \end{align*} We notice that, in the definition of $I_{\lambda,\delta}$, we are denoting $G_{\lambda,\delta}(u,v):= G(u,v)$ for $(u,v)\in \mathbb{R}^{2}$. We shall write $G_{\lambda,\delta}$ instead of $G$ to emphasize that the main theorems depend on the value of the parameters $\lambda$ and $\delta$ defined in \eqref{1.4} and \eqref{1.5}, respectively. The functional $I\in C^{1}(E,{\mathbb{R}})$ is said to satisfy the $(PS)_{c}$ condition if any sequence $\{z_{m}\}\subset E$ such that as $m\to\infty$, $I(z_{m})\to c$, $I'(z_{m})\to 0$ strongly in $E^{-1}$ contains a subsequence converging in $E$ to a critical point of $I$. In this paper, we will take $I = I_{\lambda,\delta}$ and $E = W^{1,p}_0(\Omega)\times W^{1,p}_0(\Omega)$. In this section, we will find the range of $c$ where the $(PS)_{c}$ condition holds for the functional $I_{\lambda,\delta}$. First, let us define \begin{equation}\label{2.1} S_{F}=\inf_{(u,v)\in E\setminus\{(0,0)\}}\Big\{\frac{\int_{\Omega}|\nabla u|^p-\mu\frac{|u|^p}{|x|^p}+|\nabla v|^p-\mu\frac{|v|^p}{|x|^p}dx}{(\int_{\Omega}F(u,v)dx)^{p/p^*}}: \int_{\Omega}F(u,v)dx>0\Big\}. \end{equation} \begin{lemma}\label{lem2.1} Suppose {\rm (F0)--(F3), (G0)--(G1)} are satisfied, then the functional $I_{\lambda,\delta}$ satisfies the $(PS)_{c}$ condition for all $c<\frac{1}{N}S_{F}^{N/p}$, provided either $p0$ denotes the first eigenvalue of $(-\Delta_p , W^{1,p}_0(\Omega))$. \end{lemma} \begin{proof} Let $\{(u_{m},v_{m})\}\subset E$ such that $I'_{\lambda,\delta}(u_{m},v_{m})\to 0$ and $I_{\lambda,\delta}(u_{m},v_{m})\to c<\frac{1}{N}S_{F}^{N/p}$. Now, we firstly prove that $\{(u_{m},v_{m})\}$ is bounded in $E$. If $p0$ such that \begin{align*} c+C_1\|(u_{m},v_{m})\|_{E}+o_{m}(1) &\geq I_{\lambda,\delta}(u_{m},v_{m})-\frac{1}{q} \langle I'_{\lambda,\delta}(u_{m},v_{m}),(u_{m},v_{m})\rangle\\ &=\Big(\frac{1}{p}-\frac{1}{q}\Big)\|(u_{m},v_{m})\|_{E}^p +\Big(\frac{1}{q}-\frac{1}{p^{*}}\Big)\int_{\Omega}F(u_{m},v_{m})dx\\ &\geq \frac{q-p}{pq}\|(u_{m},v_{m})\|_{E}^p, \end{align*} which implies that $\{(u_{m},v_{m})\}\subset E$ is bounded. When $q=p$, in this case, it follows that $$ \int_{\Omega}G_{\lambda,\delta}(u_{m},v_{m})dx \leq \lambda\int_{\Omega}(|u_{m}|^p+|v_{m}|^p)dx\leq \frac{\lambda}{\Lambda_1}\|(u_{m},v_{m})\|_{E}^p, $$ and therefore, \begin{align*} c+C_1\|(u_{m},v_{m})\|_{E}+o_{m}(1) &\geq I_{\lambda,\delta}(u_{m},v_{m})-\frac{1}{p^{*}} \langle I'_{\lambda,\delta}(u_{m},v_{m}),(u_{m},v_{m})\rangle\\ &=\frac{1}{N}\|(u_{m},v_{m})\|_{E}^p - \frac{p}{N}\int_{\Omega}G(u_{m},v_{m})dx\\ &\geq \frac{1}{N}\Big(1-\frac{p\lambda}{\Lambda_1}\Big) \|(u_{m},v_{m})\|_{E}^p. \end{align*} Since $p\lambda<\Lambda_1$, the boundedness of $\{(u_{m},v_{m})\}$ follows as in the first case. So $\{(u_{m},v_{m})\}$ is bounded in $E$. Going if necessary to a subsequence, we can assume that \begin{gather*} (u_{m},v_{m})\rightharpoonup(u,v), \quad \text{in } E,\\ (u_{m},v_{m})\to (u,v), \quad \text{a.e.\ in } \Omega,\\ (u_{m},v_{m})\to (u,v), \quad \text{in } L^{s}(\Omega)\times L^{s}(\Omega),1\leq s 0$, we conclude that $k\geq S_{F}^{N/p}$ and therefore $$ \frac{1}{N}S_{F}^{N/p}\leq \frac{1}{N}k\leq c<\frac{1}{N}S_{F}^{N/p}, $$ which is a contradiction. Hence $k=0$ and therefore $(u_{m},v_{m})\to (u,v)$ in $E$. \end{proof} For all $\mu\in[0,\bar{\mu})$, we consider the limiting problem \begin{equation}\label{2.7} \begin{gathered} -\Delta_p U-\mu\frac{U^{p-1}}{|x|^p}= U^{p^{*}-1}, \quad \text{in } \mathbb{R}^N\setminus\{0\},\\ U>0, \quad \text{in } \mathbb{R}^N\setminus\{0\},\\ U\to 0,\quad \text{as } |x|\to+\infty. \end{gathered} \end{equation} From \cite{1}, we know that problem \eqref{2.7} has a ground state $U_{p,\mu}$, which is unique up to scaling. That is, all ground states must be of the form \begin{equation}\label{2.8} V_{p,\mu,\varepsilon}(x) =\varepsilon^{-\frac{N-p}{p}}U_{p,\mu}\Big(\frac{x}{\varepsilon}\Big) =\varepsilon^{-\frac{N-p}{p}}U_{p,\mu}\Big(\frac{|x|}{\varepsilon}\Big), \quad \varepsilon>0, \end{equation} that satisfy \begin{equation}\label{2.9} \int_{\mathbb{R}^N}(|\nabla V_{p,\mu,\varepsilon}(x)|^p-\mu\frac{|V_{p,\mu,\varepsilon}(x)|^p}{|x|^p})dx =\int_{\mathbb{R}^N}|V_{p,\mu,\varepsilon}(x)|^{p^{*}}dx =S_{\mu}^{N/p}, \end{equation} where $S_{\mu}$ is the best Sobolev constant given in \eqref{1.2}. Moreover, the ground state $U_{p,\mu}$ is radially symmetric and decreasing, and the following asymptotic properties at the origin and infinity for $U_{p,\mu}(r)$ and $U'_{p,\mu}(r)$ hold: \begin{gather*} \lim_{r\to 0^{+}}r^{a(\mu)}U_{p,\mu}(r)=c_1>0, \quad \lim_{r\to 0^{+}}r^{a(\mu)+1}|U'_{p,\mu}(r)|=c_1a(\mu)\geq0,\\ \lim_{r\to +\infty}r^{b(\mu)}U_{p,\mu}(r)=c_2>0, \quad \lim_{r\to +\infty}r^{b(\mu)+1}|U'_{p,\mu}(r)|=c_2b(\mu)>0, \end{gather*} where $c_1$ and $c_2$ are positive constants depending only on $N,p,\mu$, and $a(\mu), b(\mu)$, the zeros of the function $h(t)=(p-1)t^p-(N-p)t^{p-1}+\mu, \ t\geq 0$, which satisfy $0\leq a(\mu)0$ for all $t>t_{\rm min}$. That is, $h(t)$ is decreasing on the interval $(0, t_{\rm min})$ and increasing on the interval $(t_{\rm min},+\infty)$. Thus $0\leq a(\mu)<\frac{N-p}{p}0$ such that $$ S_{F}=\frac{\|(AV_{p,\mu,\varepsilon},BV_{p,\mu,\varepsilon}\|_{E}^p} {(\int_{\mathbb{R}^N} F(AV_{p,\mu,\varepsilon},BV_{p,\mu,\varepsilon})dx)^{p/p^*}} =\frac{A^p+B^p} {(F(A,B))^{p/p^*}}\cdot\frac{S_{\mu}^{N/p}}{|V_{p,\mu,\varepsilon}|_{p^{*}}^p}, $$ from this and \eqref{2.9}, we have \begin{equation}\label{2.10} S_{F}=\frac{A^p+B^p} {(F(A,B))^{p/p^*}}S_{\mu}. \end{equation} We define a cut-off function $\phi(x)\in C_0^{\infty}(\mathbb{R}^N)$ such that $\phi(x)=1$ if $|x|\leq R$; $\phi(x)=0$ if $|x|\geq 2R$ and $0\leq\phi(x)\leq 1$, where $B_{2R}(0)\subset \Omega$ and set $u_{\varepsilon}=\frac{\phi(x)V_{p,\mu,\varepsilon}}{|\phi V_{p,\mu,\varepsilon}|_{p^{*}}}, $ where $V_{p,\mu,\varepsilon}$ was defined in \eqref{2.8}. So, $|u_{\varepsilon}|_{p^{*}}=1$. Thus, we can get the following results from \cite[Lemma 2.2]{26} (or \cite{16}): \begin{gather}\label{2.11} \|u_{\varepsilon}\|_{\mu}^p=S_{\mu}+O(\varepsilon^{pb(\mu)+p-N}), \\ \int_{\Omega}|u_{\varepsilon}|^{\xi}dx\approx \begin{cases} \varepsilon^{(b(\mu)-\frac{N-p}{p})\xi}, & \text{if } 1\leq\xi<\frac{N}{b(\mu)},\\ \varepsilon^{N-\frac{N-p}{p}\xi}|\ln\varepsilon|, & \text{if } \xi=\frac{N}{b(\mu)},\\ \varepsilon^{N-\frac{N-p}{p}\xi}, & \text{if } \frac{N}{b(\mu)}<\xi0$ such that \begin{equation}\label{2.13} \|(u,v)\|_{E}\geq \rho>0, \ \forall \ (u,v)\in \mathcal{N}_{\lambda,\delta}. \end{equation} It is standard to check that $I_{\lambda,\delta}$ satisfies the mountain pass geometry, so we can use the homogeneity of $F$ and $G$ to prove that $c_{\lambda,\delta}$ can be alternatively characterized by \begin{equation}\label{2.14} c_{\lambda,\delta}=\inf_{\gamma\in\Gamma}\max_{t\in[0,1]} I_{\lambda,\delta}(\gamma(t))=\inf_{(u,v)\in E\backslash \{(0,0)\}}\max_{t\geq 0}I_{\lambda,\delta}(t(u,v))>0, \end{equation} where $\Gamma=\{\gamma\in C([0,1],E): \gamma(0)=0, I_{\lambda,\delta}(\gamma(1))<0\}$. Moreover, for each $(u,v)\in E \backslash \{(0,0)\}$, there exists a unique $t^{*}> 0$ such that $t^{*}(u,v) \in \mathcal{N}_{\lambda,\delta}$. The maximum of the function $t\mapsto I_{\lambda,\delta}(t(u,v))$, for $t\geq 0$, is achieved at $t=t^{*}$. \begin{lemma}\label{lem2.2} Suppose that $(F_0)-(F_3)$ and $(G_0)-(G_1)$ hold, $\bar{p}0$ when $t$ is close to $0$, there exists $t_{\varepsilon}>0$ such that \begin{equation}\label{2.15} h(t_{\varepsilon})=\max_{t\geq 0}h(t). \end{equation} Let $$ g(t)=\frac{t^p}{p} (A^p+B^p)\|u_{\varepsilon}\|_{\mu}^p-\frac{t^{p^{*}}}{p^{*}}F(A,B), \quad t\geq 0, $$ and notice that the maximum value of $g(t)$ occurs at the point $$ \tilde{t}_{\varepsilon} =\Big(\frac{(A^p+B^p)\|u_{\varepsilon}\|_{\mu}^p}{F(A,B)}\Big) ^{\frac{1}{p^{*}-p}}. $$ So, for each $t\geq 0$, $$ g(t)\leq g(\tilde{t}_{\varepsilon}) =\frac{1}{N}\Big(\frac{(A^p+B^p)\|u_{\varepsilon}\|_{\mu}^p}{(F(A,B))^{p/p^*}}\Big) ^{N/p}, $$ and therefore \begin{equation}\label{2.16} h(t_{\varepsilon})\leq\frac{1}{N}\Big(\frac{(A^p+B^p) \|u_{\varepsilon}\|_{\mu}^p}{(F(A,B))^{p/p^*}}\Big) ^{N/p}-t_{\varepsilon}^{q}G_{\lambda,\delta}(A,B)|u_{\varepsilon}|_{q}^{q}. \end{equation} We claim that, for some $C_2>0$, there holds $$ t_{\varepsilon}^{q}G_{\lambda,\delta}(A,B)\geq C_2. $$ Indeed, if this is not the case, we have that $t_{\varepsilon_{m}} \to 0$ for some sequence $\varepsilon_{m}\to 0^{+}$, then $$ 0N-\frac{N-p}{p}q$. Thus, from the above inequality we conclude that, for each $\varepsilon>0$ small, there holds $$ c_{\lambda,\delta}\leq \sup_{t\geq 0}I_{\lambda,\delta}(tAu_{\varepsilon},tBu_{\varepsilon}) =h(t_{\varepsilon})<\frac{1}{N}S_{F}^{N/p}. $$ \noindent\textbf{Case 2:} $q=p$ and $0\leq \mu\leq \frac{N^{p-1}(N-p^{2})}{p^p}$. In this case, we have that $h'(t)= 0$ if and only if $$ (A^p+B^p)\|u_{\varepsilon}\|_{\mu}^p-pG_{\lambda,\delta}(A,B)|u_{\varepsilon}|_p^p =t^{p^{*}-p}F(A,B). $$ Since we suppose $\lambda<\frac{1}{p}\Lambda_1$, we can use Poincar\'{e} inequality to obtain \begin{align*} pG_{\lambda,\delta}(A,B)|u_{\varepsilon}|_p^p &\leq p\lambda(A^p+B^p)|u_{\varepsilon}|_p^p \\ &<\Lambda_1(A^p+B^p)|u_{\varepsilon}|_p^p \\ &\leq(A^p+B^p)\|u_{\varepsilon}\|_{\mu}^p. \end{align*} Thus, there exists $t_{\varepsilon}>0$ satisfying \eqref{2.15}. Arguing, as in the first case, we conclude that, from \eqref{2.17}, for $\varepsilon>0$ small, there holds \begin{align*} h(t_{\varepsilon}) &\leq \frac{1}{N}S_{F}^{N/p}+O(\varepsilon^{pb(\mu)+p-N}) -C_2|u_{\varepsilon}|_p^p\\ &=\begin{cases} \frac{1}{N}S_{F}^{N/p}+O(\varepsilon^{pb(\mu)+p-N}) -O(\varepsilon^p|\ln\varepsilon|), & b(\mu)=\frac{N}{p},\\ \frac{1}{N}S_{F}^{N/p}+O(\varepsilon^{pb(\mu)+p-N}) -O(\varepsilon^p), & b(\mu)>\frac{N}{p}. \end{cases} \end{align*} If $b(\mu)=N/p$, then $pb(\mu)+p-N=p$, so $\varepsilon^{pb(\mu)+p-N}=o(\varepsilon^p|\ln\varepsilon|)$. If $b(\mu)>N/p$, then $pb(\mu)+p-N>p$, so $\varepsilon^{pb(\mu)+p-N}=o(\varepsilon^p)$. Choosing $\varepsilon>0$ small enough, we have $$ c_{\lambda,\delta}\leq \sup_{t\geq 0}I_{\lambda,\delta}(tAu_{\varepsilon},tBu_{\varepsilon}) =h(t_{\varepsilon})<\frac{1}{N}S_{F}^{N/p}. $$ On the other hand, it is easy to verify that the function $$ g(t)=(p-1)t^p-(N-p)t^{p-1}+\mu, \quad t\geq 0 $$ has the only minimal point $\bar{t}=\frac{N-p}{p}$ and is increasing on the interval $(\bar{t},+\infty)$. Thus, for $N\geq p^{2}$ we deduce that $$ \frac{N}{p}\leq b(\mu)\Leftrightarrow g(\frac{N}{p})\leq g(b(\mu))=0\Leftrightarrow 0\leq \mu\leq \frac{N^{p-1}(N-p^{2})}{p^p}. $$ This concludes the proof. \end{proof} Using Lemmas \ref{lem2.1} and \ref{lem2.2}, we can prove our first result. \begin{proof}[Proof of Theorem \ref{thm1}] Since $I_{\lambda,\delta}$ satisfies the geometric conditions of the mountain pass theorem, there exists $\{(u_{m},v_{m})\}\subset E$ such that $ I_{\lambda,\delta}(u_{m},v_{m})\to c_{\lambda,\delta}$, and $I'_{\lambda,\delta}(u_{m},v_{m})\to 0$. It follows from Lemmas \ref{lem2.1} and \ref{lem2.2} that $\{(u_{m},v_{m})\}$ converges, along a subsequence, to a nonzero critical point $(u,v) \in E$ of $I_{\lambda,\delta}$. If we then denote, by $u^{-}= \max\{-u,0\}$ and $v^{-}= \max\{-v,0\}$, the negative part of $u$ and $v$, respectively, we obtain \begin{align*} 0&= \langle I'_{\lambda,\delta}(u,v),(u^{-},v^{-})\rangle\\ &=-\|(u^{-},v^{-})\|_{E}^p- \frac{1}{p^{*}}\int_{\Omega}(F_{u}(u,v)u^{-}+F_{v}(u,v)v^{-})dx\\ &\quad -\int_{\Omega}(G_{u}(u,v)u^{-}+G_{v}(u,v)v^{-})dx\\ &\leq-\|(u^{-},v^{-})\|_{E}^p. \end{align*} It thus follows that $(u^{-},v^{-})=(0,0)$. Hence, $u, v\geq 0$ in $\Omega$. The theorem \ref{thm1} is thus proven. \end{proof} We finalize this section with the study of the asymptotic behavior of the minimax level $c_{\lambda,\delta}$ as both the parameters $\lambda,\delta$ approach zero. \begin{lemma}\label{lem2.3} $\lim_{\lambda,\delta\to 0^{+}} c_{\lambda,\delta}=c_{0,0}=\frac{1}{N}S_{F}^{N/p}$. \end{lemma} \begin{proof} We first prove the second equality. It follows from $\lambda=\delta= 0$ that $G_{0,0}\equiv 0$. If $A, B, u_{\varepsilon}, g_{\varepsilon}$ and $t_{\varepsilon}$ are the same as those in the proof of Lemma \ref{lem2.2}, we have that $(t_{\varepsilon}Au_{\varepsilon},t_{\varepsilon}Bu_{\varepsilon}) \in \mathcal{N}_{0,0}$. Thus \begin{align*} c_{0,0}&\leq I_{0,0} (t_{\varepsilon}Au_{\varepsilon},t_{\varepsilon}Bu_{\varepsilon})\\ &=\frac{1}{N}\Big(\frac{A^p+B^p}{(F(A,B))^{p/p^*}} \|u_{\varepsilon}\|_{\mu}^p\Big)^{N/p} \\ &= \frac{1}{N}\Big(\frac{A^p+B^p}{(F(A,B))^{p/p^*}} \Big(S_{\mu}+O\big(\varepsilon^{pb(\mu)+p-N}\big)\Big)\Big)^{N/p}. \end{align*} Taking the limit as $\varepsilon\to 0^{+}$ and using \eqref{2.10}, we conclude that $c_{0,0}\leq\frac{1}{N}S_{F}^{N/p}$. In order to obtain the reverse inequality, we consider $\{(u_{m},v_{m})\}\subset E$ such that $I_{0,0}(u_{m},v_{m})\to c_{0,0}$ and $I'_{0,0}(u_{m},v_{m})\to 0$. It is easy to show that the sequence $\{(u_{m},v_{m})\}$ is bounded in $E$ and therefore \[ \langle I'_{0,0}(u_{m},v_{m}),(u_{m},v_{m})\rangle =\|(u_{m},v_{m})\|_{E}^p-\int_{\Omega}F(u_{m},v_{m})dx= o_{m}(1). \] It follows that $$ \lim_{m\to\infty}\|(u_{m},v_{m})\|_{E}^p=l= \lim_{m\to\infty}\int_{\Omega}F(u_{m},v_{m})dx. $$ Taking the limit in the inequality $S_{F}(\int_{\Omega}F(u_{m},v_{m})dx)^{p/p^*}\leq \|(u_{m},v_{m})\|_{E}^p$, we conclude, as in the proof of Lemma \ref{lem2.1}, that $Nc_{0,0}=l\geq S_{F}^{N/p}$. Hence, \begin{align*} c_{0,0}=\lim_{m\to\infty}I_{0,0}(u_{m},v_{m}) &=\lim_{m\to\infty} \Big(\frac{1}{p}\|(u_{m},v_{m})\|_{E}^p -\frac{1}{p^{*}}\int_{\Omega}F(u_{m},v_{m})dx\Big) \\ &=\frac{1}{N}l\geq \frac{1}{N}S_{F}^{N/p}, \end{align*} and therefore $c_{0,0}=\frac{1}{N}S_{F}^{N/p}$. We proceed now to the calculation of $\lim_{\lambda,\delta\to 0^{+}} c_{\lambda,\delta}$. Let $\{\lambda_{m}\},\{\delta_{m}\}\subset \mathbb{R}^{+}$ such that $\lambda_{m},\delta_{m}\to 0^{+}$. Since $\delta_{m}$, defined in \eqref{1.5}, is positive, we have that $G_{\lambda_{m},\delta_{m}}(u,v)\geq 0$ whenever $(u,v)$ is nonnegative. Thus, for this kind of function, we have that $I_{\lambda_{m},\delta_{m}}(u,v)\leq I_{0,0}(u,v)$. It follows that \begin{align*} c_{\lambda_{m},\delta_{m}} &=\inf_{(u,v)\neq (0,0)} \max_{t\geq 0}I_{\lambda_{m},\delta_{m}}(t(u,v)) \\ &\leq \inf_{(u,v)\neq (0,0),\, (u,v)\geq 0} \max_{t\geq 0}I_{\lambda_{m},\delta_{m}}(t(u,v)) \\ &\leq \inf_{(u,v)\neq (0,0),\, (u,v)\geq 0} \max_{t\geq 0}I_{0,0}(t(u,v))=c_{0,0}. \end{align*} In the last equality above, we used the infimum $c_{0,0}$, which can be attained at a nonnegative solution. The above inequality implies that \begin{equation} \limsup_{m\to\infty}c_{\lambda_{m},\delta_{m}}\leq c_{0,0}. \label{2.18} \end{equation} On the other hand, it follows from Theorem \ref{thm1} that there exists $\{(u_{m},v_{m})\}\subset E$ such that $$ I_{\lambda_{m},\delta_{m}}(u_{m},v_{m})=c_{\lambda_{m},\delta_{m}}, \quad I'_{\lambda_{m},\delta_{m}}(u_{m},v_{m})\to 0. $$ Since $c_{\lambda_{m},\delta_{m}}$ is bounded, the same argument performed in the proof of Lemma \ref{lem2.1} implies that $\{(u_{m},v_{m})\}$ is bounded in $E$. Since $(u_{m},v_{m})\geq 0$, we obtain $0\leq \int_{\Omega} G_{\lambda_{m},\delta_{m}}(u_{m},v_{m})dx\leq \lambda_{m}\int_{\Omega}(|u_{m}|^{q} + |v_{m}|^{q})dx$, from which it follows that \begin{equation} \lim_{m\to\infty}\int_{\Omega} G_{\lambda_{m},\delta_{m}}(u_{m},v_{m})dx=0. \label{2.19} \end{equation} Let $t_{m}>0$ be such that $t_{m}(u_{m},v_{m})\in \mathcal{N}_{0,0}$. Since $(u_{m},v_{m})\in \mathcal{N}_{\lambda_{m},\delta_{m}}$, we have that \begin{align*} c_{0,0} &\leq I_{0,0}(t_{m}(u_{m},v_{m}))\\ &=I_{\lambda_{m},\delta_{m}}(t_{m}(u_{m},v_{m}))+t_{m}^{q}\int_{\Omega} G_{\lambda_{m},\delta_{m}}(u_{m},v_{m})dx \\ &\leq I_{\lambda_{m},\delta_{m}}(u_{m},v_{m})+t_{m}^{q}\int_{\Omega} G_{\lambda_{m},\delta_{m}}(u_{m},v_{m})dx \\ &=c_{\lambda_{m},\delta_{m}}+t_{m}^{q}\int_{\Omega} G_{\lambda_{m},\delta_{m}}(u_{m},v_{m})dx. \end{align*} If $\{t_{m}\}$ is bounded, we can use the above estimate and \eqref{2.19} to obtain $$ c_{0,0}\leq \liminf_{m\to\infty}c_{\lambda_{m},\delta_{m}}. $$ Using this and \eqref{2.18}, we obtain $$ c_{0,0}\leq \liminf_{m\to\infty}c_{\lambda_{m},\delta_{m}}\leq \limsup_{m\to\infty}c_{\lambda_{m},\delta_{m}}\leq c_{0,0}. $$ Thus, $c_{0,0}=\lim_{m\to\infty }c_{\lambda_{m},\delta_{m}}$. It remains to check that $\{t_{m}\}$ is bounded. A straightforward calculation shows that \begin{equation} t_{m}=\Big(\frac{\|(u_{m},v_{m})\|_{E}^p}{\int_{\Omega}F(u_{m},v_{m})dx} \Big)^{\frac{1}{p^{*}-p}}. \label{2.20} \end{equation} Since $(u_{m},v_{m})\in \mathcal{N}_{¦Ë\lambda_{m},\delta_{m}}$, we obtain \begin{align*} &\|(u_{m},v_{m})\|_{E}^p\\ &=\int_{\Omega}F(u_{m},v_{m})dx+q\int_{\Omega} G_{\lambda_{m},\delta_{m}}(u_{m},v_{m})dx\leq S_{F}^{-\frac{p^{*}}{p}}\|(u_{m},v_{m})\|_{E}^{p^{*}}+o_{m}(1). \end{align*} Hence $\|(u_{m},v_{m})\|_{E}^p\geq C_3>0$, and therefore from the above expression, it follows that $\int_{\Omega}F(u_{m},v_{m})dx\geq C_{4}>0$. Thus, the boundedness of $\{(u_{m},v_{m})\}$ and \eqref{2.20} imply that $\{t_{m}\}$ is bounded. This completes the proof. \end{proof} \section{Some technical lemmas} In this section, we will recall and prove some lemmas which are crucial in the proof of Theorem \ref{thm2}. The first lemma is standard, and its proof follows adapting arguments found in \cite{27}. \begin{lemma}\label{lem3.1} Let $\{(u_{m},v_{m})\}\subset E$ such that $\int_{\Omega}F(u_{m},v_{m})dx=1$ and \[ \lim_{m\to\infty}\|(u_{m},v_{m})\|_{E}^p=S_{F}. \] Then there exist $\{r_{m}\}\subset(0,+\infty)$ and $\{y_{m}\}\subset \mathbb{R}^N$ such that \begin{equation}\label{3.1} \omega_{m}(x)=(\omega^{1}_{m}(x),\omega^{2}_{m}(x))=r_{m}^{\frac{N-p}{p}} (u_{m}(r_{m}x+y_{m}),v_{m}(r_{m}x+y_{m})) \end{equation} contains a convergent subsequence, denoted again by $\{\omega_{m}\}$, such that $\omega_{m}\to \omega$ in $\mathcal{D}^{1,p}(\mathbb{R}^N)\times \mathcal{D}^{1,p}(\mathbb{R}^N)$. Moreover, as $m\to\infty$, we have $r_{m}\to0$ and $y_{m}\to y\in \overline{\Omega}$. \end{lemma} Up to translations, we may assume that $0\in\Omega$. Since $\Omega$ is a smooth bounded domain of $\mathbb{R}^N$, we can choose $r>0$ small enough such that $B_{r}=B_{r}(0)=\{x\in \mathbb{R}^N:d(x,0)r\} $$ are homotopically equivalent to $\Omega$. Let \begin{gather*} W_{0,rad}^{1,p}(B_{r})=\big\{u\in W_0^{1,p}(B_{r}):u \text{ is radial}\big\},\\ E_{\rm rad}(B_{r})=W_{0,{\rm rad}}^{1,p}(B_{r})\times W_{0,{\rm rad}}^{1,p}(B_{r}). \end{gather*} We thus define the functional \begin{align*} I_{B_{r}}(u,v) &=\frac{1}{p}\int_{B_{r}}(|\nabla u|^p-\mu\frac{|u|^p}{|x|^p}+|\nabla v|^p-\mu\frac{|v|^p}{|x|^p})dx\\ &\quad -\frac{1}{p^{*}}\int_{B_{r}} F(u,v)dx-\int_{B_{r}}G_{\lambda,\delta}(u,v)dx \end{align*} for $(u,v)\in E_{\rm rad}(B_{r})$, and set $$ m_{\lambda,\delta}=\inf_{(u,v)\in \mathcal{N}^{B_{r}}_{\lambda,\delta}}I_{B_{r}}(u,v), $$ where $$ \mathcal{N}^{B_{r}}_{\lambda,\delta}:=\{(u,v)\in E_{\rm rad}(B_{r})\setminus \{(0,0)\}:\langle I'_{B_{r}}(u,v),(u,v)\rangle=0\}. $$ Clearly, $m_{\lambda,\delta}$ is nonincreasing in $\lambda,\delta$. Note that $m_{\lambda,\delta}>0$ for all $\lambda,\delta>0$. Arguing, as in the proof of Lemma \ref{lem2.3} and Theorem \ref{thm1}, we obtain the following result. \begin{lemma}\label{lem3.2} Suppose {\rm (F0)-(F3), (G0)--(G1)} are satisfied. Then the infimum $m_{\lambda,\delta}$ is attained by a positive radial function $(u_{\lambda,\delta},v_{\lambda,\delta})\in E_{\rm rad}$ whenever $\bar{p}0$, or $q=p,0\leq \mu\leq \frac{N^{p-1}(N-p^{2})}{p^p}$ and $\lambda,\delta \in(0, \frac{1}{p}\Lambda_{1,rad})$, and where $\Lambda_{1,rad}> 0$ is the first eigenvalue of the operator $(-\Delta _pu, W^{1,p}_{0,rad}(B_{r}))$. Moreover, $$ m_{\lambda,\delta}<\frac{1}{N}S_{F}^{N/p}, \quad \lim_{\lambda,\delta\to 0^{+}}m_{\lambda,\delta}=\frac{1}{N}S_{F}^{N/p}. $$ \end{lemma} We introduce the barycenter map $\beta:\mathcal{N}_{\lambda,\delta}\to \mathbb{R}^N$ as $$ \beta(u,v)=S_{F}^{-N/p}\int_{\Omega}F(u,v)x\,dx. $$ This map has the following property. \begin{lemma}\label{lem3.3} If {\rm (F0)--(F3), (G0)--(G1)}, then there exists $\lambda^{*}>0$ such that $\beta(u,v)\in \Omega_{ r}^{+}$ whenever $(u,v)\in \mathcal{N}_{\lambda,\delta},\lambda,\delta\in(0,\lambda^{*})$ and $I_{\lambda,\delta}(u,v)\leq m_{\lambda,\delta}$. \end{lemma} \begin{proof} Arguing by contradiction, we suppose that there exist $\{\lambda_{m}\},\{\delta_{m}\}\subset \mathbb{R}^{+}$ and $\{(u_{m},v_{m})\}\subset \mathcal{N}_{\lambda_{m},\delta_{m}}$ such that $\lambda_{m},\delta_{m}\to 0^{+}$ as $m\to\infty, I_{\lambda_{m},\delta_{m}}(u_{m},v_{m})\leq m_{\lambda_{m},\delta_{m}}$, but $\beta(u_{m},v_{m})\not\in\Omega_{r}^{+}$. From $\{(u_{m},v_{m})\}\subset \mathcal{N}_{\lambda_{m},\delta_{m}}$ and $I_{\lambda_{m},\delta_{m}}(u_{m},v_{m})\leq m_{\lambda_{m},\delta_{m}}$, it follows that $\{(u_{m},v_{m})\}$ is bounded in $E$. Moreover, \begin{align*} 0&=\langle I'_{\lambda_{m},\delta_{m}}(u_{m},v_{m}),(u_{m},v_{m})\rangle\\ &= \|(u_{m},v_{m})\|_{E}^p-\int_{\Omega}F(u_{m},v_{m})dx -q\int_{\Omega}G_{\lambda_{m},\delta_{m}} (u_{m},v_{m})dx. \end{align*} Since $\lambda_{m}\to 0$, we can use the boundedness of $\{(u_{m},v_{m})\}$ to get $$ 0\leq \int_{\Omega}G_{\lambda_{m},\delta_{m}}(u_{m},v_{m})dx\leq \lambda_{m}\int_{\Omega}(|u_{m}|^{q}+|v_{m}|^{q})dx\to 0, $$ from which it follows that $$ \lim_{m\to\infty}\|(u_{m},v_{m})\|_{E}^p = \lim_{m\to\infty}\int_{\Omega}F(u_{m},v_{m})dx=k\geq 0. $$ Notice that \begin{align*} c_{\lambda_{m},\delta_{m}} &\leq I_{\lambda_{m},\delta_{m}}(u_{m},v_{m})\\ &= \frac{1}{p}\|(u_{m},v_{m})\|_{E}^p-\frac{1}{p^{*}} \int_{\Omega}F(u_{m},v_{m})dx- \int_{\Omega}G_{\lambda_{m},\delta_{m}}(u_{m},v_{m})dx \\ &\leq m_{\lambda_{m},\delta_{m}}. \end{align*} Recalling that $c_{\lambda_{m},\delta_{m}}$ and $m_{\lambda_{m},\delta_{m}}$ both converge to $\frac{1}{N}S_{F}^{N/p}$, we can use the above expression and $\int_{\Omega}G_{\lambda_{m},\delta_{m}}(u_{m},v_{m})dx\to 0$ again to conclude that $k=S_{F}^{N/p}$. That is, \begin{equation} \lim_{m\to\infty}\|(u_{m},v_{m})\|_{E}^p=S_{F}^{N/p}= \lim_{m\to\infty}\int_{\Omega}F(u_{m},v_{m})dx.\label{3.2} \end{equation} Let $t_{m}=(\int_{\Omega}F(u_{m},v_{m})dx)^{-1/p^*}>0$ and notice that $t_{m}(u_{m},v_{m})$ satisfies the hypotheses of Lemma \ref{lem3.1}. Using Lemma \ref{lem3.1}, there exist sequences $\{r_{m}\}\subset (0,+\infty)$ and $\{y_{m}\}\subset \mathbb{R}^N$ satisfying $r_{m}\to 0, y_{m}\to y \in \overline{\Omega}$. We thus have that $\omega_{m} \to \omega$ in $\mathcal{D}^{1,p}(\mathbb{R}^N)\times \mathcal{D}^{1,p}(\mathbb{R}^N)$. The definition of $\beta(u,v)$, \eqref{3.2}, the strong convergence of $\{\omega_{m}\}$, and Lebesgue's Theorem provide \begin{align*} \beta(u_{m},v_{m}) &=t_{m}^{-p^{*}}S_{F}^{-N/p}\int_{\Omega}F(t_{m}(u_{m},v_{m}))xdx \\ &=(1+o_{m}(1))\int_{\Omega}F(t_{m}u_{m},t_{m}v_{m})xdx \\ &=(1+o_{m}(1))\int_{\Omega}F(\omega_{m})(r_{m}x+y_{m})dx \\ &=(1+o_{m}(1))\Big(\int_{\Omega}F(\omega)\bar{y}dx+o_{m}(1)\Big). \end{align*} Since $\bar{y}\in \overline{\Omega}$ and $\int_{\Omega}F(\omega)dx=1$, the above expression implies that $$ \lim_{m\to\infty}\operatorname{dist} \ (\beta(u_{m},v_{m}),\overline{\Omega})=0. $$ Such contradicts $\beta(u_{m},v_{m})\not\in \Omega_{r}^{+}$. \end{proof} According to Lemma \ref{lem3.2}, for each $\lambda,\delta>0$ small, the infimum $m_{\lambda,\delta}$ is attained by a nonnegative radial function $\sigma_{\lambda,\delta}=(u_{\lambda,\delta},v_{\lambda,\delta})\in \mathcal{N}^{B_{r}}_{\lambda,\delta}$. We consider $$ I_{\lambda,\delta}^{m_{\lambda,\delta}}=\{(u,v)\in E:I(u,v)\leq m_{\lambda,\delta}\} $$ and define the function $\gamma:\Omega_{r}^{-}\to I_{\lambda,\delta}^{m_{\lambda,\delta}}$ by setting, for each $y\in \Omega_{r}^{-}$, \begin{equation} \gamma(y)= \begin{cases} \sigma_{\lambda,\delta}(x-y), & \text{if } x\in B_{r}(y),\\ 0, & \text{otherwise}. \end{cases}\label{3.3} \end{equation} A change of variables and straightforward calculations show that the map $\gamma$ is well defined. Since $\sigma_{\lambda,\delta}$ is radial, we have that $\int_{B_{r}} F(u_{\lambda,\delta},v_{\lambda,\delta})xdx=0$. Hence, for each $y\in \Omega_{r}^{-}$, we obtain \begin{align*} (\beta\circ\gamma)(y) &=S_{F}^{-N/p}\int_{\Omega} F(u_{\lambda,\delta}(x-y),v_{\lambda,\delta}(x-y))xdx \\ &=S_{F}^{-N/p}\int_{\Omega} F(u_{\lambda,\delta}(t),v_{\lambda,\delta}(t))(t+y)dt \\ &=S_{F}^{-N/p}\int_{\Omega} F(u_{\lambda,\delta}(t),v_{\lambda,\delta}(t))ydt = y\alpha_{\lambda,\delta}, \end{align*} where $\alpha_{\lambda,\delta}=S_{F}^{-N/p} \int_{\Omega} F(u_{\lambda,\delta}(t),v_{\lambda,\delta}(t))dt$. Along the way of proving Lemma \ref{lem3.3}, we can check easily the following. \begin{lemma}\label{lem3.4} If $\lambda,\delta\to 0^{+}$, then $\alpha_{\lambda,\delta}\to 1$. \end{lemma} \begin{proof} By Lemma \ref{lem3.2}, we have \begin{align*} m_{\lambda,\delta} &= \frac{1}{p}\int_{B_{r}}\Big(|\nabla u_{\lambda,\delta}|^p+|\nabla v_{\lambda,\delta}|^p-\mu\frac{|u_{\lambda,\delta}|^p+|v_{\lambda,\delta}|^p}{|x|^p}\Big)dx \\ &\quad -\frac{1}{p^{*}}\int_{B_{r}}F(u_{\lambda,\delta}, v_{\lambda,\delta})dx- \int_{B_{r}}G_{\lambda,\delta}(u_{\lambda,\delta}, v_{\lambda,\delta})dx \\ & < \frac{1}{N}S_{F}^{N/p}. \end{align*} As before, $\int_{B_{r}}G_{\lambda,\delta}(u_{\lambda,\delta}, v_{\lambda,\delta})dx\to 0$. Thus, $I'_{B_{r}}(u_{\lambda,\delta}, v_{\lambda,\delta})=0$, and the above expression and the same arguments used in the proof of Lemma \ref{lem3.2} imply that $$ \int_{\Omega}F(u_{\lambda,\delta}, v_{\lambda,\delta})dx\to S_{F}^{N/p}. $$ The above equality and the definition of $\alpha_{\lambda,\delta}$ imply that $\alpha_{\lambda,\delta}\to 1$. The lemma is thus proven. \end{proof} Next we define $H_{\lambda,\delta}:[0,1]\times (\mathcal{N}_{\lambda,\delta}\cap I_{\lambda,\delta}^{m_{\lambda,\delta}})\to \mathbb{R}^N$ by $$ H_{\lambda,\delta}(t,(u,v))=\Big(t+\frac{1-t}{\alpha_{\lambda,\delta}}\Big) \beta(u,v). $$ \begin{lemma}\label{lem3.5} Suppose {\rm (F0)--(F3), (G0)--(G1)} are satisfied. There then exists $\lambda^{**}>0$ such that \begin{equation} H_{\lambda,\delta}\big([0,1]\times (\mathcal{N}_{\lambda,\delta}\cap I_{\lambda,\delta}^{m_{\lambda,\delta}})\big)\subset \Omega_{r}^{+} \label{3.4} \end{equation} for all $\lambda,\delta\in (0,\lambda^{**})$. \end{lemma} \begin{proof} Arguing by contradiction, we suppose that there exist sequences $\{\lambda_{m}\}$, $\{\delta_{m}\}\subset \mathbb{R}^{+}$ and $t_{m}\in [0,1], (u_{m},v_{m})\in (\mathcal{N}_{\lambda,\delta}\cap I_{\lambda,\delta}^{m_{\lambda,\delta}})$ such that $\lambda_{m},\delta_{m}\to 0^{+}$ as $m\to\infty$ and $H_{\lambda_{m},\delta_{m}}(t_{m},(u_{m},v_{m}))\not\in\Omega_{r}^{+}$ for all $m$, up to a subsequence $t_{m}\to t_0\in[0,1]$. Moreover, the compactness of $\overline{\Omega}$ and Lemma \ref{lem3.3} imply that, up to a subsequence, $\beta(u_{m},v_{m})\to y\in \overline{\Omega}$. From Lemma \ref{lem3.4} $\alpha_{\lambda_{m},\delta_{m}}\to 1$, so we can use the definition of $H_{\lambda,\delta}$ to conclude that $H_{\lambda_{m},\delta_{m}}(t_{m},(u_{m},v_{m}))\to y\in \overline{\Omega}$, which is a contradiction. The lemma is proven. \end{proof} \section{Proof of Theorem \ref{thm2}} We begin with the following lemma. \begin{lemma}\label{lem4.1} If $(u,v)$ is a critical point of $I_{\lambda,\delta}$ on $\mathcal{N}_{\lambda,\delta}$, then it is a critical point of $I_{\lambda,\delta}$ in $E$. \end{lemma} \begin{proof} The proof is almost the same as \cite[Lemma 3.2]{22} and is thus omitted here. \end{proof} \begin{lemma}\label{lem4.2} Suppose {(F0)--(F3), (G0)--(G1)} are satisfied. Then any sequence $\{(u_{m},v_{m})\}\subset \mathcal{N}_{\lambda,\delta}$ such that $I_{\lambda,\delta}(u_{m},v_{m})\to c<\frac{1}{N}S_{F}^{N/p}$ and $I'_{\lambda,\delta}(u_{m},v_{m})\to 0$ contains a convergent subsequence for $\lambda,\delta>0$ if $q>p$ and $\lambda,\delta\in (0,\lambda^{*})$ if $q=p$ for some small $\lambda^{*}>0$. \end{lemma} \begin{proof} By hypothesis, there exists a sequence $\theta_{m}\in \mathbb{R}$ such that $\|I'_{\lambda,\delta}(u_{m},v_{m}) -\theta_{m}J'_{\lambda,\delta}(u_{m},v_{m})\|_{E} \to 0$ as $m\to\infty$, where \[ J_{\lambda,\delta}(u,v)=\int_{\Omega}(|\nabla u|^p-\mu\frac{|u|^p}{|x|^p}+|\nabla v|^p-\mu\frac{|v|^p}{|x|^p})dx-\int_{\Omega}F(u,v)dx -q\int_{\Omega}G_{\lambda,\delta}(u,v)dx. \] Thus, $$ I'_{\lambda,\delta}(u_{m},v_{m}) =\theta_{m}J'_{\lambda,\delta}(u_{m},v_{m})+o_{m}(1). $$ Recall that for all $(u_{m},v_{m})\in \mathcal{N}_{\lambda,\delta}$, $$ \langle J'_{\lambda,\delta}(u_{m},v_{m}),(u_{m},v_{m})\rangle= (p-p^{*})\int_{\Omega}F(u_{m},v_{m})dx+ (p-q)\int_{\Omega}G_{\lambda,\delta}(u_{m},v_{m})dx\leq 0. $$ If $\langle J'_{\lambda,\delta}(u_{m},v_{m}),(u_{m},v_{m})\rangle\to 0$, we have $$ \int_{\Omega}F(u_{m},v_{m})dx\to 0, \quad \int_{\Omega}G_{\lambda,\delta}(u_{m},v_{m})dx\to 0. $$ Consequently, $\|(u_{m},v_{m})\|_{E}\to 0$. On the other hand, if $(u_{m},v_{m})\in \mathcal{N}_{\lambda,\delta}$, it follows that $$ 1\leq C(\lambda\|(u_{m},v_{m})\|_{E}^{q-p}+\delta\|(u_{m},v_{m})\|_{E}^{q-p}+ \|(u_{m},v_{m})\|_{E}^{p^{*}-p}) $$ for some $C>0$. Hence we arrive at a contradiction if $\lambda,\delta> 0$ and $q>p$ or $\lambda,\delta\in (0,\lambda^{*})$ for small $\lambda^{*}> 0$ when $q=p$. We may thus assume that $\langle J'_{\lambda,\delta}(u_{m},v_{m}),(u_{m},v_{m})\rangle\to \ell< 0$. Since $\langle I'_{\lambda,\delta}(u_{m},v_{m}),(u_{m},v_{m})\rangle=0$, we conclude that $\theta_{m}=0$ and, consequently, $I'_{\lambda,\delta}(u_{m},v_{m})\to 0$. Using this fact, we have $$ I'_{\lambda,\delta}(u_{m},v_{m})\to c<\frac{1}{N}S_{F}^{N/p} \quad \text{and} \quad I'_{\lambda,\delta}(u_{m},v_{m})\to 0. $$ By Lemma \ref{lem2.1} the proof is completed. \end{proof} Hereafter, we denote the restriction of $I_{\lambda,\delta}$ on $\mathcal{N}_{\lambda,\delta}$ by $I_{\mathcal{N}_{\lambda,\delta}}$. \begin{lemma}\label{lem4.3} If {\rm (F0)--(F3), (G0)--(G1)} are satisfied. Let $\Lambda=\min\{\lambda^{*},\lambda^{**}\}>0$, $\lambda,\delta\in (0,\Lambda)$. Then $\operatorname{cat}_{I_{\mathcal{N}_{\lambda,\delta}}^{m_{\lambda,\delta}}} (I_{\mathcal{N}_{\lambda,\delta}}^{m_{\lambda,\delta}})\geq \operatorname{cat}_{\Omega}(\Omega)$, where $\lambda^{*},\lambda^{**}$ are given by Lemma \ref{lem3.3} and \ref{lem3.5}, respectively. \end{lemma} \begin{proof} Suppose that $I_{\mathcal{N}_{\lambda,\delta}}^{m_{\lambda,\delta}} =A_1\cup A_2\cup\cdots\cup A_{m}$, where $A_j, j=1,2,\cdots,m$, are closed and contractible sets in $I_{\mathcal{N}_{\lambda,\delta}}^{m_{\lambda,\delta}}$, this means that there exists $h_j\in C([0,1]\times A_j,I_{\mathcal{N}_{\lambda,\delta}} ^{m_{\lambda,\delta}})$ such that $$ h_j(0,z)=z, \quad h_j(1,z)=\vartheta, \quad \text{for all } z\in A_j, $$ where $\vartheta\in A_j$ is fixed. Consider $B_j=\gamma^{-1}(A_j)$, $1\leq j\leq m$. The sets $B_j$ are closed and $$ \Omega_{r}^{-}=B_1\cup B_2\cup\cdots\cup B_{m}. $$ We define the deformation $g_j:[0,1]\times B_j$ by setting $$ g_j(t,y)=H_{\lambda,\delta}(t,h_j(t,\gamma(y))) $$ for $\lambda,\delta\in (0,\Lambda)$. Note that $$ g_j(0,y)=H_{\lambda,\delta}(0,h_j(0,\gamma(y)))= \frac{(\beta\circ\gamma)(y)}{\alpha_{\lambda,\delta}} $$ implies $$ g_j(0,y)=\frac{\alpha_{\lambda,\delta}y}{\alpha_{\lambda,\delta}}=y, \quad \text{for all } y\in B_j, $$ and $g_j(1,y)=H_{\lambda,\delta}(1,h_j(1,\gamma(y))) =\beta(h_j(1,\gamma(y)))$ implies $$ g_j(1,y)=\beta(\vartheta)\in \Omega_{r}^{+}. $$ Thus $B_j$ are contractible in $\Omega_{r}^{+}$. Hence $\operatorname{cat}_{\Omega}(\Omega) =\operatorname{cat}_{\Omega_{r}^{+}}(\Omega_{r}^{+})\leq m$.\end{proof} \begin{proof}[Proof of Theorem \ref{thm2}] Using Lemma \ref{lem2.1}, Lemma \ref{lem2.2}, and Lemma \ref{lem3.2} we know that $c_{\lambda,\delta}, m_{\lambda,\delta}<\frac{1}{N}S_{F}^{N/p}$ for $\lambda,\delta\in (0,\Lambda)$. Moreover, by Lemma \ref{lem4.2}, $I_{\mathcal{N}_{\lambda,\delta}}$ satisfies the $(PS)_{c}$ condition for all $c<\frac{1}{N}S_{F}^{N/p}$. Therefore, by Lemma \ref{lem4.3}, a standard deformation argument implies that for $\lambda,\delta\in (0,\Lambda)$, $I_{\mathcal{N}_{\lambda,\delta}}$ contains at least $\operatorname{cat}_{\Omega}(\Omega)$ critical points of the restriction of $I_{\lambda,\delta}$ on $\mathcal{N}_{\lambda,\delta}$. Now, Lemma \ref{lem4.1} implies that $I_{\lambda,\delta}$ has at least $\operatorname{cat}_{\Omega}(\Omega)$ critical points, and therefore at least $\operatorname{cat}_{\Omega}(\Omega)$ nontrivial solutions of \eqref{1.1}. As Theorem \ref{thm1}, the obtained solutions are nonnegative in $\Omega$. The proof is completed. \end{proof} \subsection*{Acknowledgments} The author is indebted to the anonymous referee for the valuable comments and suggestions. This work was supported by Natural Science Foundation of Hubei Engineering University and partially by grant D20122605 from the Educational Commission of Hubei Province of China. \begin{thebibliography}{99} \bibitem{1} B. Abdellaoui, V. Felli, I. Peral; \emph{Existence and nonexistence for quasilinear equations involving the $p$-Laplacian}, Boll. Unione Mat. Ital. Sez., B 9 (2006) 445-484. \bibitem{2} C. O. Alves, Y. H. Ding; \emph{Multiplicity of positive solutions to a $p$-Laplacian equation involving critical nonlinearity}, J. Math. Anal. Appl., 279 (2) (2003) 508-521. \bibitem{3} C. O. Alves, D. C. de M. Filho, M. A. S. Souto; \emph{On systems of elliptic equations involving subcritical or critical Sobolev exponents}, Nonlinear Anal., 42 (2000) 771-787. \bibitem{4} J. G. Azorero, I. P. Alonso; \emph{Hardy inequalities and some critical elliptic and parabolic problems}, J. Differential Equations, 144 (1998) 441-476. \bibitem{5} H. Brezis, E. Lieb; \emph{A relation between pointwise convergence of functions and convergence of functionals}, Proc. Amer. Math. Soc., 88 (1983) 486-490. \bibitem{6} A. Cano, M. Clapp; \emph{Multiple positive and 2-nodal symmetric solutions of elliptic problems with critical nonlinearity}, J. Differential Equations, 237 (2007) 133-158. \bibitem{7} Y. P. Cao, D. S. Kang; \emph{Solutions of a quasilinear elliptic problem involving a critical Sobolev exponent and multiple Hardy-type terms}, J. Math. Anal. Appl., 333 (2007) 889-903. \bibitem{8} A. Castro, M. Clapp; \emph{The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain}, Nonlinearity, 16 (2003) 579-590. \bibitem{9} L. Ding, S. W. Xiao; \emph{Multiple positive solutions for a critical quasilinear elliptic system}, Nonlinear Anal., 72 (2010) 2592-2607. \bibitem{10} G. M. Figueiredo, M. F. Furtado; \emph{Multiple positive solutions for a quasilinear system of Schr\"{o}dinger equations}, Nonlinear Differential Equations Appl., 15 (2008), 309-333. \bibitem{11} D. C. de M. Filho, M. A. S. Souto; \emph{Systems of $p$-Laplacian equations involving homogeneous nonlinearities with critical Sobolev exponent degrees}, Comm. Partial Differential Equations, 24 (1999) 1537-1553. \bibitem{12} M. F. Furtado, J. P. da Silva; \emph{Multiplicity of solutions for homogeneous elliptic systems with critical growth}, J. Math. Anal. Appl., 385 (2012) 770-785. \bibitem{13} N. Ghoussoub, C. Yuan; \emph{Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents}, Trans. Amer. Math. Soc., 352 (12) (2000) 5703-5743. \bibitem{14} Q. Guo, P. Niu, Y. Wang; \emph{Global compactness results for singular quasilinear elliptic problems with critical Sobolev exponents and applications}, Nonlinear Anal., 71 (2009) 2944-2963. \bibitem{15} P. G. Han; \emph{The effect of the domain topology on the number of positive solutions of elliptic systems involving critical Sobolev exponents}, Houston J. Math., 32 (2006) 1241-1257. \bibitem{16} P. G. Han; \emph{Quasilinear elliptic problems with critical exponents and Hardy terms}, Nonlinear Anal., 61 (2005) 735-758. \bibitem{17} T. S. Hsu; \emph{Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlinearities}, Nonlinear Anal., 71 (2009) 2688-2698. \bibitem{18} D.S. Kang; \emph{On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms}, Nonlinear Anal., 68 (2008) 1973-1985. \bibitem{19} D. S. Kang; \emph{Solutions of the quasilinear elliptic problem with a critical Sobolev-Hardy exponent and a Hardy-type term}, J. Math. Anal. Appl., 341 (2008) 764-782. \bibitem{20} D. S. Kang, S. J. Peng; \emph{Existence of solutions for elliptic equations with critical Sobolev-Hardy exponents}, Nonlinear Anal., 56 (2004) 1151-1164. \bibitem{21} D. F. L\"{u}, J. H. Xiao; \emph{Multiple solutions for weighted nonlinear elliptic system involving critical exponents}, Math Comput Model., 55 (2012), 816-827. \bibitem{22} D. F. L\"{u}; \emph{Multiple solutions for a class of biharmonic elliptic systems with Sobolev critical exponent}, Nonlinear Anal., 74 (2011) 6371-6382. \bibitem{23} S. J. Peng; \emph{Remarks on singular critical growth elliptic equations}, Discrete Contin. Dyn. Syst., 14 (2006) 707-719. \bibitem{24} B. Ribeiro; \emph{The Ambrosetti-Prodi problem for gradient elliptic systems with critical homogeneous nonlinearity}, J. Math. Anal. Appl., 363 (2010) 606-617. \bibitem{25} Y. Shen, J. H. Zhang; \emph{Multiplicity of positive solutions for a semilinear $p$-Laplacian system with Sobolev critical exponent}, Nonlinear Anal., 74 (2011) 1019-1030. \bibitem{26} L. Wang, Q. L. Wei, D. S. Kang; \emph{Multiple positive solutions for p-Laplace elliptic equations involving concave-convex nonlinearities and a Hardy-type term}, Nonlinear Anal., 74 (2011) 626-638. \bibitem{27} M. Willem; \emph{Minimax Theorem}, Birkh\"{a}user, Boston, 1996. \end{thebibliography} \end{document}