\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{cite} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 57, pp. 1--15.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/57\hfil Stochastic dynamic equations] {Stochastic dynamic equations on \\ general time scales} \author[M. Bohner, O. M. Stanzhytskyi, A. O. Bratochkina \hfil EJDE-2013/57\hfilneg] {Martin Bohner, Olexandr M. Stanzhytskyi, Anastasiia O. Bratochkina} % in alphabetical order \address{Martin Bohner \newline Missouri University of Science and Technology\\ Rolla, MO 65409-0020, USA} \email{bohner@mst.edu} \address{Olexandr M. Stanzhytskyi \newline Taras Shevchenko National University of Kiev\\ Kiev, Ukraina} \email{ostanzh@gmail.com} \address{Anastasiia O. Bratochkina \newline Taras Shevchenko National University of Kiev\\ Kiev, Ukraina} \email{sestri4kina@ukr.net} \thanks{Submitted October 25, 2012. Published February 26, 2013.} \subjclass[2000]{34N05, 60H10, 60H05, 6530, 26E70, 39A12, 39A10} \keywords{Time scale; stochastic integral; stochastic dynamic equation; \hfill\break\indent time scales integral; Markov process} \begin{abstract} In this article, we construct stochastic integral and stochastic differential equations on general time scales. We call these equations stochastic dynamic equations. We provide the existence and uniqueness theorem for solutions of stochastic dynamic equations. The crucial tool of our construction is a result about a connection between the time scales Lebesgue integral and the Lebesgue integral in the common sense. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \newcommand{\abs}[1]{\left|#1\right|} \section{Introduction}\label{sec0} This article is dedicated to the investigation of stochastic dynamic equations on general time scales. Dynamic equations on time scales offer a new direction in the study of dynamic systems which involve differential equations and difference equations as special cases. Their origin is connected with Stefan Hilger's work \cite{hiphd,hi1}. In 1988, Stefan Hilger introduced the definition of a $\Delta$-derivative. The common derivative and the common forward difference are special cases of the $\Delta$-derivative. Various mathematical results of time scales theory are presented in the works of mathematicians such as Agarwal, Bohner, Peterson, and Guseinov (see \cite{ag/bo2,bo/gu1,bo/gu3,bo/gu4,bo/gu7,bo/pe,bo/pe0}). Nowadays the monograph ``Dynamic Equations on Time Scales'' (see \cite{bo/pe}) serves as a comprehensive treatment of results in this area of mathematics. The theory of stochastic dynamic equations on time scales is only in its infancy. We note the paper \cite{lun/lup1}, where the authors investigated dynamic systems whose evolutions depend on a process defined on a time scale. We also emphasize the work of Suman Sanyal \cite{bo/san1,susaphd}, where, in the case of isolated time scales, the stochastic integral was constructed and stochastic dynamic equations were studied. The It\^{o}-type stochastic integral was given for isolated time scales. Stochastic integrals on time scales except the above mentioned ones were not constructed. For this reason, there currently does not exist a concept of stochastic dynamic equations on general time scales. In order to fill this gap, we will build the Lebesgue integral on general time scales. There are two possible ways to construct the Lebesgue measure and the Lebesgue integral on time scales. The first one consists in defining the Lebesgue measure over giving the Lebesgue integral first \cite{ry1}. The second way consists in applying the standard Carath\'{e}odory extension scheme for time scales and the construction of the corresponding Lebesgue-type integral \cite{gu1}. Herewith, the natural question arises about a connection between such integral ($\Delta$-integral) and the Lebesgue integral with respect to Lebesgue measure on the line. In the paper \cite{ca/vi1}, this connection was investigated by using a connection between corresponding measures. In the paper \cite{eck/te1}, the authors observed that such connection could be obtained by using the formula of the change of variable. In our paper, we investigate a connection between corresponding Riemann-type integrals as well. As we obtained the connections between the $\Delta$-Riemann integral and the common Riemann integral, and between the $\Delta$-Lebesgue integral and the common Lebesgue integral, it enabled us to construct the It\^{o}-type stochastic integral for general time scales. In this article, we introduce the construction of the stochastic integral on general time scales. We define the concept of stochastic dynamic equations on general time scales and study the properties of its solutions. The outline of the paper is as follows. In Section \ref{sec1}, the statement of the problem is made and some auxiliaries results are given. Also in Section \ref{sec1}, we investigate the connection between $\Delta$-Riemann integrable functions and Riemann integrable functions as well as the connection between $\Delta$-Lebesgue integrable functions and Lebesgue integrable functions. In Section \ref{sec2}, we construct the stochastic integral and the stochastic differential on general time scales and study its properties. In Section \ref{sec3}, we consider stochastic dynamic equations on general time scales and prove the existence and uniqueness result for solutions of stochastic dynamic equations. The Markov property theorem is given as well. \section{Preliminary definitions and auxiliary results}\label{sec1} To build stochastic dynamic equations on general time scales, in the first place we construct the It\^{o}-type stochastic integral on a general time scale. As noted in Section \ref{sec0}, such an integral was constructed in \cite{susaphd,bo/san1} only for isolated time scales. \subsection{Time scales essentials}\label{sec2.1} \begin{definition} \rm A {\em time scale} $\mathbb{T}$ is an arbitrary nonempty closed subset of the real numbers $\mathbb{R}$, where we assume $\mathbb{T}$ has the topology that it inherits from the real numbers $\mathbb{R}$ with the standard topology. \end{definition} \begin{example} \rm Some ``continuous'' time scales are $\mathbb{T}=\mathbb{R}$ and $\mathbb{T}=[0,1]$, some ``discrete'' time scales are $\mathbb{T}=\mathbb{Z}$, $\mathbb{T}=\mathbb{N}$, and $\mathbb{T}=\mathbb{N}_0$, and some examples of ``isolated'' time scales are $\mathbb{T}=hZ$ for $h>0$ and $\mathbb{T}=q^{\mathbb{N}_0}$ for $q>1$, also called a ``quantum'' time scale. An example of a ``hybrid'' time scale is the finite union of closed subintervals of $\mathbb{R}$. Another example of a time scale is the Cantor set. \end{example} Obviously, a time scale $\mathbb{T}$ may or may not be connected. That is why we introduce the concept of forward and backward jump operators. \begin{definition} \rm We define the {\em forward jump operator} by $$ \sigma(t)=\inf\{s\in\mathbb{T}: s>t\} \quad\text{for all $t\in\mathbb{T}$ such that this set is not empty} $$ and the {\em backward jump operator} by $$ \rho(t)=\sup\{s\in\mathbb{T}: st$, then $t$ is called {\em right-scattered}. If $\sigma(t)=t$, then $t$ is called {\em right-dense}. If $\rho(t)0$, then $\sigma(t)=t+h$, $\rho(t)=t-h$, and $\mu(t)=h$ for all $t\in h\mathbb{Z}$. If $\mathbb{T}=q^{\mathbb{N}_0}$ with $q>1$, then $\sigma(t)=qt$ and $\mu(t)=(q-1)t$ for all $t\in q^{\mathbb{N}_0}$ and $\rho(t)=t/q$ for all $t\in q^{\mathbb{N}_0}\setminus\{1\}$. \end{example} \subsection{Connections among integrable functions}\label{sec2.2} Now we introduce the connection between $\Delta$-Riemann integrable functions and Riemann integrable functions as well as the connection between $\Delta$-Lebesgue integrable functions and Lebesgue integrable functions. These results constitute a key point in our construction of It\^{o}-type stochastic integrals on general time scales. Let $\mathbb{T}$ be a time scale. We choose a couple of finite points $a,b\in\mathbb{T}$ such that $a0$, there exists $P\in\mathcal{P}(0,1)$ such that $$ U(f,P)-L(f,P)<\varepsilon. $$ We check this criterion. First we fix some $\varepsilon>0$. Since the function $\widetilde{f}$ is Riemann integrable, there exists $\widetilde{P}\in\widetilde{\mathcal{P}}(0,1)$ such that the inequality \begin{equation}\label{eq2ab} U(\widetilde{f},\widetilde{P})-L(\widetilde{f},\widetilde{P})<\varepsilon \end{equation} holds. Let $$ \widetilde{P}=\left\{0=t_00$ such that for each $x_1,x_2\in\mathbb{R}$ and all $t\in[0,a]_{\mathbb{T}}$, we have \begin{equation}\label{cond1} \abs{b(x_1,t)-b(x_2,t)}\leq L\abs{x_1-x_2},\quad \abs{B(x_1,t)-B(x_2,t)}\leq L\abs{x_1-x_2}, \end{equation} and \begin{equation}\label{cond2} \abs{b(x,t)}\leq L(1+\abs{x}),\quad \abs{B(x,t)}\leq L(1+\abs{x}). \end{equation} \item[(iii)] The real-valued random variable $X_0$ satisfies the inequality $\mathbb{E}\big(|X_0|^2\big)<\infty$ and is independent of $W(t)$ for $t>0$. \end{itemize} Then there exists with probability $\mathbb{P}=1$ a continuous solution $X$ on $[0,a]_{\mathbb{T}}$ of the stochastic dynamic equation \eqref{eq17} with initial condition \eqref{eq18} such that \begin{equation}\label{eq18a} \mathbb{E}\Big(\int_0^tX^2(\tau)\Delta\tau\Big)<\infty. \end{equation} Moreover, if $X$ and $\tilde{X}$ are both such solutions, then $$ \mathbb{P}\Big(\sup_{t\in[0,a]_{\mathbb{T}}}|X(t)-\tilde{X}(t)|=0\Big)=1. $$ \end{theorem} \begin{proof} First we show uniqueness. Obviously, the set ${[0,a]_{\mathbb{T}}}$ is closed and bounded and thus is compact. Due to compactness of the set ${[0,a]_{\mathbb{T}}}$, for all $\varepsilon>0$, there exists a finite $\varepsilon$-net ${\{t_1,t_2,\ldots,t_n\}}$. Hence we can chose the sequence $\{\varepsilon_j\}$ such that for each $\varepsilon_j=(1/2)^{j-1}$, there exists a finite $\varepsilon_j$-net $S_{\varepsilon_j}=\{t_1^{j},\ldots,t_n^{j}\}$ for $[0,a]_{\mathbb{T}}$. Now let $S_{\varepsilon}=\cup_{j}S_{\varepsilon_{j}}$. In view of the construction, the set $S_{\varepsilon}$ is everywhere dense on $[0,a]_{\mathbb{T}}$. Let the processes $X$ and $\tilde{X}$ be solutions of equation \eqref{eq17} with initial condition \eqref{eq18}. On the basis of the a.s.\ continuity of the solutions and the fact that the set $S_{\varepsilon}$ is everywhere dense, it follows that $$ \mathbb{P}\Big(\sup_{t\in S_{\varepsilon}}|X(t)-\tilde{X}(t)|=0\Big) =\mathbb{P}\Big(\sup_{t\in[0,a]_{\mathbb{T}}}|X(t)-\tilde{X}(t)|=0\Big)=1. $$ Now we show existence. We will employ the method of iteration. For this purpose, we define \begin{gather*} X^{0}(t):=X_0,\\ X^{n}(t):=X_0+\int_0^tb(X^{n-1}(s),s)\Delta s +\int_0^tB(X^{n-1}(s),s)\Delta W(s),\\ \end{gather*} where $n\in\mathbb{N}$ and $t\in[0,a]_{\mathbb{T}}$. Also we introduce $$ \delta^{n}(t):=\mathbb{E}(|X^{n+1}(s)-X^{n}(s)|). $$ Let us show that the inequality \begin{equation}\label{eq12} \delta^{n}(t)\leq M^{n+1}h_{n+1}(t,0) \end{equation} holds for some constant $M$, which depends on $L$, $a$ and $X_0$, and for all $n\in\mathbb{N}$, $t\in[0,a]_{\mathbb{T}}$, where $h_n$ are the generalized monomials \cite[Section 1.6]{bo/pe}. Let us check \eqref{eq12} for $n=0$: \begin{align*} \delta^{0}(t) &= \mathbb{E}\left(\abs{X^{1}(s)-X^{0}(s)}^{2}\right)\\ &= \mathbb{E}\Big(\Big|\int_0^tb(X_0,s)\Delta s +\int_0^tB(X_0,s)\Delta W(s)\Big|^{2}\Big)\\ &\leq 2\mathbb{E}\Big(\Big|\int_0^tL(1+\abs{X_0})\Delta s\Big|^{2}\Big) +2\mathbb{E}\Big(\int_0^tL^{2}(1+\abs{X_0})^{2}\Delta s\Big)\\ &\leq tM=Mh_{1}(t,0), \end{align*} where we set $M=4L^{2}(1+\abs{X_0})^{2}$. This confirms \eqref{eq12} for $n=0$. Suppose now that the inequality \eqref{eq22} holds for some $n-1$. Then \begin{align*} \delta^{n}(t) &= \mathbb{E}\left(\abs{X^{n+1}(s)-X^{n}(s)}^{2}\right)\\ &= \mathbb{E}\Big(\Big|\int_0^t \left(b(X^{n}(s),s)-b(X^{n-1}(s),s)\right)\Delta s\\ &\quad +\int_0^t\left(B(X^{n}(s),s)-B(X^{n-1}(s),s)\right)\Delta W(s) \Big|^{2}\Big)\\ &\leq 2\mathbb{E}\Big(\Big|\int_0^t \left(b(X^{n}(s),s)-b(X^{n-1}(s),s)\right)\Delta s\Big|^{2}\Big)\\ &\quad +2\mathbb{E}\Big(\Big|\int_0^t \left(B(X^{n}(s),s)-B(X^{n-1}(s),s)\right)\Delta W(s)\Big|^{2}\Big)\\ &\leq 2\mathbb{E}\Big(\Big|\int_0^t \left(b(X^{n}(s),s)-b(X^{n-1}(s),s)\right)\Big|^{2}\Delta s\Big)\\ &\quad +2\mathbb{E}\Big(\Big|\int_0^t \left(B(X^{n}(s),s)-B(X^{n-1}(s),s)\right)\Big|^{2}\Delta s\Big)\\ &\leq 2aL^{2}\mathbb{E}\Big(\int_0^t \abs{X^{n}(s)-X^{n-1}(s)}^{2}\Delta s\Big)\\ &\quad +2L^{2}\mathbb{E}\Big(\int_0^t \abs{X^{n}(s)-X^{n-1}(s)}^{2}\Delta s\Big)\\ &\leq 2(a+1)L^{2}\mathbb{E}\Big(\int_0^t \abs{X^{n}(s)-X^{n-1}(s)}\Delta s\Big)\\ &= 2(a+1)L^{2}\int_0^t\delta^{n-1}(\tau)\Delta\tau\\ &\leq 2(a+1)L^{2}\int_0^tM^{n}h^{n}(s,0)\Delta s\\ &\leq M^{n+1}h^{n+1}(t,0), \end{align*} where we choose $M\geq 2(a+1)L^{2}$. This proves the inequality \eqref{eq12}. Using the Lipschitz property of the function $b(X,t)$, we have \begin{align*} &\sup_{t\in[0,a]_{\mathbb{T}}}\abs{X^{n+1}(t)-X^{n}(t)}^{2}\\ &\leq 2aL^{2}\int_0^t\abs{X^{n}(s)-X^{n-1}(s)}^{2}\Delta s\\ &\quad +2\sup_{t\in[0,a]_{\mathbb{T}}}\Big|\int_0^t \left(B(X^{n}(s),s)-B(X^{n-1}(s),s)\right)\Delta W(s)\Big|^{2}. \end{align*} As a result, the martingale inequality \cite{gih/sko1} and the inequality \eqref{eq12} imply \begin{align*} \mathbb{E}\Big(\sup_{t\in[0,a]_{\mathbb{T}}}\abs{X^{n+1}(t)-X^{n}(t)}^{2}\Big) &\leq 2aL^{2}\int_0^t \mathbb{E}\left(\abs{X^{n}(s)-X^{n-1}(s)}^{2}\right)\Delta s\\ &\quad +8L^{2}\int_0^t\mathbb{E}\left(\abs{X^{n}(s)-X^{n-1}(s)}^{2}\right)\Delta s\\ &\leq CM^{n}h^{n}(a,0), \end{align*} where $C=2L^{2}(a+4)$. Therefore, let us apply the Borel--Cantelli lemma \cite{gih/sko1}, since \begin{align*} \mathbb{P}\Big(\sup_{t\in[0,a]_{\mathbb{T}}}\abs{X^{n+1}(t)-X^{n}(t)}>\frac{1}{2^{n}}\Big) &\leq 4^{n}\mathbb{E}\Big(\sup_{t\in[0,a]_{\mathbb{T}}}\abs{X^{n+1}(t)-X^{n}(t)}^{2}\Big)\\ &\leq 4^{n}CM^{n}h^{n}(a,0) \end{align*} and $$ \sum_{n=1}^{\infty}4^{n}CM^{n}h^{n}(a,0)<\infty $$ imply $$ \mathbb{P}\Big(\sup_{t\in[0,a]_{\mathbb{T}}}\abs{X^{n+1}(t)-X^{n}(t)}>\frac{1}{2^{n}}\Big) =0. $$ In view of this, for almost every $\omega$, the series $$ X^{0}+\sum_{j=0}^{n-1}\left(X^{j+1}-X^{j}\right) $$ converges uniformly. The partial sum of this series is an a.s.\ uniform bound of $X^{n}$ and so $X^{n}\to X$ as $n\to\infty$. Thus we have $$ X(t)=X_0+\int_0^tb(X(s),s)\Delta s +\int_0^tB(X(s),s)\Delta W(s) \quad \text{for all } t\in[0,a]_{\mathbb{T}}. $$ The process $X$ is continuous being an a.s.\ uniform bound of a.s.\ continuous processes. Let us show that \eqref{eq18a} is valid. We observe \begin{align*} \mathbb{E}\left(\abs{X^{n+1}(t)}^{2}\right) &\leq C\mathbb{E}\big(|X_0|^2\big) +C\mathbb{E}\Big(\Big|\int_0^tb(X^{n}(s),s)\Delta s\Big|^{2}\Big)\\ &\quad +C\mathbb{E}\Big(\Big|\int_0^tB(X^{n}(s),s)\Delta W(s)\Big|^{2}\Big)\\ &\leq C\left(1+\mathbb{E}\big(|X_0|^2\big)\right) +C\int_0^t\mathbb{E}\left(\abs{X^{n}}^{2}\right)\Delta s, \end{align*} where by $C$ we denote a constant. By induction, we get $$ \mathbb{E}\left(\abs{X^{n+1}(t)}^{2}\right) \leq\left(C+C^{2}h_{1}(t,0)+\ldots+C^{n+2}h_{n+1}(t,0)\right) \left(1+\mathbb{E}\big(|X_0|^2\big)\right). $$ It follows that $$ \mathbb{E}\left(\abs{X^{n+1}(t)}^{2}\right) \leq C\left(1+\mathbb{E}\big(|X_0|^2\big)\right)e_{C}(t,0), $$ where $e_{C}(\cdot,0)$ is a time scales exponential function \cite[Section 2.2]{bo/pe}. As $n\to\infty$, we obtain $$ \mathbb{E}\left(\abs{X(t)}^{2}\right) \leq C\left(1+\mathbb{E}\big(|X_0|^2\big)\right)e_{C}(t,0)\quad \text{for all } t\in[0,a]_{\mathbb{T}}, $$ and thus \begin{align*} \mathbb{E}\Big(\int_0^t\abs{X(\tau)}^{2}\Delta\tau\Big) &= \int_0^t\mathbb{E}\big(|X(\tau)|^2\big)\Delta\tau\\ &\leq \left(1+\mathbb{E}\big(|X_0|^2\big)\right) \int_0^tCe_{C}(\tau,0)\Delta\tau\\ &= \left(1+\mathbb{E}\big(|X_0|^2\big)\right) \left(e_{C}(t,0)-1\right)<\infty, \end{align*} which proves \eqref{eq18a}. \end{proof} Now we turn to the Markov property of solutions of stochastic dynamic equations. Notice that Theorem~\ref{th:1} could be reformulated in an obvious way for the case when instead of ${[0,a]_{\mathbb{T}}}$, we consider ${[u,a]_{\mathbb{T}}\subset \mathbb{T}}$, where ${u>0}$. Thus we consider the equation \begin{equation}\label{eq20} Z(t)=\xi+\int_{u}^tb(Z(s),s)\Delta s +\int_{u}^tB(Z(s),s)\Delta W(s) \end{equation} with initial condition \begin{equation}\label{eq21} Z(u)=\xi \end{equation} This solution $Z$ we denote by $Z_{\xi}(t)$, $t\in[u,a]_{\mathbb{T}}$. For the process $X=\{X(t): t\in[0,a]_{\mathbb{T}}\}$, which is a solution of equation \eqref{eq17}, \eqref{eq18}, we have \begin{align*} X(t) &= X_0+\int_0^tb(X(s),s)\Delta s +\int_0^tB(X(s),s)\Delta W(s)\\ &= X_0+\int_0^{u}b(X(s),s)\Delta s +\int_0^{u}B(X(s),s)\Delta W(s)\\ &\quad+ \int_{u}^tb(X(s),s)\Delta s +\int_{u}^tB(X(s),s)\Delta W(s)\\ &= X(u)+\int_{u}^tb(X(s),s)\Delta s +\int_{u}^tB(X(s),s)\Delta W(s). \end{align*} We will need the following auxiliary results. \begin{lemma}\label{lm2} Let the process $Y=\{Y(s):s\in\mathbb{T}\}$ be progressively measurable on the time scale $\mathbb{T}$ with respect to the filtration $\mathbb{F}_{\mathbb{T}}=(\mathcal{F}_s)_{s\in\mathbb{T}}$ in $\mathcal{F}$. Let the real-valued function $a(s,x)$ be defined on $\mathbb{T}\times\mathbb{R}$ and suppose it is $\mathcal{B}(\mathbb{T})\otimes\mathcal{B}(\mathbb{R})$-measurable. Then the process $U=\{U(t)=a(Y(t),t):t\in\mathbb{T}\}$ is progressively $\mathbb{F}_{\mathbb{T}}$-measurable. \end{lemma} \begin{proof} First we show $\mathcal{B}([0,t])\otimes\mathcal{F}_{t}\mid\mathcal{B}([0,t])\otimes\mathcal{B}(\mathbb{R})$-measurability of the mappings $(s,\omega)\mapsto(s,Y_{s}(\omega))$ for $0\leq s\leq t$ and $\omega\in\Omega$. Let $0\leq u\leq t$ and $B\in\mathcal{B}(\mathbb{R})$. Then \begin{align*} &\left\{(s,\omega)\in[0,t]\otimes\Omega: (s,Y_{s}(\omega))\in[0,u]\otimes B\right\}\\ &= \left\{(s,\omega)\in[0,t\wedge u]\otimes\Omega: Y_{s}(\omega)\in B\right\}\\ &\subset \mathcal{B}([0,t\wedge u])\otimes\mathcal{F}_{t\wedge u} \subset\mathcal{B}([0,t])\otimes\mathcal{F}_{t}. \end{align*} For $(s,x)\in[0,t]\times\Omega$, the mapping $(s,x)\mapsto a(s,x)$ is $\mathcal{B}([0,t])\otimes\mathcal{B}(\mathbb{R})$-measurable as a superposition of measurable mappings. \end{proof} Assume that the functions $b$ and $B$ satisfy conditions \eqref{cond1} and \eqref{cond2}. Let $X^{(0)}(t)=Z$, $t\in\mathbb{T}$, and set for $n\in\mathbb{N}$ \begin{equation}\label{eq22} X^{(n)}(t)=Z+\int_0^tb(s,X^{(n-1)}(s))\Delta s +\int_0^tB(s,X^{(n-1)}(s))\Delta W(s). \end{equation} The fact that such a procedure is well defined is provided by the subsequent auxiliary result. \begin{lemma}\label{lm3} Let the functions $b,B:\mathbb{T}\times\mathbb{R}\to\mathbb{R}$ satisfy conditions \eqref{cond1} and \eqref{cond2}. Suppose that the value $Z$ is $\mathcal{F}_0$-measurable and that $\mathbb{E}\left(Z^{2}\right)<\infty$. Then the process $X^{(n)}=\{X^{(n)}(t): t\in\mathbb{T}\}$ is well defined by expression \eqref{eq22}, and it is also progressively measurable. Thus $\sup_{t\in\mathbb{T}}\mathbb{E}\big(|X^{(n)}(t)|^{2}\big)<\infty$ for all $n\in\mathbb{N}$ and the right-hand side of \eqref{eq22} can be chosen a.s.\ continuous on $\mathbb{T}$. \end{lemma} \begin{proof} The process $Y_{s}(\omega)=Z(\omega)$, where $s\in\mathbb{T}$ and $\omega\in\Omega$, is progressively measurable since $Z\in\mathcal{F}_0|\mathcal{B}(\mathbb{R})$. Due to Lemma \ref{lm2}, the functions $b(s,Z(\omega))$ and $B(s,Z(\omega))$ are progressively measurable. In view of conditions \eqref{cond1} and \eqref{cond2} on the function $B$, we have $$ \sup_{s\in\mathbb{T}}\mathbb{E}\left(B^{2}(s,Z)\right) \leq c(1+\mathbb{E}\left(Z^{2})\right)<\infty. $$ As a result, we have $\{B(s,Z):s\in\mathbb{T}\}\in\mathcal{A}_{T}\cap L^{2}_{T}$, and $\int_0^tB(s,Z)\Delta W(s)$ for $t\in\mathbb{T}$ can be chosen a.s.\ continuous. Taking into account the progressive measurability of $\{b(s,Z):s\in\mathbb{T}\}$ and conditions \eqref{cond1} and \eqref{cond2}, we have $$ \mathbb{E}\Big(\int_0^{a}\abs{b(s,Z)}\Delta s\Big) \leq\left(ac(1+\mathbb{E}\left(Z^2\right)\right)^{1/2}<\infty. $$ In light of Fubini's theorem, the integral $\int_0^{a}b(s,Z)\Delta s$ is finite for almost all $\omega$, and for such $\omega$, the process $\int_0^tb(s,Z)\Delta s$ is continuous for $t\in\mathbb{T}$. This implies that $\int_0^tb(s,Z)\Delta s$ is progressively measurable. In the same way, the a.s.\ continuity and progressive measurability of the right-hand side of \eqref{eq22} are verified provided $\{X^{(n+1)}(t):t\in\mathbb{T}\}$ is progressively measurable and $\sup_{s\in\mathbb{T}}\mathbb{E}\left(|X^{(n+1)}(s)|^{2}\right)<\infty$. Moreover, \begin{align*} \mathbb{E}\Big(\big(X^{(n)}(t)\big)^{2}\Big) &\leq 3\mathbb{E}\left(Z^2\right) +3\mathbb{E}\Big(\Big(\int_0^tb(s,X^{(n+1)}(s))\Delta s\Big)^{2} \Big)\\ &\quad +3\mathbb{E}\Big(\Big(\int_0^tB(s,X^{(n+1)}(s))\Delta W(s)\Big)^{2} \Big)\\ &\leq 3\mathbb{E}\left(Z^2\right) +3aL\int_0^{a}\mathbb{E}\left(1+|X^{(n+1)}(s)|^{2}\right)\Delta s\\ &\quad +3L\int_0^{a}\mathbb{E}\Big(1+|X^{(n+1)}(s)|^{2}\Big)\Delta s\\ &\leq 3\Big(\mathbb{E}\left(Z^2\right) +(a+1)L\Big(1+\sup_{s\in\mathbb{T}}\mathbb{E}\big(|X^{(n+1)}(s)|^{2} \big)\Big)\Big)<\infty. \end{align*} It follows that $\sup_{t\in\mathbb{T}}\mathbb{E}\left(|X^{(n)}(t)|^{2}\right)<\infty$. This completes the proof. \end{proof} \begin{lemma}\label{lm4} Let the functions $b,B:\mathbb{T}\times\mathbb{R}\to\mathbb{R}$ satisfy conditions \eqref{cond1} and \eqref{cond2}. Then for all $t\in[u,a]_{\mathbb{T}}$ and for all $\xi\in\mathcal{F}_{u}|\mathcal{B}(\mathbb{R})$ such that $\mathbb{E}\left(\xi^2\right)<\infty$, the value $Z_{t}(\xi,\omega)$ is measurable with respect to the $\sigma$-algebra $$ \mathcal{A}_{[u,a]_{\mathbb{T}}}=\sigma\{\xi,W(s)+W(u): s\in[u,a]_{\mathbb{T}}\}, $$ which is extended by the class of zero measure events. \end{lemma} \begin{proof} Using the proof of Theorem \ref{th:2}, we obtain that $Z_{t}(\xi,\omega)$ is an a.s.\ bound of the values $Z_{t}^{(n)}(\xi,\omega)$ as $n\to\infty$, where $Z_{t}^{(0)}(\xi,\omega)=\xi$ for $t\in[u,a]_{\mathbb{T}}$. If $n\in\mathbb{N}$, then for $t\in[u,a]_{\mathbb{T}}$, we have $$ Z_{t}^{(n)}(\xi,\omega) =\xi+\int_{u}^tb(s,Z_{s}^{(n-1)}(\xi,\omega))\Delta s +\int_{u}^tB(s,Z_{s}^{(n-1)}(\xi,\omega))\Delta W(s). $$ Obviously, $Z_{t}^{(0)}\in\mathcal{A}_{[u,a]_{\mathbb{T}}}|\mathcal{B}(\mathbb{R})$. By induction and due to Lemma \ref{lm3}, we get the $\mathcal{A}_{[u,a]_{\mathbb{T}}}$-measurability of $Z_{t}^{(n)}(\xi,\omega)$ for all $n\in\mathbb{N}$. \end{proof} \begin{theorem} Assume that all conditions of Theorem \ref{th:2} hold. Then a solution of the stochastic dynamic equation \eqref{eq17} is a Markov process, and its transition probability is given by $$ P(s,Y,t,B)=\mathbb{P}\left(\{X_{s,Y}(t)\in B\}\right). $$ \end{theorem} \begin{proof} It is sufficient to verify that for $0\leq u\leq t\leq a$ and any Borel bounded function $f:\mathbb{R}\to\mathbb{R}$, we have $$ \mathbb{E}\left(f(X(t))|\mathcal{F}_{u}\right)=\mathbb{E}\left(f(X(t))|X(u)\right). $$ Since $X_{t}(\omega)=Z_{t}(X_u(\cdot),\omega)$ a.s., instead of $f(X(t))$, we consider $f(Z_{t}(X(u),\omega))$. Due to Lemma \ref{lm4}, the value $f(Z_{t}(X(u),\omega))$ is bounded and $\mathcal{A}_{[u,a]_{\mathbb{T}}}$-measurable. Therefore, $f(Z_{t}(X(u),\omega))$ can be presented as an a.s.\ bound and as $L^{2}(\Omega,\mathcal{F},P)$-bound of a linear combination of random variables such that $$ \eta=g(X(u))h_{1}(W(s_1)-W(u))\cdots h_{m}(W(s_m)-W(u)), $$ where the functions $g,h_{1},\ldots,h_{m}$ are Borel and bounded, $u\leq s_{1}<\ldots