\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 35, pp. 1--17.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/35\hfil Quasilinear elliptic systems] {Existence of solutions for quasilinear elliptic systems involving critical exponents and \\ Hardy terms} \author[D. L\"u \hfil EJDE-2013/35\hfilneg] {Dengfeng L\"u} % in alphabetical order \address{Dengfeng L\"u \newline School of Mathematics and Statistics, Hubei Engineering University, Hubei 432000, China} \email{dengfeng1214@163.com} \thanks{Submitted February 15, 2012. Published January 30, 2013.} \subjclass[2000]{35J92, 35J50, 35B33} \keywords{Quasilinear elliptic system; variational method; critical exponent; \hfill\break\indent Hardy term; multiple solutions} \begin{abstract} Using variational methods, including the Ljusternik-Schnirelmann theory, we prove the existence of solutions for quasilinear elliptic systems with critical Sobolev exponents and Hardy terms. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction and statement of main results} We consider the critical quasilinear elliptic system \begin{equation}\label{1.1} \begin{gathered} -\Delta_p u-\mu\frac{|u|^{p-2}u}{|x|^p}=\frac{1}{p^{*}}F_{u}(u,v) +G_{u}(u,v), \quad x\in\Omega,\\ -\Delta_p v-\mu\frac{|v|^{p-2}v}{|x|^p}=\frac{1}{p^{*}}F_{v}(u,v) +G_{v}(u,v), \quad x\in\Omega,\\ u=v=0,\quad x\in\partial\Omega, \end{gathered} \end{equation} where $\Omega\subset {\mathbb{R}}^N$ is a bounded domain with smooth boundary $\partial\Omega$, $0\in \Omega$, $\Delta_p u= \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the $p$-Laplacian operator, $N\geq p^{2},2\leq p\leq q
1,\alpha+\beta=p^{*}$. Using
standard tools of the variational theory and the
Ljusternik-Schnirelmann category theory, in \cite{9} sufficient conditions on
$\lambda, \delta$ are given for \eqref{1.3} to have at least
$\operatorname{cat}_{\Omega}(\Omega)$ positive solutions.
This result extended the result of
Alves and Ding in \cite{2} where the single equation case was studied.
Hsu \cite{17} obtained the existence of two
positive solutions for \eqref{1.3} including a sublinear
perturbation of $1 0$;
\item[(II)] $q=p$, $0\leq \mu\leq \frac{N^{p-1}(N-p^{2})}{p^p}$ and
$\lambda,\delta\in(0,\frac{1}{p}\Lambda_1)$, where $\Lambda_1$
is the first eigenvalue of $(-\Delta_p,W^{1,p}_0(\Omega))$.
\end{itemize}
Then problem \eqref{1.1} has at least one nonnegative solution.
\end{theorem}
\begin{theorem}\label{thm2}
Suppose {\rm (F0)--(F3), (G0)--(G1)} are satisfied, and one of the
following two conditions holds:
\begin{itemize}
\item[(I)] $\bar{p} 0$, we conclude that $k\geq S_{F}^{N/p}$ and therefore
$$
\frac{1}{N}S_{F}^{N/p}\leq \frac{1}{N}k\leq
c<\frac{1}{N}S_{F}^{N/p},
$$
which is a contradiction. Hence $k=0$ and therefore
$(u_{m},v_{m})\to (u,v)$ in $E$.
\end{proof}
For all $\mu\in[0,\bar{\mu})$, we consider the limiting problem
\begin{equation}\label{2.7}
\begin{gathered}
-\Delta_p U-\mu\frac{U^{p-1}}{|x|^p}=
U^{p^{*}-1}, \quad \text{in } \mathbb{R}^N\setminus\{0\},\\
U>0, \quad \text{in } \mathbb{R}^N\setminus\{0\},\\
U\to 0,\quad \text{as } |x|\to+\infty.
\end{gathered}
\end{equation}
From \cite{1}, we know that problem \eqref{2.7} has a ground state
$U_{p,\mu}$, which is unique up to scaling. That is, all ground
states must be of the form
\begin{equation}\label{2.8}
V_{p,\mu,\varepsilon}(x)
=\varepsilon^{-\frac{N-p}{p}}U_{p,\mu}\Big(\frac{x}{\varepsilon}\Big)
=\varepsilon^{-\frac{N-p}{p}}U_{p,\mu}\Big(\frac{|x|}{\varepsilon}\Big),
\quad \varepsilon>0,
\end{equation}
that satisfy
\begin{equation}\label{2.9}
\int_{\mathbb{R}^N}(|\nabla
V_{p,\mu,\varepsilon}(x)|^p-\mu\frac{|V_{p,\mu,\varepsilon}(x)|^p}{|x|^p})dx
=\int_{\mathbb{R}^N}|V_{p,\mu,\varepsilon}(x)|^{p^{*}}dx
=S_{\mu}^{N/p},
\end{equation}
where $S_{\mu}$ is the best Sobolev constant given in \eqref{1.2}.
Moreover, the ground state $U_{p,\mu}$ is radially symmetric and
decreasing, and the following asymptotic properties at the origin
and infinity for $U_{p,\mu}(r)$ and $U'_{p,\mu}(r)$ hold:
\begin{gather*}
\lim_{r\to 0^{+}}r^{a(\mu)}U_{p,\mu}(r)=c_1>0, \quad
\lim_{r\to 0^{+}}r^{a(\mu)+1}|U'_{p,\mu}(r)|=c_1a(\mu)\geq0,\\
\lim_{r\to +\infty}r^{b(\mu)}U_{p,\mu}(r)=c_2>0, \quad
\lim_{r\to +\infty}r^{b(\mu)+1}|U'_{p,\mu}(r)|=c_2b(\mu)>0,
\end{gather*}
where $c_1$ and $c_2$ are positive constants depending only on
$N,p,\mu$, and $a(\mu), b(\mu)$, the zeros of the function
$h(t)=(p-1)t^p-(N-p)t^{p-1}+\mu, \ t\geq 0$, which satisfy $0\leq
a(\mu)0$ for all $t>t_{\rm min}$. That
is, $h(t)$ is decreasing on the interval $(0, t_{\rm min})$ and
increasing on the interval $(t_{\rm min},+\infty)$. Thus $0\leq
a(\mu)<\frac{N-p}{p}0$ such that
$$
S_{F}=\frac{\|(AV_{p,\mu,\varepsilon},BV_{p,\mu,\varepsilon}\|_{E}^p}
{(\int_{\mathbb{R}^N}
F(AV_{p,\mu,\varepsilon},BV_{p,\mu,\varepsilon})dx)^{p/p^*}}
=\frac{A^p+B^p}
{(F(A,B))^{p/p^*}}\cdot\frac{S_{\mu}^{N/p}}{|V_{p,\mu,\varepsilon}|_{p^{*}}^p},
$$
from this and \eqref{2.9}, we have
\begin{equation}\label{2.10}
S_{F}=\frac{A^p+B^p} {(F(A,B))^{p/p^*}}S_{\mu}.
\end{equation}
We define a cut-off function $\phi(x)\in C_0^{\infty}(\mathbb{R}^N)$
such that $\phi(x)=1$ if $|x|\leq R$; $\phi(x)=0$ if $|x|\geq 2R$
and $0\leq\phi(x)\leq 1$, where $B_{2R}(0)\subset \Omega$ and set
$u_{\varepsilon}=\frac{\phi(x)V_{p,\mu,\varepsilon}}{|\phi
V_{p,\mu,\varepsilon}|_{p^{*}}}, $ where $V_{p,\mu,\varepsilon}$ was
defined in \eqref{2.8}. So, $|u_{\varepsilon}|_{p^{*}}=1$. Thus, we
can get the following results from \cite[Lemma 2.2]{26}
(or \cite{16}):
\begin{gather}\label{2.11}
\|u_{\varepsilon}\|_{\mu}^p=S_{\mu}+O(\varepsilon^{pb(\mu)+p-N}),
\\
\int_{\Omega}|u_{\varepsilon}|^{\xi}dx\approx
\begin{cases}
\varepsilon^{(b(\mu)-\frac{N-p}{p})\xi},
& \text{if } 1\leq\xi<\frac{N}{b(\mu)},\\
\varepsilon^{N-\frac{N-p}{p}\xi}|\ln\varepsilon|,
& \text{if } \xi=\frac{N}{b(\mu)},\\
\varepsilon^{N-\frac{N-p}{p}\xi},
& \text{if } \frac{N}{b(\mu)}<\xi 0$ such that
\begin{equation}\label{2.13}
\|(u,v)\|_{E}\geq \rho>0, \ \forall \ (u,v)\in
\mathcal{N}_{\lambda,\delta}.
\end{equation}
It is standard to check that $I_{\lambda,\delta}$ satisfies the
mountain pass geometry, so we can use the homogeneity of $F$ and $G$
to prove that $c_{\lambda,\delta}$ can be alternatively
characterized by
\begin{equation}\label{2.14}
c_{\lambda,\delta}=\inf_{\gamma\in\Gamma}\max_{t\in[0,1]}
I_{\lambda,\delta}(\gamma(t))=\inf_{(u,v)\in E\backslash
\{(0,0)\}}\max_{t\geq 0}I_{\lambda,\delta}(t(u,v))>0,
\end{equation}
where $\Gamma=\{\gamma\in C([0,1],E): \gamma(0)=0,
I_{\lambda,\delta}(\gamma(1))<0\}$. Moreover, for each $(u,v)\in E
\backslash \{(0,0)\}$, there exists a unique $t^{*}> 0$ such that
$t^{*}(u,v) \in \mathcal{N}_{\lambda,\delta}$. The maximum of the
function $t\mapsto I_{\lambda,\delta}(t(u,v))$, for $t\geq 0$, is
achieved at $t=t^{*}$.
\begin{lemma}\label{lem2.2}
Suppose that
$(F_0)-(F_3)$ and $(G_0)-(G_1)$ hold, $\bar{p}0)$
holds for all $(u,v)\in {\mathbb{R}}^{+}\times {\mathbb{R}}^{+}$,
\item[(F1)] $F_{u}(0,1)=F_{v}(1,0)=0$,
\item[(F2)] $F_{u}(u,v)\geq 0,F_{v}(u,v)\geq 0$ for all
$u,v\geq 0$,
\item[(F3)] the 1-homogeneous function $(u,v)\mapsto
F(u^{\frac{1}{p^{*}}},v^{\frac{1}{p^{*}}})$ is concave for all
$(u,v)\in {\mathbb{R}}^{+}\times {\mathbb{R}}^{+}$.
\item[(G0)] $G$ is $q$-homogeneous for some $p\leq q
0$ such that problem \eqref{1.1} has at least
$\operatorname{cat}_{\Omega}(\Omega)$ distinct nonnegative solutions for
$\lambda,\delta\in (0,\Lambda)$.
\end{theorem}
\begin{remark}\label{bl-L2.4}\rm
Our Theorem \ref{thm1} is a generalization of \cite[Theorem 1.1]{16}
from quasilinear elliptic equations to quasilinear
elliptic systems.
\end{remark}
\begin{remark} \rm %\label{bl-L2.4}
Theorem 1 in \cite{9} is the special case of our Theorem \ref{thm2}
corresponding to
$\mu=0,F(u,v)=2|u|^{\alpha}|v|^{\beta},\alpha+\beta=p^{*}$ and
$G(u,v)=\lambda|u|^{q}+\delta|v|^{q}$. In this paper, different from
\cite{25}, we can deal with $F(u,v)$ which possesses both coupled
and uncoupled terms. For example, let
$$
F(u,v)=au^{p^{*}}+\sum_{i=1}^{k}b_iu^{\alpha_i}v^{\beta_i}+cv^{p^{*}},
$$
where $a,b_i,c \geq 0$, $\alpha_i,\beta_i>1$,
$\alpha_i+\beta_i=p^{*}$. $F(u,v)$ obviously satisfies
(F0)--(F3).
\end{remark}
This article is organized as follows. In Section 2, some notation and
the mountain pass levels are established and Theorem \ref{thm1} is
proven. We present some technical lemmas which are crucial in the
proof of Theorem \ref{thm2} in Section 3. Theorem \ref{thm2} is
proven in Section 4.
\section{Preliminaries and proof of Theorem \ref{thm1}}
Throughout this paper, $C,C_i$ will denote various positive
constants whose exact values are not important. And $\to$
(respectively $\rightharpoonup$) denotes strong (respectively weak)
convergence. $O(\varepsilon^{t})$ denotes
$|O(\varepsilon^{t})|/\varepsilon^{t}\leq C,o_{ m}(1)$ denotes
$o_{m}(1)\to 0$ as $m\to\infty$. $L^{s}(\Omega), for
(1\leq s<+\infty)$, denotes Lebesgue spaces, the norm $L^{s}$ is
denoted by $|\cdot|_{s}$ for $1\leq s<+\infty$. Let $B_{r}(x)$
denote a ball centered at $x$ with radius $r$. The dual space of a
Banach space $E$ will be denoted by $E^{-1}$. We define the product
space $E:= W^{1,p}_0(\Omega)\times W^{1,p}_0(\Omega)$ endowed
with the norm $ \|(u,v)\|_{E}=\big(\|u\|_{\mu}^p+
\|v\|_{\mu}^p\big)^{1/p}$.
In view of (F1), (G1), we can extend the function $F(u,v)$
and $G(u,v)$ to the whole $\mathbb{R}^{2}$ by considering
$F(u,v)=F(u^{+},v^{+})$, $G(u,v)=G(u^{+},v^{+})$, where
$u^{+}=\max\{u,0\}$ and $v^{+}=\max\{v,0\}$. It is easy to check
that $F(u,v)$ and $G(u,v)\in C^{1}(\mathbb{R}^{2})$. Therefore, we
always consider $F(u,v)$ and $G(u,v)$ as these extensions.
A pair of functions $(u,v)\in E$ is said to be a weak solution of
problem \eqref{1.1} if
\begin{align*}
& \int_{\Omega}(|\nabla u|^{p-2}\nabla u\nabla\varphi_1
-\mu\frac{|u|^{p-2}u\varphi_1}{|x|^p}
+ |\nabla v|^{p-2}\nabla
v\nabla\varphi_2-\mu\frac{|v|^{p-2}v\varphi_2}{|x|^p})dx\\
&- \frac{1}{p^{*}}
\int_{\Omega}(F_{u}(u,v)\varphi_1+F_{v}(u,v)\varphi_2)dx
- \int_{\Omega}(G_{u}(u,v)\varphi_1+G_{v}(u,v)\varphi_2)dx =0,
\end{align*}
for all $ (\varphi_1,\varphi_2)\in E$. Using (F0)-(G1)
and well-known arguments, we know that the weak solutions of
\eqref{1.1} are precisely the critical points of the
$C^{1}$-functional $I_{\lambda,\delta}: E \to \mathbb{R}$
given by
\begin{align*}
&I_{\lambda,\delta}(u,v)\\
&=\frac{1}{p}\int_{\Omega}(|\nabla
u|^p-\mu\frac{|u|^p}{|x|^p}+|\nabla
v|^p-\mu\frac{|v|^p}{|x|^p})dx-\frac{1}{p^{*}}
\int_{\Omega}F(u,v)dx-\int_{\Omega}
G_{\lambda,\delta}(u,v)dx.
\end{align*}
We notice that, in the definition of $I_{\lambda,\delta}$, we are
denoting $G_{\lambda,\delta}(u,v):= G(u,v)$ for
$(u,v)\in \mathbb{R}^{2}$. We shall write $G_{\lambda,\delta}$
instead of $G$ to emphasize that the main theorems depend on the value of the
parameters $\lambda$ and $\delta$ defined in \eqref{1.4} and
\eqref{1.5}, respectively.
The functional $I\in C^{1}(E,{\mathbb{R}})$ is said to satisfy the
$(PS)_{c}$ condition if any sequence $\{z_{m}\}\subset E$ such that
as $m\to\infty$, $I(z_{m})\to c$,
$I'(z_{m})\to 0$ strongly in $E^{-1}$ contains a subsequence
converging in $E$ to a critical point of $I$. In this paper, we will
take $I = I_{\lambda,\delta}$ and $E = W^{1,p}_0(\Omega)\times
W^{1,p}_0(\Omega)$.
In this section, we will
find the range of $c$ where the $(PS)_{c}$ condition holds for the
functional $I_{\lambda,\delta}$. First, let us define
\begin{equation}\label{2.1}
S_{F}=\inf_{(u,v)\in
E\setminus\{(0,0)\}}\Big\{\frac{\int_{\Omega}|\nabla
u|^p-\mu\frac{|u|^p}{|x|^p}+|\nabla
v|^p-\mu\frac{|v|^p}{|x|^p}dx}{(\int_{\Omega}F(u,v)dx)^{p/p^*}}:
\int_{\Omega}F(u,v)dx>0\Big\}.
\end{equation}
\begin{lemma}\label{lem2.1}
Suppose {\rm (F0)--(F3), (G0)--(G1)} are satisfied, then the
functional $I_{\lambda,\delta}$ satisfies the
$(PS)_{c}$ condition for all $c<\frac{1}{N}S_{F}^{N/p}$,
provided either $p
0$
denotes the first eigenvalue of $(-\Delta_p , W^{1,p}_0(\Omega))$.
\end{lemma}
\begin{proof}
Let $\{(u_{m},v_{m})\}\subset E$ such that
$I'_{\lambda,\delta}(u_{m},v_{m})\to 0$ and
$I_{\lambda,\delta}(u_{m},v_{m})\to c<\frac{1}{N}S_{F}^{N/p}$.
Now, we firstly prove that $\{(u_{m},v_{m})\}$ is bounded in $E$. If
$p
0$ such that
\begin{align*}
c+C_1\|(u_{m},v_{m})\|_{E}+o_{m}(1)
&\geq I_{\lambda,\delta}(u_{m},v_{m})-\frac{1}{q}
\langle I'_{\lambda,\delta}(u_{m},v_{m}),(u_{m},v_{m})\rangle\\
&=\Big(\frac{1}{p}-\frac{1}{q}\Big)\|(u_{m},v_{m})\|_{E}^p
+\Big(\frac{1}{q}-\frac{1}{p^{*}}\Big)\int_{\Omega}F(u_{m},v_{m})dx\\
&\geq \frac{q-p}{pq}\|(u_{m},v_{m})\|_{E}^p,
\end{align*}
which implies that $\{(u_{m},v_{m})\}\subset E$ is bounded. When
$q=p$, in this case, it follows that
$$
\int_{\Omega}G_{\lambda,\delta}(u_{m},v_{m})dx \leq
\lambda\int_{\Omega}(|u_{m}|^p+|v_{m}|^p)dx\leq
\frac{\lambda}{\Lambda_1}\|(u_{m},v_{m})\|_{E}^p,
$$
and therefore,
\begin{align*}
c+C_1\|(u_{m},v_{m})\|_{E}+o_{m}(1)
&\geq I_{\lambda,\delta}(u_{m},v_{m})-\frac{1}{p^{*}}
\langle I'_{\lambda,\delta}(u_{m},v_{m}),(u_{m},v_{m})\rangle\\
&=\frac{1}{N}\|(u_{m},v_{m})\|_{E}^p
- \frac{p}{N}\int_{\Omega}G(u_{m},v_{m})dx\\
&\geq \frac{1}{N}\Big(1-\frac{p\lambda}{\Lambda_1}\Big)
\|(u_{m},v_{m})\|_{E}^p.
\end{align*}
Since $p\lambda<\Lambda_1$, the boundedness of $\{(u_{m},v_{m})\}$
follows as in the first case.
So $\{(u_{m},v_{m})\}$ is bounded in $E$. Going if necessary to a
subsequence, we can assume that
\begin{gather*}
(u_{m},v_{m})\rightharpoonup(u,v), \quad \text{in } E,\\
(u_{m},v_{m})\to (u,v), \quad \text{a.e.\ in } \Omega,\\
(u_{m},v_{m})\to (u,v), \quad \text{in }
L^{s}(\Omega)\times L^{s}(\Omega),1\leq s
0$ when $t$ is close to $0$, there exists
$t_{\varepsilon}>0$ such that
\begin{equation}\label{2.15}
h(t_{\varepsilon})=\max_{t\geq 0}h(t).
\end{equation}
Let
$$
g(t)=\frac{t^p}{p}
(A^p+B^p)\|u_{\varepsilon}\|_{\mu}^p-\frac{t^{p^{*}}}{p^{*}}F(A,B),
\quad t\geq 0,
$$
and notice that the maximum value of $g(t)$ occurs at the point
$$
\tilde{t}_{\varepsilon}
=\Big(\frac{(A^p+B^p)\|u_{\varepsilon}\|_{\mu}^p}{F(A,B)}\Big)
^{\frac{1}{p^{*}-p}}.
$$
So, for each $t\geq 0$, $$ g(t)\leq g(\tilde{t}_{\varepsilon})
=\frac{1}{N}\Big(\frac{(A^p+B^p)\|u_{\varepsilon}\|_{\mu}^p}{(F(A,B))^{p/p^*}}\Big)
^{N/p},
$$
and therefore
\begin{equation}\label{2.16}
h(t_{\varepsilon})\leq\frac{1}{N}\Big(\frac{(A^p+B^p)
\|u_{\varepsilon}\|_{\mu}^p}{(F(A,B))^{p/p^*}}\Big)
^{N/p}-t_{\varepsilon}^{q}G_{\lambda,\delta}(A,B)|u_{\varepsilon}|_{q}^{q}.
\end{equation}
We claim that, for some $C_2>0$, there holds
$$
t_{\varepsilon}^{q}G_{\lambda,\delta}(A,B)\geq C_2.
$$
Indeed, if this is not the case, we have that $t_{\varepsilon_{m}}
\to 0$ for some sequence $\varepsilon_{m}\to 0^{+}$,
then
$$
0
0$, or $q=p,0\leq \mu\leq
\frac{N^{p-1}(N-p^{2})}{p^p}$ and $\lambda,\delta \in(0,
\frac{1}{p}\Lambda_{1,rad})$, and where $\Lambda_{1,rad}> 0$ is the
first eigenvalue of the operator $(-\Delta _pu,
W^{1,p}_{0,rad}(B_{r}))$. Moreover,
$$
m_{\lambda,\delta}<\frac{1}{N}S_{F}^{N/p}, \quad
\lim_{\lambda,\delta\to 0^{+}}m_{\lambda,\delta}=\frac{1}{N}S_{F}^{N/p}.
$$
\end{lemma}
We introduce the barycenter map
$\beta:\mathcal{N}_{\lambda,\delta}\to \mathbb{R}^N$ as
$$
\beta(u,v)=S_{F}^{-N/p}\int_{\Omega}F(u,v)x\,dx.
$$
This map has the following property.
\begin{lemma}\label{lem3.3}
If {\rm (F0)--(F3), (G0)--(G1)}, then there
exists $\lambda^{*}>0$ such that $\beta(u,v)\in \Omega_{ r}^{+}$
whenever $(u,v)\in \mathcal{N}_{\lambda,\delta},\lambda,\delta\in(0,\lambda^{*})$
and $I_{\lambda,\delta}(u,v)\leq m_{\lambda,\delta}$.
\end{lemma}
\begin{proof}
Arguing by contradiction, we suppose that there exist
$\{\lambda_{m}\},\{\delta_{m}\}\subset \mathbb{R}^{+}$ and
$\{(u_{m},v_{m})\}\subset \mathcal{N}_{\lambda_{m},\delta_{m}}$ such
that $\lambda_{m},\delta_{m}\to 0^{+}$ as
$m\to\infty, I_{\lambda_{m},\delta_{m}}(u_{m},v_{m})\leq
m_{\lambda_{m},\delta_{m}}$, but
$\beta(u_{m},v_{m})\not\in\Omega_{r}^{+}$.
From $\{(u_{m},v_{m})\}\subset \mathcal{N}_{\lambda_{m},\delta_{m}}$
and $I_{\lambda_{m},\delta_{m}}(u_{m},v_{m})\leq
m_{\lambda_{m},\delta_{m}}$, it follows that $\{(u_{m},v_{m})\}$ is
bounded in $E$. Moreover,
\begin{align*}
0&=\langle I'_{\lambda_{m},\delta_{m}}(u_{m},v_{m}),(u_{m},v_{m})\rangle\\
&= \|(u_{m},v_{m})\|_{E}^p-\int_{\Omega}F(u_{m},v_{m})dx
-q\int_{\Omega}G_{\lambda_{m},\delta_{m}} (u_{m},v_{m})dx.
\end{align*}
Since $\lambda_{m}\to 0$, we can use the boundedness of
$\{(u_{m},v_{m})\}$ to get
$$
0\leq \int_{\Omega}G_{\lambda_{m},\delta_{m}}(u_{m},v_{m})dx\leq
\lambda_{m}\int_{\Omega}(|u_{m}|^{q}+|v_{m}|^{q})dx\to 0,
$$
from which it follows that
$$
\lim_{m\to\infty}\|(u_{m},v_{m})\|_{E}^p
= \lim_{m\to\infty}\int_{\Omega}F(u_{m},v_{m})dx=k\geq 0.
$$
Notice that
\begin{align*}
c_{\lambda_{m},\delta_{m}}
&\leq I_{\lambda_{m},\delta_{m}}(u_{m},v_{m})\\
&= \frac{1}{p}\|(u_{m},v_{m})\|_{E}^p-\frac{1}{p^{*}}
\int_{\Omega}F(u_{m},v_{m})dx-
\int_{\Omega}G_{\lambda_{m},\delta_{m}}(u_{m},v_{m})dx
\\
&\leq m_{\lambda_{m},\delta_{m}}.
\end{align*}
Recalling that $c_{\lambda_{m},\delta_{m}}$ and
$m_{\lambda_{m},\delta_{m}}$ both converge to
$\frac{1}{N}S_{F}^{N/p}$, we can use the above expression
and
$\int_{\Omega}G_{\lambda_{m},\delta_{m}}(u_{m},v_{m})dx\to
0$ again to conclude that $k=S_{F}^{N/p}$. That is,
\begin{equation}
\lim_{m\to\infty}\|(u_{m},v_{m})\|_{E}^p=S_{F}^{N/p}=
\lim_{m\to\infty}\int_{\Omega}F(u_{m},v_{m})dx.\label{3.2}
\end{equation}
Let $t_{m}=(\int_{\Omega}F(u_{m},v_{m})dx)^{-1/p^*}>0$ and
notice that $t_{m}(u_{m},v_{m})$ satisfies the hypotheses of Lemma
\ref{lem3.1}. Using Lemma \ref{lem3.1}, there exist sequences
$\{r_{m}\}\subset (0,+\infty)$ and $\{y_{m}\}\subset \mathbb{R}^N$
satisfying $r_{m}\to 0, y_{m}\to y \in
\overline{\Omega}$. We thus have that $\omega_{m} \to
\omega$ in $\mathcal{D}^{1,p}(\mathbb{R}^N)\times
\mathcal{D}^{1,p}(\mathbb{R}^N)$.
The definition of $\beta(u,v)$, \eqref{3.2}, the strong convergence
of $\{\omega_{m}\}$, and Lebesgue's Theorem provide
\begin{align*}
\beta(u_{m},v_{m})
&=t_{m}^{-p^{*}}S_{F}^{-N/p}\int_{\Omega}F(t_{m}(u_{m},v_{m}))xdx
\\
&=(1+o_{m}(1))\int_{\Omega}F(t_{m}u_{m},t_{m}v_{m})xdx
\\
&=(1+o_{m}(1))\int_{\Omega}F(\omega_{m})(r_{m}x+y_{m})dx
\\
&=(1+o_{m}(1))\Big(\int_{\Omega}F(\omega)\bar{y}dx+o_{m}(1)\Big).
\end{align*}
Since $\bar{y}\in \overline{\Omega}$ and
$\int_{\Omega}F(\omega)dx=1$, the above expression implies that
$$
\lim_{m\to\infty}\operatorname{dist} \
(\beta(u_{m},v_{m}),\overline{\Omega})=0.
$$
Such contradicts $\beta(u_{m},v_{m})\not\in \Omega_{r}^{+}$.
\end{proof}
According to Lemma \ref{lem3.2}, for each $\lambda,\delta>0$ small,
the infimum $m_{\lambda,\delta}$ is attained by a nonnegative radial
function
$\sigma_{\lambda,\delta}=(u_{\lambda,\delta},v_{\lambda,\delta})\in
\mathcal{N}^{B_{r}}_{\lambda,\delta}$. We consider
$$
I_{\lambda,\delta}^{m_{\lambda,\delta}}=\{(u,v)\in E:I(u,v)\leq
m_{\lambda,\delta}\}
$$
and define the function $\gamma:\Omega_{r}^{-}\to
I_{\lambda,\delta}^{m_{\lambda,\delta}}$ by setting, for each $y\in
\Omega_{r}^{-}$,
\begin{equation}
\gamma(y)=
\begin{cases}
\sigma_{\lambda,\delta}(x-y), & \text{if } x\in B_{r}(y),\\
0, & \text{otherwise}.
\end{cases}\label{3.3}
\end{equation}
A change of variables and straightforward calculations show that the
map $\gamma$ is well defined. Since $\sigma_{\lambda,\delta}$ is
radial, we have that $\int_{B_{r}}
F(u_{\lambda,\delta},v_{\lambda,\delta})xdx=0$. Hence, for each
$y\in \Omega_{r}^{-}$, we obtain
\begin{align*} (\beta\circ\gamma)(y)
&=S_{F}^{-N/p}\int_{\Omega}
F(u_{\lambda,\delta}(x-y),v_{\lambda,\delta}(x-y))xdx
\\
&=S_{F}^{-N/p}\int_{\Omega}
F(u_{\lambda,\delta}(t),v_{\lambda,\delta}(t))(t+y)dt
\\
&=S_{F}^{-N/p}\int_{\Omega}
F(u_{\lambda,\delta}(t),v_{\lambda,\delta}(t))ydt
= y\alpha_{\lambda,\delta},
\end{align*}
where $\alpha_{\lambda,\delta}=S_{F}^{-N/p} \int_{\Omega}
F(u_{\lambda,\delta}(t),v_{\lambda,\delta}(t))dt$.
Along the way of proving Lemma \ref{lem3.3}, we can check easily the
following.
\begin{lemma}\label{lem3.4} If $\lambda,\delta\to 0^{+}$,
then $\alpha_{\lambda,\delta}\to 1$.
\end{lemma}
\begin{proof} By Lemma \ref{lem3.2}, we have
\begin{align*}
m_{\lambda,\delta}
&= \frac{1}{p}\int_{B_{r}}\Big(|\nabla
u_{\lambda,\delta}|^p+|\nabla
v_{\lambda,\delta}|^p-\mu\frac{|u_{\lambda,\delta}|^p+|v_{\lambda,\delta}|^p}{|x|^p}\Big)dx
\\
&\quad -\frac{1}{p^{*}}\int_{B_{r}}F(u_{\lambda,\delta},
v_{\lambda,\delta})dx-
\int_{B_{r}}G_{\lambda,\delta}(u_{\lambda,\delta},
v_{\lambda,\delta})dx
\\
& < \frac{1}{N}S_{F}^{N/p}.
\end{align*}
As before, $\int_{B_{r}}G_{\lambda,\delta}(u_{\lambda,\delta},
v_{\lambda,\delta})dx\to 0$. Thus,
$I'_{B_{r}}(u_{\lambda,\delta}, v_{\lambda,\delta})=0$,
and the above expression and the same
arguments used in the proof of Lemma \ref{lem3.2} imply that
$$
\int_{\Omega}F(u_{\lambda,\delta}, v_{\lambda,\delta})dx\to
S_{F}^{N/p}.
$$
The above equality and the definition of $\alpha_{\lambda,\delta}$
imply that $\alpha_{\lambda,\delta}\to 1$. The lemma is thus
proven.
\end{proof}
Next we define $H_{\lambda,\delta}:[0,1]\times
(\mathcal{N}_{\lambda,\delta}\cap
I_{\lambda,\delta}^{m_{\lambda,\delta}})\to \mathbb{R}^N$
by
$$
H_{\lambda,\delta}(t,(u,v))=\Big(t+\frac{1-t}{\alpha_{\lambda,\delta}}\Big)
\beta(u,v).
$$
\begin{lemma}\label{lem3.5}
Suppose {\rm (F0)--(F3), (G0)--(G1)} are satisfied. There then
exists $\lambda^{**}>0$ such that
\begin{equation}
H_{\lambda,\delta}\big([0,1]\times (\mathcal{N}_{\lambda,\delta}\cap
I_{\lambda,\delta}^{m_{\lambda,\delta}})\big)\subset \Omega_{r}^{+}
\label{3.4}
\end{equation}
for all $\lambda,\delta\in (0,\lambda^{**})$.
\end{lemma}
\begin{proof}
Arguing by contradiction, we suppose that there exist sequences
$\{\lambda_{m}\}$, $\{\delta_{m}\}\subset \mathbb{R}^{+}$ and
$t_{m}\in [0,1], (u_{m},v_{m})\in (\mathcal{N}_{\lambda,\delta}\cap
I_{\lambda,\delta}^{m_{\lambda,\delta}})$ such that
$\lambda_{m},\delta_{m}\to 0^{+}$ as $m\to\infty$
and
$H_{\lambda_{m},\delta_{m}}(t_{m},(u_{m},v_{m}))\not\in\Omega_{r}^{+}$
for all $m$, up to a subsequence $t_{m}\to t_0\in[0,1]$.
Moreover, the compactness of $\overline{\Omega}$ and Lemma
\ref{lem3.3} imply that, up to a subsequence,
$\beta(u_{m},v_{m})\to y\in
\overline{\Omega}$. From Lemma \ref{lem3.4}
$\alpha_{\lambda_{m},\delta_{m}}\to 1$, so we can use the
definition of $H_{\lambda,\delta}$ to conclude that
$H_{\lambda_{m},\delta_{m}}(t_{m},(u_{m},v_{m}))\to y\in
\overline{\Omega}$, which is a contradiction. The lemma is proven.
\end{proof}
\section{Proof of Theorem \ref{thm2}}
We begin with the following lemma.
\begin{lemma}\label{lem4.1}
If $(u,v)$ is a critical point of $I_{\lambda,\delta}$ on
$\mathcal{N}_{\lambda,\delta}$, then it is a critical point of
$I_{\lambda,\delta}$ in $E$.
\end{lemma}
\begin{proof}
The proof is almost the same as \cite[Lemma 3.2]{22} and is thus omitted here.
\end{proof}
\begin{lemma}\label{lem4.2}
Suppose {(F0)--(F3), (G0)--(G1)} are satisfied.
Then any sequence $\{(u_{m},v_{m})\}\subset
\mathcal{N}_{\lambda,\delta}$ such that
$I_{\lambda,\delta}(u_{m},v_{m})\to c<\frac{1}{N}S_{F}^{N/p}$ and
$I'_{\lambda,\delta}(u_{m},v_{m})\to 0$ contains a
convergent subsequence for $\lambda,\delta>0$ if $q>p$ and
$\lambda,\delta\in (0,\lambda^{*})$ if $q=p$ for some small
$\lambda^{*}>0$.
\end{lemma}
\begin{proof}
By hypothesis, there exists a sequence $\theta_{m}\in \mathbb{R}$
such that
$\|I'_{\lambda,\delta}(u_{m},v_{m})
-\theta_{m}J'_{\lambda,\delta}(u_{m},v_{m})\|_{E}
\to 0$ as $m\to\infty$, where
\[
J_{\lambda,\delta}(u,v)=\int_{\Omega}(|\nabla
u|^p-\mu\frac{|u|^p}{|x|^p}+|\nabla
v|^p-\mu\frac{|v|^p}{|x|^p})dx-\int_{\Omega}F(u,v)dx
-q\int_{\Omega}G_{\lambda,\delta}(u,v)dx.
\]
Thus,
$$
I'_{\lambda,\delta}(u_{m},v_{m})
=\theta_{m}J'_{\lambda,\delta}(u_{m},v_{m})+o_{m}(1).
$$
Recall that for all $(u_{m},v_{m})\in
\mathcal{N}_{\lambda,\delta}$,
$$
\langle J'_{\lambda,\delta}(u_{m},v_{m}),(u_{m},v_{m})\rangle=
(p-p^{*})\int_{\Omega}F(u_{m},v_{m})dx+
(p-q)\int_{\Omega}G_{\lambda,\delta}(u_{m},v_{m})dx\leq 0.
$$
If $\langle
J'_{\lambda,\delta}(u_{m},v_{m}),(u_{m},v_{m})\rangle\to 0$,
we have
$$
\int_{\Omega}F(u_{m},v_{m})dx\to 0, \quad
\int_{\Omega}G_{\lambda,\delta}(u_{m},v_{m})dx\to 0.
$$
Consequently, $\|(u_{m},v_{m})\|_{E}\to 0$.
On the other hand, if $(u_{m},v_{m})\in \mathcal{N}_{\lambda,\delta}$,
it follows that
$$
1\leq C(\lambda\|(u_{m},v_{m})\|_{E}^{q-p}+\delta\|(u_{m},v_{m})\|_{E}^{q-p}+
\|(u_{m},v_{m})\|_{E}^{p^{*}-p})
$$
for some $C>0$. Hence we arrive at a contradiction if
$\lambda,\delta> 0$ and $q>p$ or $\lambda,\delta\in (0,\lambda^{*})$
for small $\lambda^{*}> 0$ when $q=p$. We may thus assume that
$\langle J'_{\lambda,\delta}(u_{m},v_{m}),(u_{m},v_{m})\rangle\to
\ell< 0$. Since
$\langle I'_{\lambda,\delta}(u_{m},v_{m}),(u_{m},v_{m})\rangle=0$, we
conclude that $\theta_{m}=0$ and, consequently,
$I'_{\lambda,\delta}(u_{m},v_{m})\to 0$. Using this fact, we
have
$$
I'_{\lambda,\delta}(u_{m},v_{m})\to
c<\frac{1}{N}S_{F}^{N/p} \quad \text{and} \quad
I'_{\lambda,\delta}(u_{m},v_{m})\to 0.
$$
By Lemma \ref{lem2.1} the proof is completed.
\end{proof}
Hereafter, we denote the restriction of $I_{\lambda,\delta}$ on
$\mathcal{N}_{\lambda,\delta}$ by
$I_{\mathcal{N}_{\lambda,\delta}}$.
\begin{lemma}\label{lem4.3}
If {\rm (F0)--(F3), (G0)--(G1)} are satisfied.
Let $\Lambda=\min\{\lambda^{*},\lambda^{**}\}>0$,
$\lambda,\delta\in (0,\Lambda)$. Then
$\operatorname{cat}_{I_{\mathcal{N}_{\lambda,\delta}}^{m_{\lambda,\delta}}}
(I_{\mathcal{N}_{\lambda,\delta}}^{m_{\lambda,\delta}})\geq
\operatorname{cat}_{\Omega}(\Omega)$, where $\lambda^{*},\lambda^{**}$ are
given by Lemma \ref{lem3.3} and \ref{lem3.5}, respectively.
\end{lemma}
\begin{proof} Suppose that
$I_{\mathcal{N}_{\lambda,\delta}}^{m_{\lambda,\delta}}
=A_1\cup A_2\cup\cdots\cup A_{m}$,
where $A_j, j=1,2,\cdots,m$, are closed and contractible sets in
$I_{\mathcal{N}_{\lambda,\delta}}^{m_{\lambda,\delta}}$, this means
that there exists
$h_j\in C([0,1]\times A_j,I_{\mathcal{N}_{\lambda,\delta}}
^{m_{\lambda,\delta}})$ such that
$$ h_j(0,z)=z, \quad h_j(1,z)=\vartheta, \quad \text{for all }
z\in A_j,
$$
where $\vartheta\in A_j$ is fixed. Consider
$B_j=\gamma^{-1}(A_j)$, $1\leq j\leq m$. The sets $B_j$ are
closed and
$$
\Omega_{r}^{-}=B_1\cup B_2\cup\cdots\cup B_{m}.
$$
We define the deformation $g_j:[0,1]\times B_j$ by setting
$$
g_j(t,y)=H_{\lambda,\delta}(t,h_j(t,\gamma(y)))
$$
for $\lambda,\delta\in (0,\Lambda)$. Note that
$$
g_j(0,y)=H_{\lambda,\delta}(0,h_j(0,\gamma(y)))=
\frac{(\beta\circ\gamma)(y)}{\alpha_{\lambda,\delta}}
$$
implies
$$
g_j(0,y)=\frac{\alpha_{\lambda,\delta}y}{\alpha_{\lambda,\delta}}=y,
\quad \text{for all } y\in B_j,
$$
and $g_j(1,y)=H_{\lambda,\delta}(1,h_j(1,\gamma(y)))
=\beta(h_j(1,\gamma(y)))$ implies
$$
g_j(1,y)=\beta(\vartheta)\in \Omega_{r}^{+}.
$$
Thus $B_j$ are contractible in
$\Omega_{r}^{+}$. Hence $\operatorname{cat}_{\Omega}(\Omega)
=\operatorname{cat}_{\Omega_{r}^{+}}(\Omega_{r}^{+})\leq
m$.\end{proof}
\begin{proof}[Proof of Theorem \ref{thm2}]
Using Lemma \ref{lem2.1}, Lemma \ref{lem2.2}, and Lemma \ref{lem3.2}
we know that $c_{\lambda,\delta},
m_{\lambda,\delta}<\frac{1}{N}S_{F}^{N/p}$ for
$\lambda,\delta\in (0,\Lambda)$. Moreover, by Lemma \ref{lem4.2},
$I_{\mathcal{N}_{\lambda,\delta}}$ satisfies the $(PS)_{c}$
condition for all $c<\frac{1}{N}S_{F}^{N/p}$. Therefore, by
Lemma \ref{lem4.3}, a standard deformation argument implies that for
$\lambda,\delta\in (0,\Lambda)$, $I_{\mathcal{N}_{\lambda,\delta}}$
contains at least $\operatorname{cat}_{\Omega}(\Omega)$ critical points of
the restriction of $I_{\lambda,\delta}$ on
$\mathcal{N}_{\lambda,\delta}$. Now, Lemma \ref{lem4.1} implies that
$I_{\lambda,\delta}$ has at least $\operatorname{cat}_{\Omega}(\Omega)$
critical points, and therefore at least
$\operatorname{cat}_{\Omega}(\Omega)$ nontrivial solutions of \eqref{1.1}.
As Theorem \ref{thm1}, the obtained solutions are nonnegative in
$\Omega$. The proof is completed.
\end{proof}
\subsection*{Acknowledgments}
The author is indebted to the anonymous referee for the
valuable comments and suggestions. This work was supported by Natural Science
Foundation of Hubei Engineering University and partially by
grant D20122605 from the Educational Commission of Hubei Province of China.
\begin{thebibliography}{99}
\bibitem{1} B. Abdellaoui, V. Felli, I. Peral;
\emph{Existence and nonexistence for
quasilinear equations involving the $p$-Laplacian}, Boll. Unione
Mat. Ital. Sez., B 9 (2006) 445-484.
\bibitem{2} C. O. Alves, Y. H. Ding;
\emph{Multiplicity of positive solutions to a
$p$-Laplacian equation involving critical nonlinearity},
J. Math. Anal. Appl., 279 (2) (2003) 508-521.
\bibitem{3} C. O. Alves, D. C. de M. Filho, M. A. S. Souto;
\emph{On systems of elliptic equations involving subcritical
or critical Sobolev exponents}, Nonlinear Anal., 42 (2000) 771-787.
\bibitem{4} J. G. Azorero, I. P. Alonso;
\emph{Hardy inequalities and some
critical elliptic and parabolic problems}, J. Differential
Equations, 144 (1998) 441-476.
\bibitem{5} H. Brezis, E. Lieb;
\emph{A relation between pointwise convergence
of functions and convergence of functionals}, Proc. Amer. Math.
Soc., 88 (1983) 486-490.
\bibitem{6} A. Cano, M. Clapp;
\emph{Multiple positive and 2-nodal symmetric
solutions of elliptic problems with critical nonlinearity}, J.
Differential Equations, 237 (2007) 133-158.
\bibitem{7} Y. P. Cao, D. S. Kang;
\emph{Solutions of a quasilinear elliptic
problem involving a critical Sobolev exponent and multiple
Hardy-type terms}, J. Math. Anal. Appl., 333 (2007) 889-903.
\bibitem{8} A. Castro, M. Clapp;
\emph{The effect of the domain topology on the
number of minimal nodal solutions of an elliptic equation at
critical growth in a symmetric domain}, Nonlinearity, 16 (2003)
579-590.
\bibitem{9} L. Ding, S. W. Xiao;
\emph{Multiple positive solutions for a critical
quasilinear elliptic system}, Nonlinear Anal., 72 (2010) 2592-2607.
\bibitem{10} G. M. Figueiredo, M. F. Furtado;
\emph{Multiple positive solutions for
a quasilinear system of Schr\"{o}dinger equations}, Nonlinear
Differential Equations Appl., 15 (2008), 309-333.
\bibitem{11} D. C. de M. Filho, M. A. S. Souto;
\emph{Systems of $p$-Laplacian equations
involving homogeneous nonlinearities with critical Sobolev exponent
degrees}, Comm. Partial Differential Equations, 24 (1999) 1537-1553.
\bibitem{12} M. F. Furtado, J. P. da Silva;
\emph{Multiplicity of solutions for homogeneous elliptic systems with
critical growth}, J. Math. Anal. Appl., 385 (2012) 770-785.
\bibitem{13} N. Ghoussoub, C. Yuan;
\emph{Multiple solutions for quasi-linear PDEs
involving the critical Sobolev and Hardy exponents}, Trans. Amer.
Math. Soc., 352 (12) (2000) 5703-5743.
\bibitem{14} Q. Guo, P. Niu, Y. Wang;
\emph{Global compactness results for singular
quasilinear elliptic problems with critical Sobolev exponents and
applications}, Nonlinear Anal., 71 (2009) 2944-2963.
\bibitem{15} P. G. Han;
\emph{The effect of the domain topology on the number of
positive solutions of elliptic systems involving critical Sobolev
exponents}, Houston J. Math., 32 (2006) 1241-1257.
\bibitem{16} P. G. Han;
\emph{Quasilinear elliptic problems with critical
exponents and Hardy terms}, Nonlinear Anal., 61 (2005) 735-758.
\bibitem{17} T. S. Hsu;
\emph{Multiple positive solutions for a critical
quasilinear elliptic system with concave-convex nonlinearities},
Nonlinear Anal., 71 (2009) 2688-2698.
\bibitem{18} D.S. Kang;
\emph{On the quasilinear elliptic problems with critical
Sobolev-Hardy exponents and Hardy terms}, Nonlinear Anal., 68 (2008)
1973-1985.
\bibitem{19} D. S. Kang;
\emph{Solutions of the quasilinear elliptic problem with
a critical Sobolev-Hardy exponent and a Hardy-type term}, J. Math.
Anal. Appl., 341 (2008) 764-782.
\bibitem{20} D. S. Kang, S. J. Peng;
\emph{Existence of solutions for elliptic equations
with critical Sobolev-Hardy exponents}, Nonlinear Anal., 56 (2004)
1151-1164.
\bibitem{21} D. F. L\"{u}, J. H. Xiao;
\emph{Multiple solutions for weighted
nonlinear elliptic system involving critical exponents}, Math Comput
Model., 55 (2012), 816-827.
\bibitem{22} D. F. L\"{u};
\emph{Multiple solutions for a class of biharmonic
elliptic systems with Sobolev critical exponent}, Nonlinear Anal.,
74 (2011) 6371-6382.
\bibitem{23} S. J. Peng;
\emph{Remarks on singular critical growth elliptic equations},
Discrete Contin. Dyn. Syst., 14 (2006) 707-719.
\bibitem{24} B. Ribeiro;
\emph{The Ambrosetti-Prodi problem for gradient elliptic
systems with critical homogeneous nonlinearity}, J. Math. Anal.
Appl., 363 (2010) 606-617.
\bibitem{25} Y. Shen, J. H. Zhang;
\emph{Multiplicity of positive solutions for a
semilinear $p$-Laplacian system with Sobolev critical exponent},
Nonlinear Anal., 74 (2011) 1019-1030.
\bibitem{26}
L. Wang, Q. L. Wei, D. S. Kang;
\emph{Multiple positive solutions for
p-Laplace elliptic equations involving concave-convex nonlinearities
and a Hardy-type term}, Nonlinear Anal., 74 (2011) 626-638.
\bibitem{27} M. Willem;
\emph{Minimax Theorem}, Birkh\"{a}user, Boston, 1996.
\end{thebibliography}
\end{document}