\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 45, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/45\hfil Existence of positive solutions] {Existence of positive solutions for even-order $m$-point boundary-value problems on time scales} \author[\.I. Yaslan \hfil EJDE-2013/45\hfilneg] {\.Isma\.il Yaslan} % in alphabetical order \address{\.Isma\.il Yaslan \newline Pamukkale University\\ Department of Mathematics\\ 20070 Denizli, Turkey} \email{iyaslan@pau.edu.tr} \thanks{Submitted October 15, 2012. Published February 8, 2013} \subjclass[2000]{34B18, 34N05, 39A10} \keywords{Boundary value problems; cone; fixed point theorems; \hfill\break\indent positive solutions; time scales} \begin{abstract} In this article, we consider a nonlinear even-order $m$-point bound\-ary-value problems on time scales. We establish the criteria for the existence of at least one, two and three positive solutions for higher order nonlinear $m$-point boundary-value problems on time scales by using the four functionals fixed point theorem, Avery-Henderson fixed point theorem and the five functionals fixed point theorem, respectively. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} Higher order multi-point boundary value problems on time scales have attracted the attention of many researchers in recent years; see for example \cite{and04, and06, and08, do10, han08, hu11, hu112, sang07, su11, su08, wang09, yas12} and the references therein. In this article, we are concerned with the existence of single and multiple positive solutions to the following nonlinear higher order $m$-point boundary value problem (BVP) on time scales: \begin{equation}\label{1.1} \begin{gathered} (-1)^{n}y^{\Delta ^{2n}}(t)= f(t,y(t)),\quad t\in [t_1,t_m]\subset \mathbb{T} ,\; n\in \mathbb{N} \\ y^{\Delta ^{2i+1} }(t_m)=0,\quad \alpha y^{\Delta^{2i}}(t_1)-\beta y^{\Delta^{2i+1} }(t_1)=\sum_{k=2}^{m-1}y^{\Delta^{2i+1} }(t_{k}), \end{gathered} \end{equation} where $\alpha >0$ and $\beta > 0 $ are given constants, $t_1 0$ and $\beta > 0$, then the Green's function $G(t,s)$ in \eqref{2.1} satisfies the inequality \[ G(t,s)\geq \frac{t-t_1}{t_m-t_1}G(t_m,s) \] for $(t,s)\in [t_1,t_m]\times[t_1,t_m]$. \end{lemma} \begin{proof} (i) Let $ s\in [t_1,t_m]$ and $t\leq s$. Then we obtain \[ \frac{G(t,s)}{G(t_m,s)}=\frac{t+\frac{\beta+j-1}{\alpha}-t_1}{t_m+\frac{\beta+j-1}{\alpha}-t_1}> \frac{t-t_1}{t_m-t_1}. \] (ii) For $ s\in [t_1,t_m]$ and $s\leq t$, we have \[ \frac{G(t,s)}{G(t_m,s)} = 1\geq\frac{t-t_1}{t_m-t_1}. \] \end{proof} \begin{lemma}\label{L2.2} If $\alpha >0$ and $\beta>0$, then the Green's function $G(t,s)$ in $\eqref{2.1}$ satisfies \[ 00$ and $\beta>0$, $H_{j}(t,s)>0$ for all $j=1,2,\dots,m-1$. Then we obtain $G(t,s)>0$ from $\eqref{2.1}$. Now, we will show that $G(t,s)\leq G(s,s)$. (i) Let $ s\in [t_1,t_m]$ and $t\leq s$. Since $G(t,s)$ is nondecreasing in $t$, $G(t,s)\leq G(s,s)$. (ii) For $s\in [t_1,t_m]$ and $s\leq t$, it is clear that $G(t,s)= G(s,s)$. \end{proof} \begin{lemma}\label{L2.3} If $\alpha >0$, $\beta >0$ and $s\in [t_1,t_m]$, then the Green's function $G(t,s)$ in $\eqref{2.1}$ satisfies \begin{align*} \min_{t\in [t_{m-1},t_m]}G(t,s)\geq K\|G(.,s)\|, \end{align*} where \begin{equation}\label{2.2} K=\frac{\beta+\alpha(t_{m-1}-t_1)}{\beta+m-2+\alpha(t_m-t_1)} \end{equation} and $\|x\|=\max_{t\in [t_1,t_m]}|x(t)|$. \end{lemma} \begin{proof} Since the Green's function $G(t,s)$ in \eqref{2.1} is nondecreasing in $t$, We have $\min_{t\in [t_{m-1},t_m]}G(t,s)=G(t_{m-1},s)$ In addition, it is obvious that $\|G(.,s)\|=G(s,s)$ for $s\in [t_1,t_m]$ by Lemma \ref{L2.2}. Then we have \begin{align*} G(t_{m-1},s)\geq K G(s,s) \end{align*} from the branches of the Green's function $G(t,s)$. \end{proof} If we let $G_1(t,s):=G(t,s)$ for $G$ as in \eqref{2.1}, then we can recursively define \begin{align*} G_{j}(t,s)=\int_{t_1}^{t_m}G_{j-1}(t,r)G(r,s)\Delta r \end{align*} for $2\leq j\leq n$ and $G_{n}(t,s)$ is Green's function for the homogeneous problem \begin{gather*} (-1)^{n}y^{\Delta ^{2n}}(t)= 0,\quad t\in [t_1,t_m], \\ y^{\Delta ^{2i+1} }(t_m)=0,\quad \alpha y^{\Delta^{2i}}(t_1)-\beta y^{\Delta^{2i+1} }(t_1) =\sum_{k=2}^{m-1}y^{\Delta^{2i+1} }(t_{k}), \end{gather*} where $m \geq 3$ and $0\leq i\leq n-1$. \begin{lemma}\label{L2.4} Let $\alpha >0$, $\beta>0$. The Green's function $G_{n}(t,s)$ satisfies the following inequalities \begin{gather*} 0\leq G_{n}(t,s)\leq L^{n-1} \|G(.,s)\|,\quad (t,s)\in [t_1,t_m]\times [t_1,t_m], \\ G_{n}(t,s)\geq K^{n}M^{n-1}\|G(.,s)\|,\quad (t,s)\in [t_{m-1},t_m]\times [t_1,t_m] \end{gather*} where $K$ is given in \eqref{2.2}, and \begin{gather}\label{2.3} L=\int_{t_1}^{t_m}\|G(.,s)\|\Delta s>0,\\ \label{2.4} M=\int_{t_{m-1}}^{t_m}\|G(.,s)\|\Delta s>0. \end{gather} \end{lemma} The proof of the above lemma is done using induction on $n$ and Lemma \ref{L2.3}. Let $\mathcal{B}$ denote the Banach space $C[t_1,t_m]$ with the norm $\|y\|=\max_{t\in [t_1,t_m]}|y(t)|$. Define the cone $P\subset \mathcal{B}$ by \begin{equation}\label{2.5} P = \{y\in \mathcal{B}: y(t)\geq 0, \min_{t\in [t_{m-1},t_m]} y(t) \geq \frac{K^{n} M^{n-1}}{L^{n-1}} \|y\|\} \end{equation} where $K, L, M$ are given in \eqref{2.2}, \eqref{2.3}, \eqref{2.4}, respectively. Note that \eqref{1.1} is equivalent to the nonlinear integral equation \begin{equation}\label{2.6} y(t)=\int_{t_1}^{t_m}G_{n}(t,s)f(s,y(s)) \Delta s. \end{equation} We can define the operator $A:P \to \mathcal{B}$ by \begin{equation}\label{2.7} Ay(t)=\int_{t_1}^{t_m}G_{n}(t,s)f(s,y(s)) \Delta s, \end{equation} where $y\in P$. Therefore, solving \eqref{2.6} in $P$ is equivalent to finding fixed points of the operator $A$. It is clear that $AP\subset P$ and $A:P\to P$ is a completely continuous operator by a standard application of the Arzela-Ascoli theorem. Now we state the fixed point theorems which will be applied to prove main theorems. We are now in a position to present the four functionals fixed point theorem. Let $\varphi$ and $\Psi$ be nonnegative continuous concave functionals on the cone $P$, and let $\eta$ and $\theta$ be nonnegative continuous convex functionals on the cone $P$. Then for positive numbers $r, \tau, \mu$ and $R$, define the sets \begin{gather*} Q(\varphi, \eta, r, R)=\{x\in P: r\leq \varphi(x), \eta (x)\leq R\}, \\ U(\Psi, \tau )= \{x\in Q(\varphi, \eta, r, R): \tau\leq \Psi(x)\}, \\ V(\theta, \mu)= \{x\in Q(\varphi, \eta, r, R): \theta(x)\leq \mu\}. \end{gather*} The following theorem can be found in \cite{av08}. \begin{theorem}[Four Functionals Fixed Point Theorem] \label{T2.2} Suppose $P$ is a cone in a real Banach space $E$, $\varphi$ and $\Psi$ are nonnegative continuous concave functionals on $P$, $\eta$ and $\theta$ are nonnegative continuous convex functionals on $P$, and there exist nonnegative positive numbers $r, \tau, \mu$ and $R$, such that $A:Q(\varphi, \eta, r, R)\to P$ is a completely continuous operator, and $Q(\varphi, \eta, r, R)$ is a bounded set. If \begin{itemize} \item[(i)] $\{x\in U(\Psi, \tau): \eta(x)r$ for all $u\in \partial P(\phi ,r)$, \item[(ii)] $\theta (Au)p$ for all $u\in \partial P(\eta ,p)$, \end{itemize} then $A$ has at least two fixed points $u_1$ and $u_2$ such that \[ p<\eta (u_1) \textmd{ with }\theta (u_1)b\}\neq \emptyset$ and $\gamma (Ax)>b$ \\ for $x\in P(\varphi, \theta, \gamma, b, k, c)$, \item[(ii)] $ \{x\in Q(\varphi, \eta, \Psi, h, a, c): \eta(x)b$, for $x\in P(\varphi, \gamma, b, c)$, with $\theta(Ax)>k$, \item[(iv)] $\eta (Ax)b,\quad \eta(x_{3})>a \quad\textmd{with } \gamma(x_{3})0$ and $\beta > 0$. Suppose that there exist constants $r, R, \mu, \tau $ with $0r. \end{gather*} Then, we have $\frac{\mu}{2}\in\{y\in U(\Psi,\tau):\eta(y)r\}$, which means that $(i)$ in Theorem \ref{T2.2} is fulfilled. Now, we shall verify that condition (ii) of Theorem \ref{T2.2} is satisfied. By Lemma \ref{L2.4}, we obtain \begin{align*} \theta (Ay) &=\int_{t_1}^{t_m}G_{n}(t_m,s)f(s,y(s)) \Delta s \\ &\leq L^{n-1}\int_{t_1}^{t_m}\|G(.,s)\|f(s,y(s)) \Delta s. \end{align*} Since $\theta(Ay)>\mu$, we find that \begin{equation}\label{3.2} \int_{t_1}^{t_m}\|G(.,s)\|f(s,y(s)) \Delta s > \frac{\mu}{L^{n-1}}. \end{equation} Then, we obtain \begin{align*} \varphi (Ay) &=\int_{t_1}^{t_m}G_{n}(t_{m-1},s)f(s,y(s)) \Delta s \\ &\geq K^{n}M^{n-1}\int_{t_1}^{t_m}\|G(.,s)\|f(s,y(s)) \Delta s >r, \end{align*} using Lemma \ref{L2.4} and \eqref{3.2}. Now, we shall show that condition (iii) of Theorem \ref{T2.2} holds. Since $\varphi(y)=r$ and $y\in V(\theta,\mu)$, we find that $r\leq y(t)\leq \mu$ for $t\in [t_{m-1},t_m]$. By Lemma \ref{L2.4} and the hypothesis $(i)$, we have \begin{align*} \varphi (Ay) &=\int_{t_1}^{t_m}G_{n}(t_{m-1},s)f(s,y(s)) \Delta s \\ &\geq K^{n}M^{n-1}\int_{t_{m-1}}^{t_m}\|G(.,s)\|f(s,y(s)) \Delta s \geq r. \end{align*} Now, we shall verify that condition (iv) of Theorem \ref{T2.2} is fulfilled. We get \begin{align*} \Psi (Ay) &=\int_{t_1}^{t_m}G_{n}(t_{m-1},s)f(s,y(s)) \Delta s \\ &\geq K^{n}M^{n-1}\int_{t_1}^{t_m}\|G(.,s)\|f(s,y(s)) \Delta s \end{align*} using Lemma \ref{L2.4}. Since $\Psi(Ay)<\tau$, \begin{equation}\label{3.3} \int_{t_1}^{t_m}\|G(.,s)\|f(s,y(s)) \Delta s <\frac{\tau}{K^{n}M^{n-1}}. \end{equation} Then, by Lemma \ref{L2.4} and \eqref{3.3} we obtain \begin{align*} \eta (Ay) &=\int_{t_1}^{t_m}G_{n}(t_m,s)f(s,y(s)) \Delta s \\ &\leq L^{n-1}\int_{t_1}^{t_m}\|G(.,s)\|f(s,y(s)) \Delta s < R. \end{align*} Finally, we shall show that condition $(v)$ of Theorem \ref{T2.2} is satisfied. Since $\eta(y)=R$, we find $0\leq y(t)\leq R$ for $t\in [t_1,t_m]$. Using Lemma \ref{L2.4} and the hypothesis $(ii)$, we have \begin{align*} \eta (Ay) &=\int_{t_1}^{t_m}G_{n}(t_m,s)f(s,y(s)) \Delta s \\ &\leq L^{n-1}\int_{t_1}^{t_m}\|G(.,s)\|f(s,y(s)) \Delta s \leq R. \end{align*} Hence, by Theorem \ref{T2.2}, the \eqref{1.1} has at least one positive solution $y$ such that $r\leq y(t)\leq R$ for $t\in [t_1,t_m]$. This completes the proof. \end{proof} Now we will use the Avery-Henderson fixed point theorem to prove the next theorem. \begin{theorem}\label{T4.1} Assume $\alpha >0$, $\beta>0$. Suppose there exist numbers $0\frac{r}{K^{n} M^{n}}$ for $(t,y)\in [t_{m-1},t_m]\times[r,\frac{rL^{n-1}}{K^{n}M^{n-1}}]$; \item[(ii)] $f(t,y)<\frac{q}{L^{n}}$ for $(t,y)\in [t_1,t_m]\times[0,\frac{qL^{n-1}}{K^{n}M^{n-1}}]$; \item[(iii)] $f(t,y)>\frac{p}{K^{n} M^{n}}$ for $t\in [t_{m-1},t_m]\times[\frac{K^{n}M^{n-1}}{L^{n-1}}p,p]$, \end{itemize} where $K, L, M$, are defined in \eqref{2.2}, \eqref{2.3}, \eqref{2.4}, respectively. Then \eqref{1.1} has at least two positive solutions $y_1$ and $y_2$ such that \begin{gather*} p < \max_{t\in [t_1,t_m]}y_1(t)\quad \text{with }\max_{t\in [t_{m-1},t_m]}y_1(t) r:$ Since $y\in \partial P(\phi ,r)$ and $\|y\| \leq \frac{L^{n-1}}{K^{n}M^{n-1}}\phi (y)$, we have $r\leq y(t)\leq \frac{rL^{n-1}}{K^{n}M^{n-1}}$ for $t\in [t_{m-1},t_m]$. Then, by hypothesis (i) and Lemma \ref{L2.4} we find that \begin{align*} \phi(Ay)&= \int_{t_1}^{t_m}G_{n}(t_{m-1},s)f(s,y(s)) \Delta s \\ &\geq K^{n} M^{n-1}\int_{t_{m-1}}^{t_m} \|G(.,s)\|f(s,y(s)) \Delta s >r. \end{align*} \noindent \textbf{Claim 2:} If $y\in \partial P(\theta ,q)$, then $\theta(Ay)p $ for all $y\in \partial P(\eta ,p)$: Since $\frac{p}{2}\in P$ and $p>0$, $\frac{p}{2}\in P(\eta,p)$. If $y\in \partial P(\eta ,p)$ and $\eta(y)\geq \frac{K^{n}M^{n-1}}{L^{n-1}}\|y\|$, we obtain $\frac{K^{n}M^{n-1}}{L^{n-1}}p\leq y(t)\leq \|y\|=p$ for $t\in [t_{m-1},t_m]$. Hence, by hypothesis (iii) and Lemma \ref{L2.4} we have \begin{align*} \eta(Ay)&= \int_{t_1}^{t_m}G_{n}(t_m,s)f(s,y(s)) \Delta s \\ &\geq K^{n} M^{n-1}\int_{t_{m-1}}^{t_m} \|G(.,s)\|f(s,y(s)) \Delta s >p. \end{align*} Since the conditions of Theorem \ref{T2.3} are satisfied, BVP \eqref{1.1} has at least two positive solutions $y_1$ and $y_2$ such that \begin{gather*} p < \max_{t\in [t_1,t_m]}y_1(t)\quad \textmd{with } \max_{t\in [t_{m-1},t_m]}y_1(t)0$ and $\beta >0$. Suppose that there exist constants $a, b, c$ with $0\frac{b}{K^{n}M^{n}}$ for $(t,y)\in[t_{m-1},t_m]\times [b,\frac{bL^{n-1}}{K^{n}M^{n-1}}]$, \item[(iii)] $f(t,y)<\frac{a}{L^{n}}$ for $(t,y)\in[t_1,t_m]\times[0,a]$, \end{itemize} where $K, L, M$ are as defined in \eqref{2.2}, \eqref{2.3}, \eqref{2.4}, respectively. Then \eqref{1.1} has at least three positive solutions $y_1, y_2$ and $y_{3}$ such that \begin{gather*} \max_{t\in [t_1,t_m]}y_1(t)b,\\ \theta(y_1)=b+\epsilon_1<\frac{bL^{n-1}}{K^{n}M^{n-1}},\\ \varphi(y_1)=b+\epsilon_1<\frac{bL^{n-1}}{K^{n}M^{n-1}}b\}\neq \emptyset. \] If $y\in P(\varphi, \theta, \gamma, b, \frac{bL^{n-1}}{K^{n}M^{n-1}}, c)$, then we have $b\leq y(t)\leq \frac{bL^{n-1}}{K^{n}M^{n-1}}$ for all $t\in [t_{m-1},t_m]$. By using Lemma \ref{L2.4} and the hypothesis (ii), we obtain \begin{align*} \gamma (Ay) &=\int_{t_1}^{t_m}G_{n}(t_{m-1},s)f(s,y(s)) \Delta s \\ &\geq K^{n}M^{n-1}\int_{t_{m-1}}^{t_m}\|G(.,s)\|f(s,y(s)) \Delta s > b. \end{align*} Thus, the condition (i) of Theorem \ref{T2.4} holds. Let $y_2=\frac{a-\epsilon_2}{2}$ such that $0<\epsilon_2<(1-\frac{K^{n}M^{n-1}}{L^{n-1}})a$. Since \begin{gather*} \eta(y_2)=a-\epsilon_2\frac{K^{n}M^{n-1}}{L^{n-1}}a,\\ \varphi(y_2)=a-\epsilon_2\frac{bL^{n-1}}{K^{n}M^{n-1}}$, we obtain \begin{equation}\label{4.1} \int_{t_1}^{t_m}\|G(.,s)\|f(s,y(s)) \Delta s >\frac{b}{K^{n}M^{n-1}}. \end{equation} Then, by Lemma \ref{L2.4} and \eqref{4.1} we find that \begin{align*} \gamma (Ay) &=\int_{t_1}^{t_m}G_{n}(t_{m-1},s)f(s,y(s)) \Delta s \\ &\geq K^{n}M^{n-1}\int_{t_1}^{t_m}\|G(.,s)\|f(s,y(s)) \Delta s >b. \end{align*} Finally, we shall verify that the condition (iv) of Theorem \ref{T2.4} holds. By Lemma \ref{L2.4}, we obtain \begin{align*} \Psi (Ay) &=\int_{t_1}^{t_m}G_{n}(t_{m-1},s)f(s,y(s)) \Delta s \\ &\geq K^{n}M^{n-1}\int_{t_1}^{t_m}\|G(.,s)\|f(s,y(s)) \Delta s. \end{align*} Since $\Psi (Ay)<\frac{K^{n}M^{n-1}}{L^{n-1}}a$, we have \begin{equation}\label{4.2} \int_{t_1}^{t_m}\|G(.,s)\|f(s,y(s)) \Delta s <\frac{a}{L^{n-1}}. \end{equation} Then, we find that \begin{align*} \eta (Ay) &= \int_{t_1}^{t_m}G_{n}(t_m,s)f(s,y(s)) \Delta s \\ &\leq L^{n-1}\int_{t_1}^{t_m}\|G(.,s)\|f(s,y(s)) \Delta s < a. \end{align*} using Lemma \ref{L2.4} and \eqref{4.2}. Since the conditions of Theorem \ref{T2.4} are satisfied, \eqref{1.1} has at least three positive solutions $y_1, y_2, y_{3}\in \overline{P(\varphi,c)}$ such that \begin{gather*} \max_{t\in [t_1,t_m]}y_1(t)