\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 62, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/62\hfil Global solutions] {Global solutions with $\mathcal{C}^{k}$-estimates for $\bar{\partial}$-equations on $q$-concave intersections} \author[S. Khidr, M.-Y. Barkatou \hfil EJDE-2013/62\hfilneg] {Shaban Khidr, Moulay-Youssef Barkatou} \address{Shaban Khidr \newline Mathematics Department, Faculty of Science, King Abdelaziz University, North Jeddah, Jeddah, Saudi Arabia.\newline Mathematics Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt} \email{skhidr@kau.edu.sa} \address{Moulay-Youssef Barkatou \newline Laboratoire de Math\'ematiques et Applications\\ UMR 7348 CNRS - Universit\'e de Poitiers, T\'el\'eport 2\\ 11, Boulevard Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France} \email{youssef.barkatou@math.univ-poitiers.fr} \thanks{Submitted November 20, 2012. Published February 28, 2013.} \subjclass[2000]{32A26, 32F10, 32W05, 32W10} \keywords{$\bar{\partial}$-equation; $q$-convexity; $q$-concave intersections; $\mathcal{C}^{k}$-estimates} \begin{abstract} We construct a global solution to the $\bar{\partial}$-equation with $\mathcal{C}^k$-estimates on $q$-concave intersections in $\mathbb{C}^n$. Our main tools are integral formulas. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction and statement of main result} This article is a continuation of \cite{bk} and concerns the study of the $\bar{\partial}$-equation on $q$-concave intersection in $\mathbb{C}^n$ from the viewpoint of $\mathcal{C}^{k}$-estimates by means of integral formulas. For this study we first solve the $\bar{\partial}$-equation with $\mathcal{C}^k$-estimates on local $q$-concave wedges in $\mathbb{C}^n$ and then we apply the pushing out method used by Kerzman \cite{k}. We recall the notion of $q$-convexity in the sense of Andreotti-Grauert \cite{bk,he,li}. \begin{definition}\label{defn1.1} \rm A bounded domain $G$ of class $\mathcal{C}^2$ in $\mathbb{C}^n$ is called strictly $q$-convex if there exist an open neighborhood $\mathbb{U}$ of $\partial G$ and a smooth $\mathcal{C}^2$-function $\rho: \mathbb{U}\to\mathbb{R}$ such that $G\cap \mathbb{U} = \{\zeta\in \mathbb{U}: \rho(\zeta)<0\}$ and the Levi form \begin{equation*} L_{\rho}(\zeta)t=\sum \frac {\partial^2\rho(\zeta)}{\partial \zeta_j\partial \bar{\zeta}_{k}} t_j\bar{t}_{k},\quad t=(t_{1},\dots, t_{n})\in\mathbb{C}^n \end{equation*} has at least $q+1$ positive eigenvalues at each point $\zeta\in \mathbb{U}$. A domain $G$ in $\mathbb{C}^n$ is said to be strictly $q$-concave if $G$ is in the form $G= G_{1}\setminus\overline{G}_{2}$, where $G_{2}\Subset G_{1}$ is strictly $q$-convex and $G_{1}\Subset\mathbb{C}^n$ is strictly $(n-1)$-convex or compact. A point in $\partial G_{2}$, as a boundary point of $G$, is said to be strictly $q$-concave. \end{definition} Applications to the tangential Cauchy-Riemann equations require that Definition \ref{defn1.1} be extended to $q$-convex and $q$-concave domains with piecewise-smooth boundaries. \begin{definition} \label{defn1.2}\rm A bounded domain $D$ in $\mathbb{C}^n$ is called a $\mathcal{C}^{d}$ $q$-convex intersection of order $N$, $d\geq 3$, if there exists a bounded neighborhood $U$ of $\overline{D}$ and a finite number of real-valued $\mathcal{C}^{d}$ functions $\rho{_1}(z), \dots, \rho{_N}(z)$, $1\leq N\leq n-1$, defined on $U$ such that $D=\{z\in U: \rho_1(z)<0,\dots, \rho_N(z)<0\}$ and the following conditions are fulfilled: \begin{itemize} \item [(H1)] For $1\le i_10$, then $g\in \mathcal{C}^{k-\epsilon}_{n,s-1}(\overline{D})$ and there exists a constant $C_{k, \epsilon}>0$ such that \begin{equation}\label{e1.1} \| g \| _{k-\epsilon, D} \leq C_{k, \epsilon}\|f\|_{k,D}. \end{equation} \end{theorem} We note that for $q=n-1$ (i.e., the pseudoconvex case) this theorem was proved by Michel and Perotti \cite{m-p} and for arbitrary $q$, but smooth $\partial D$, sharp $\mathcal{C}^k$ estimates were obtained by Lieb and Range \cite{r-l}. The paper is organized in the following way: In section 1 we introduce the definition of a $q$-concave intersection in $\mathbb{C}^n$ and state our main result (Theorem \ref{thm1.3}). In section 2 we recall the generalized Koppelman lemma which plays a key role in the construction of the solution operators. Section 3 is devoted to the construction of the local solution operators with $\mathcal{C}^{k}$-estimates for $\bar{\partial}$. The main theorem is proved in section 4. The proof is based on pushing out the method of Kerzman \cite{k}. \section{Generalized Koppelman Lemma} In this section we recall a formal identity (the generalized Koppelman lemma) which is essential for our purposes. The exterior calculus we use here was developed by Harvey and Polking in \cite{ha-po} and Boggess \cite{bo}. Let $D$ be an open set in $\mathbb{C}^n\times\mathbb{C}^n$. Let $G:D\to \mathbb{C}^n$ be a $\mathcal{C}^{1}$ map and write $G(\zeta, z)=(g_{1}(\zeta, z), \dots, g_{n}(\zeta, z))$. We define \begin{gather*} \langle G(\zeta, z), \zeta-z\rangle = \sum_{j=1}^ng_j(\zeta, z)(\zeta_j-z_j)\\ \langle G(\zeta, z), d(\zeta-z)\rangle = \sum_{j=1}^ng_j(\zeta, z)d(\zeta_j-z_j)\\ \langle \bar{\partial}_{\zeta, z}G(\zeta, z), d(\zeta-z)\rangle = \sum_{j=1}^n\bar{\partial}_{\zeta, z}g_j(\zeta, z)d(\zeta_j-z_j), \end{gather*} where $\bar{\partial}_{\zeta, z}=\bar{\partial}_{\zeta}+\bar{\partial}_{z}$ (in the sense of distributions). The Cauchy-Fantappi\`{e} form $\omega^{G}$ is defined by \begin{equation*} \omega^{G}=\frac{\langle G(\zeta, z),\, d(\zeta-z)\rangle}{\langle G(\zeta, z),\, (\zeta-z)\rangle} \end{equation*} on the set where $\langle G(\zeta, z),\, (\zeta-z)\rangle\neq0$. Given $m$ such maps, $G^{j}$, $1\leq j\leq m$, the generalized Cauchy-Fantappi\`{e} kernel is given by \begin{align*} &\Omega(G^{1}, \dots, G^{m})\\ &=(2\pi i)^{-n}\omega^{G^{1}}\wedge \dots\wedge \omega^{G^{m}} \wedge\sum_{\alpha_{1}+\dots+\alpha_{m}=n-m} (\bar{\partial}_{\zeta, z}\omega^{G^{1}})^{\alpha_{1}}\wedge \dots\wedge (\bar{\partial}_{\zeta, z}\omega^{G^{m}})^{\alpha_{m}} \end{align*} on the set where all the denominators are nonzero. \begin{lemma}[generalized Koppelman lemma] \label{lem2.1} \begin{equation*} \bar{\partial}_{\zeta, z}\Omega(G^{1}, \dots, G^{m}) =\sum_{j=1}^{m}(-1)^{j}\Omega(G^{1}, \dots, \widehat{G}^{j}, \dots,G^{m}) \end{equation*} on the set where the denominators are nonzero. \end{lemma} If $\beta(\zeta, z)=(\overline{\zeta_{1}-z_{1}}, \dots, \overline{\zeta_{n}-z_{n}})$, then $\Omega(\beta)=B(\zeta, z)$ is the usual Bochner-Martinelli-Koppelman kernel. Denote by $B_{r, s}(\zeta, z)$ the component of $B(\zeta, z)$ of type $(r, s)$ in $z$ and of type $(n-r, n-s-1)$ in $\zeta$. Then one has the following formula which is known as the Bochner-Martinelli-Koppelman formula (see e.g., \cite[Theorem 1.7]{la-le}). \begin{theorem} \label{thm2.2} Let $D\Subset\mathbb{C}^n$ be a bounded domain with $\mathcal{C}^1$-boundary, and let $f$ be a continuous $(r, s)$-form on $\overline{D}$ such that $\bar{\partial}f$, in the sense of distributions, is also continuous on $\overline{D}$, $0\leq r, s\leq n$. Then for any $z\in D$ we have \begin{align*} (-1)^{r+s}f(z)&=\int_{\zeta\in\partial D}f(\zeta)\wedge B_{r, s}(\zeta, z) -\int_{\zeta\in D}\bar{\partial}f(\zeta)\wedge B_{r, s}(\zeta, z)\\ &\quad + \bar{\partial}_{z}\int_{\zeta\in D}f(\zeta)\wedge B_{r, s-1}(\zeta, z). \end{align*} \end{theorem} \section{Solution operators on local $q$-concave wedges} In this section, we construct local solution operators $T_{s}$ on the complement of a $q$-convex intersection. The plan of the construction is similar to that of Theorem 3.1 in \cite{bk}. The main differences are due to the fact that in this case the function $\rho_{m+1}$ has convexity properties opposite to those of the functions $\rho_{1}, \dots, \rho_{m}$. Before we go further, we fix the following notation: \begin{itemize} \item Let $J=(j_1,\dots,j_{\ell})$, $1\le \ell<\infty$, be an ordered collection of elements in $\mathbb{N}$. Then we write $|J|=\ell$, $J(\hat \nu)= (j_1,\dots,j_{\nu-1},j_{\nu+1},\dots,j_{\ell})$ for $\nu=1,\dots,\ell$, and $j\in J$ if $j\in \{j_1,\dots,j_{\ell}\}$. \item Let $N\ge1$ be an integer. Then we denote by $P(N)$ the set of all ordered collections $K=(k_1, \dots,k_{\ell})$, $\ell\ge 1$, of integers with $1\le k_1,\dots,k_{\ell}\le N$. We call $P'(N)$ the subset of all $K=(k_1, \dots,k_{\ell})$ with $k_1<\dots0$ such that on the set $\mathcal{W}=(U\setminus \overline{D})\cap\{z\in \mathbb{C}^n: |z-\xi|0$, then there exists a constant $C_{k, \epsilon}>0$ (independent of $f$) satisfying the estimates \begin{equation}\label{e3.1} \| T_{s}f\| _{k-\epsilon, \mathcal{W}} \leq C_{k, \epsilon} \|f\|_{k, \mathcal{W}}. \end{equation} \end{theorem} For $N=1$ (i.e., the case of local $q$-concave domains) this theorem was proved by Laurent-Thi\'ebaut and Leiterer \cite{la-le1}. \begin{proof} Let $D=\{z\in U| \rho_1(z)<0,\dots, \rho_N(z)<0\}\subset U$ be a $q$-convex intersection. We suppose for example that $E=\{\xi\in U|\rho_{1}(\xi)=\dots= \rho_{m}(\xi)=0\}$. If we set $\rho_{m+1}(\zeta)= |\zeta-\xi|^2 - R^2$ for $R>0$, it follows from \cite[Lemma 2.3]{la-le2} that $(E, (U\setminus \overline{D})\cap\{z\in \mathbb{C}^n: |z-\xi|0$ such that for all $R\le R_{1}$ there exists $\beta>0$ satisfying \begin{equation*} \operatorname{Re}\Phi_{m+1}(\zeta, z)\geq\rho_{m+1}(\zeta) -\rho_{m+1}(z)+\beta|\zeta-z|^2 \end{equation*} for all $(z, \zeta)\in \mathbb{C}^n\times U$ with $|z_{0}-\zeta|\leq R$ and $|z_{0}-z|\leq R$. We define \[ \mathcal{W}=\{z\in U| \rho_j>0 \text{ for } j=1, \dots, m\}\cap \{z\in \mathbb{C}^n: |z-\xi|0$, then $\tilde{f}\in \mathcal{C}^{k-\epsilon}_{n,s}(\widetilde{D})$, $u\in\mathcal{C}^{k-\epsilon}_{n,s-1}(\overline{D})$ and we have the estimates: \begin{gather} \label{e4.1} \|\tilde{f}\| _{k-\epsilon, \widetilde{D}} \leq C_{k, \epsilon} \| f\|_{k,D},\\ \| u \| _{k-\epsilon, D} \leq C_{k, \epsilon} \| f\|_{k,D}.\label{e4.2} \end{gather} \end{itemize} \end{lemma} \begin{proof} As $\partial D$ is compact, there are finitely many open neighborhoods $(B_{{\xi_j}})_{j=1, \dots, K}$ of $\xi_j$ covering $\partial D$. Let $(\theta_j)_{j=1, \dots, K}$ be a partition of unity such that $\theta_j\in\mathcal{C}_{0}^{\infty}(B'_{\xi_j})$, $B'_{\xi_j}\Subset B_{\xi_j}$, $0\leq\theta_j\leq1$, and $\sum_{j=1}^{K}\theta_j=1$ on a neighborhood $V_{0}$ of $\partial D$. We choose $V_{1}\Subset V_{0}\Subset U$. We enlarge $D$ to $\widetilde{D}$ in $K$ step as follows. For $\delta>0$, sufficiently small to be chosen fixed later on, and for $j=1, \dots, K$ we define \begin{equation*} D_j=\Big\{z\in D\cup V_{1}:\rho_{1}(z)>-\delta\sum_{k=1}^{j} \theta_{k}(z), \dots, \rho_{N}(z)>-\delta\sum_{k=1}^{j}\theta_{k}(z)\Big\}. \end{equation*} We set $D_{0}=D$ and $\widetilde{D}=D_{K}$. Clearly \begin{gather*} D\subseteq D_j\subseteq D_{j+1}\subseteq\dots\subseteq\widetilde{D}=D_{K}. \end{gather*} Reducing $\delta$ if necessary, we see that all $D_j$, $j\in\{=1, \dots,K\}$ (in particular $\widetilde{D}$) are $\mathcal{C}^{d}$ $q$-concave intersections. \textbf{Claim:} For any $f_j\in \mathcal{C}^{0}_{n, s}(D_j)$ with $\bar{\partial}f_j=0$, $j\in\{1, \dots, K-1\}$, there exist two forms $f_{j+1}\in \mathcal{C}^{0}_{n, s}(D_{j+1})$ and $u_j\in \mathcal{C}^{0}_{n, s-1}(D_j)$ such that (i), (ii) and (iii) of Lemma \ref{lem4.1} hold when $f$, $\tilde{f}$, $u$, $D$ and $\widetilde{D}$ are replaced by $f_j$, $f_{j+1}$, $u_j$, $D_j$ and $D_{j+1}$ respectively. \begin{proof} (see \cite[p. 318]{k}): Fix $\delta>0$ so small that we can apply Theorem \ref{thm3.1}, we obtain a solution $g_j$ of $\bar{\partial}g=f_j$ defined in $D_j\cap B_{\xi_{j+1}}$ and satisfies the estimates of the local theorem. Let $\eta_{j+1}\in C_{0}^{\infty}(B_{\xi_{j+1}})$, $\eta_{j+1}=1$ in a neighborhood of the support of $\theta_{j+1}$. We set \begin{equation*} f_{j+1}= \begin{cases} f_j-\bar{\partial}u_j & \text{in }D_j, \\ 0 & \text{in }D_{j+1}\setminus D_j, \end{cases} \qquad u_j= \begin{cases} g_j\eta_{j+1} & \text{in }D_j\cap B_{\xi_{j+1}}, \\ 0 & \text{in } D_j\backslash B_{\xi_{j+1}}. \end{cases} \end{equation*} The estimates for $f_{j+1}$ and $u_j$ follow from those of the local theorem. The claim is proved. \end{proof} Using the above claim, we can now complete the proof of Lemma \ref{lem4.1}. Applying the claim $K$-times, starting with $D_{0}=D$, $f_{0}=f$ and ending with $D_{K}=\widetilde{D}$, $f_{K}=\tilde{f}$, yield $\tilde{f}=f-\bar{\partial}u$ in $D$, where we set $u=\sum_{j=0}^{K-1}u_j$. Collecting the estimates for $f_{j+1}$ and $u_j$ in each step, we obtain \eqref{e4.1} and \eqref{e4.2}. Clearly $\tilde{f}$ and $u$ are linear in $f$. \end{proof} \begin{lemma} \label{lem4.2} There exists a strictly $q$-concave domain with smooth boundary $D'\Subset\mathbb{C}^n$ satisfying \begin{equation*} D\Subset D'\Subset \widetilde{D}. \end{equation*} \end{lemma} \begin{proof} Let $V_{2}$ be a neighborhood of $D$ such that $V_{2}\Subset V_{1}$ and for $\tau>0$ we define $D_{\tau}:=\{z\in D\cup V_{2}|\, \rho_{1}(z)>\tau, \dots, \rho_{N}(z)>\tau\}$. Recall that $D$ is defined by the $\mathcal{C}^{d}$-functions $\rho_{1}, \dots, \rho_{N}$. For each $\beta>0$, let $\chi_{\beta}$ be a fixed non-negative real $C^{\infty}$ function on $\mathbb{R}$ such that, for all $x\in \mathbb{R}$, $\chi_{\beta}(x)=\chi_{\beta}(-x)$, $|x|\leq\chi_{\beta}(x)\leq|x|+\beta$, $|\chi'_{\beta}|\leq1$, $\chi''_{\beta}\geq0$ and $\chi_{\beta}(x)=|x|$ if $|x|\geq\frac{\beta}{2}$. Moreover, we assume that $\chi'_{\beta}(x)>0$ if $x>0$ and $\chi'_{\beta}(x)<0$ if $x<0$. We define as in \cite[Definition 4.12]{he-le} $\max_{\beta}(t,s)=\frac{t+s}{2}+ \chi_{\beta}(\frac{t-s}{2}), t, s\in \mathbb{R}$, and $ \varphi_{1}=\rho_{1}$, $\varphi_{2}=\max_{\beta}(\rho_{1}, \rho_{2})$, \dots, $\varphi_{N}=\max_{\beta}(\varphi_{N-1}, \rho_{N})$. Then it is easy to compute that the Levi form of $\varphi_{N}$ has at least $q+1$ negative eigenvalues at each point in $U$. For $\tau>0$ we can choose positive numbers $\beta=\frac{\tau}{2(N+1)}$, $\gamma=\frac{\tau}{2}$ small enough and $V_{3}\Subset V_{2}$ such that \begin{equation*} D\Subset D^{\ast} =\{z\in D\cup V_{3}|\,\varphi_{N}(z)-\gamma>0\}\Subset D_{\tau}. \end{equation*} then $D^{\ast}$ is a strictly $q$-concave domain. According to \cite[Theorem 6.6]{he-le}, there exists a strictly $q$-concave domain $D'$ with smooth boundary such that $D \Subset D'\Subset D^{\ast}$. Choose $\tau$ small enough to get $D_{\tau}\Subset\widetilde{D}$. \end{proof} Let $f\in \mathcal{C}^{k}_{n,s}(\overline D)$ be a $\overline\partial$-closed form. Let $ \widetilde{D}$, $\tilde f$ and $u$ as in Lemma 4.1. Let $D'$ be given as in Lemma \ref{lem4.2} and set $f_{1}= \tilde f|_{D'}.$ It follows from \cite[Theorem 2]{r-l} that there exists $\eta\in \mathcal{C}^{k-\epsilon}_{n,s-1}(\overline{D})$ such that $\bar\partial \eta = f_{1}$ on $D$ and $\|\eta\|_{k-\epsilon, \overline{D}}\le C_{k, \epsilon}\|f_{1}\|_{k-\epsilon, D'}$. Then we have $f=\bar \partial (u+\eta)$. The form $g= u+\eta$ is a global solution that satisfies the $\mathcal{C}^k$-estimates \eqref{e1.1} of Theorem \ref{thm1.3}. \begin{thebibliography}{00} \bibitem {a-h} R. A. Airapetjan, G. M. Henkin; \emph{Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of $CR$-functions}, Russ. Math. Surv., {\bf 39} (1984) 41--118. \bibitem {b} M. Y. Barkatou; \emph{$\mathcal{C}^{k}$ estimates for $\bar{\partial}$ on $q$-convex wedges}, Math. Z., {\bf 239} (2002) 335--352. \bibitem {bc} M. Y. Barkatou, C. Laurent-Thi\'ebaut; \emph{Solutions Fondamentales et Estimations optimales pour l'op\'erateur de Cauchy–-Riemann Tangentiel}, Michigan Math. J., {\bf 54} (2006) 545--586. \bibitem {bk} M. Y. Barkatou, S. Khidr; \emph{Global solution with $\mathcal{C}^{k}$-estimates for $\bar{\partial}$-equation on $q$-convex intersections}, Math. Nachr., {\bf 284} (2011) 2024--2031. \bibitem {bo} A. Boggess; \emph{CR Manifolds and the Tangentiel Cauchy-Riemann Complex}, CRC Press, Boca Raton, Florida, 1991. \bibitem {gh} H. Grauert; \emph{Kantenkohomologie}, compositio Math., {\bf 44} (1981) 79--101. \bibitem {ha-po} R. Harvey, J. Polking; \emph{Fundamental solutions in complex analysis, Parts I and II}, Duke Math. J., {\bf46} (1979) 253--300 and 301--340. \bibitem {he} G. M. Henkin; \emph{The method of integral representations in complex Analysis}, in Encyclopedia of Mathematical Science, Several Complex Variables I, {\bf7}, Springer-Verlag (1990) 19--116. \bibitem {he-le} G. M. Henkin, J. Leiterer; \emph{Andreoutti-Grauert Theory by Integral Formulas}, Progress in Math., {\bf 74}, Birkh\"auser-Verlag, Boston, 1988. \bibitem{he1} G. M. Henkin; \emph{Solutions des \'{e}quations de Cauchy-Riemann tangentielles sur des vari\'{e}t\'{e}rs de Cauchy-Riemann $q$-convexes}, C.R. Acad. Sci. Paris, {\bf292} (1981) 27--30. \bibitem{k} N. Kerzman; \emph{H\"older and $L^p$-estimates for solutions of $\bar{\partial} u=f$ in strongly pseudo-convex domains}, Commun. Pure Appl. Math., {\bf 24} (1971) 301--380. \bibitem{sk} S. Khidr; \emph{Solving $\bar{\partial}$ with $L^p$-estimates on $q$-convex intersections in complex manifol}d, Complex Var. Elliptic Equ., {\bf 53} (2008) 253--263. \bibitem{la-le} C. Laurent-Thi\'ebaut; \emph{Holomorphic Function Theory in Several Variables}, Springer-Verlag, London Ltd., 2011. \bibitem{la-le1} C. Laurent-Thi\'ebaut, J. Leiterer; \emph{The Andreotti-Vesentini separation theorem with $C^k$ estimates and extension of $CR$-forms}, Math. Notes, {\bf38} (1993) 416--439. \bibitem{la-le2} C. Laurent-Thi\'ebaut, J. Leiterer; \emph{Uniform estimates for the Cauchy-Riemann Equation on q-concave wedges}, Ast\'erisque, {\bf 217} (1993) 151--182. \bibitem{la-le3} C. Laurent-Thi\'ebaut, J. Leiterer; \emph{On the Cauchy-Riemann Equation in Tangential $q$-Concave Wedges}, Math. Nachr., {\bf176} (1995) 159--178. \bibitem{li} I. Lieb; \emph{Beschr\"ankte L\"osungen der Cauchy-Riemannschen Differentialgleichungen auf $q$-konkaven Gebieten}, Manuscr. Math., {\bf 26} (1979) 387--410. \bibitem{r-l} I. Lieb, R. M. Range; \emph{L\"osungsoperatoren f\"ur den Cauchy-Riemann- Komplex mit $C^{k}$-Absch\"atzungen}, Math. Ann., {\bf 253} (1980) 145--165. \bibitem{m} J. Michel; \emph{Randregularit\"at des $\bar{\partial}$-problems f\"ur den st\"uckweise streng pseudokonvexe Gebiete in $\mathbb{C}^n$}, Math. Ann., {\bf 280} (1988) 45--68. \bibitem{m-p} J. Michel, A. Perotti; \emph{$C^{k}$-regularity for the $\bar{\partial}$-equation on strictly pseudoconvex domains with piecewise smooth boundaries}, Math. Z., {\bf 203} (1990) 415--428. \bibitem{p1} K. Peters; \emph{Uniform estimates for $\bar{\partial}$ on the intersection of two strictly pseudoconvex $C^2$-domains without transversality condition}, Math. Ann., {\bf 284} (1989) 409--421. \bibitem{r-s} R. M. Range, Y. T. Siu; \emph{Uniform estimates for the $\bar{\partial}$-equation on domains with piecewise smooth strictly pseudoconvex boundaries}, Math. Ann., {\bf 206} (1973) 325--354. \bibitem{r} H. Ricard; \emph{Estimations $\mathcal{C}^{k}$ pour l'op\'{e}rator de Cauchy-Riemann sur des domaines \`{a} coins $q$-convexes et $q$-concaves}, Math. Z., {\bf 244} (2003) 349--398. \end{thebibliography} \end{document}