\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 67, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/67\hfil Lyapunov-type inequalities] {Lyapunov-type inequalities for $n$-dimensional quasilinear systems} \author[M. F. Akta\c{s} \hfil EJDE-2013/67\hfilneg] {Mustafa Fahri Akta\c{s}} % in alphabetical order \address{Mustafa Fahri Akta\c{s} \newline Gazi University\\ Faculty of Sciences\\ Department of Mathematics\\ 06500 Teknikokullar, Ankara, Turkey} \email{mfahri@gazi.edu.tr} \thanks{Submitted January 4, 2013. Published March 5, 2013.} \subjclass[2000]{34A40} \keywords{Lyapunov-type inequality; quasilinear system} \begin{abstract} In this article, inspired by the paper of Yang et al \cite{YangKimLo2}, we establish new versions of Lyapunov-type inequalities for a certain class of Dirichlet quasilinear systems. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article, we prove generalized Lyapunov-type inequalities for a special case of the system \begin{equation} -\big(r_k(x) \phi _{p_k}(u_k')\big) '=f_k(x)\phi _{\alpha _{kk}}(u_k) \prod_{ i=1,\, i\neq k}^n| u_{i}|^{\alpha _{ki}}, \label{1} \end{equation} where $n\in\mathbb{N}$, $\phi _{\gamma }(u) =| u| ^{\gamma -2}u$, $\gamma >1$, $r_k$, $f_k\in C([ a,b] ,\mathbb{R}) $, $r_k(x)>0$ for $k=1,2,\dots ,n$ and $x\in \mathbb{R}$. Let $(u_1(x),u_2(x)$, $\dots ,u_{n}(x))$ be a real nontrivial solution of the system \eqref{1} such that \begin{equation} u_k(a) = u_k(b) =0 \quad k=1,2,\dots ,n,\label{2} \end{equation} for $a,b\in\mathbb{R}$ with $a0$. If $f_k\in C([ a,b] ,\mathbb{R}) $ for $k=1,2,\dots ,n$ and $(u_1(x),u_2(x) ,\dots $, $u_{n}(x) )$ is a nontrivial solution on $[ a,b] $ for system \eqref{1}, then the inequality \begin{equation} 1<\prod_{k=1}^n\Big(F_k\int_{a}^{b}f_k^{+}(s)ds\Big)^{e_k} \label{103} \end{equation} holds, where $f_k^{+}(x)=\max\{ 0,f_k(x)\} $\ for $k=1,2,\dots n$. \end{theorem} Our motivation comes from the recent papers of \c{C}akmak and Tiryaki \cite{CakmakTiryaki1, Cakmak-1}, Sim and Lee \cite{Sim}, Tang and He \cite{Tang}, and Yang et al. \cite{YangKimLo2}. In this article, we state and prove new generalized Lyapunov-type inequalities for system \eqref{1} under the condition $\alpha _{ki}=\alpha _{ik}$ for $k,i=1,2,\dots ,n$. Since our attention is restricted to the Lyapunov-type inequalities for the quasilinear systems of differential equations, we shall assume the existence of the nontrivial solution of the system \eqref{1}. For readers interested in the existence of solutions of these type systems, we refer to the paper by Afrouzi and Heidarkhani \cite{Afrouzi}. Now, we present some inequalities on $D_k(x) $, $E_k( x) $, and $F_k$ for $k=1,2,\dots ,n$ which are useful in the comparison of our main results. We know that since the function $h(x)=x^{p_k-1}$ is concave for $x>0$ and $12$ for $k=1,2,\dots ,n$, then the function $h(x)=x^{p_k-1}$ is convex for $x>0$. Thus, the inequality \eqref{e16a} is reversed; i.e., \begin{equation} D_k(x) \leq E_k(x) \label{18c} \end{equation} for $p_k>2$, $k=1,2,\dots ,n$. In addition, since the function $l(x)=x^{1-p_k}$ is convex for $x>0$ and $p_k>1$, Jensen's inequality $l(\frac{\omega +v}{2}) \leq \frac{1}{2}[ l(\omega )+l(v)] $ with $\omega =\xi _k(x)$ and $v=\eta _k(x)$ implies \begin{equation} D_k(x) \leq F_k \label{30} \end{equation} for $k=1,2,\dots ,n$. By using inequality \begin{equation} 4AB\leq (A+B) ^{2} \label{9a} \end{equation} with $A=\xi _k(x) >0$ and $B=\eta _k(x) >0$ for $k=1,2,\dots ,n$ in $E_k(x) $, we obtain the inequality \begin{equation} E_k(x) \leq F_k \label{30a} \end{equation} for $k=1,2,\dots ,n$. \section{Main results} One of the main results of this paper is the following theorem. \begin{theorem} \label{thm2.1} Assume that there exist nontrivial solutions $(e_1,e_2,\dots ,e_{n}) $ of the linear homogeneous system \begin{equation} e_k\Big(1-\frac{\alpha _{kk}}{p_k}\Big) -\sum_{\substack{ i=1,\, i\neq k}}^n \frac{\alpha _{ki}}{p_k}e_{i}=0, \label{121} \end{equation} where $e_k\geq 0$ for $k=1,2,\dots ,n$ and $\sum_{k=1}^ne_k^{2}>0$. If $f_k\in C([ a,b] ,\mathbb{R}) $ for $k=1,2,\dots ,n$ and $(u_1(x),u_2(x) ,\dots $, $u_{n}(x) )$ is a nontrivial solution on $[ a,b] $ for system \eqref{1} with $\alpha_{ki}=\alpha _{ik}$ for $k,i=1,2,\dots ,n$, then the inequality \begin{equation} 1<\prod_{k=1}^n\Big[ \int_{a}^{b}f_k^{+}(s)\prod _{i=1}^nD_{i}^{\alpha _{ki}/p_{i}}(s) ds\Big] ^{e_k} \label{20a} \end{equation} holds, where $f_k^{+}(x)=\max \{ 0,f_k(x)\} $ for $k=1,2,\dots n$. \end{theorem} \begin{proof} Let $u_k(a)=0=u_k(b)$ for $k=1,2,\dots ,n$ where $n\in \mathbb{N}, $ $a,b\in\mathbb{R}$ with $a0$ for $k=1,2,\dots ,n$. Thus, we have \begin{equation} \prod_{k=1}^nA_k^{\theta _k}<\prod_{k=1}^n\Big[ \int_{a}^{b}f_k^{+}(s)\prod_{i=1}^nD_{i}^{\alpha _{ki}/p_{i}}(s) ds\Big] ^{e_k}, \label{101} \end{equation} where $\theta _k=e_k(1-\frac{\alpha _{kk}}{p_k}) -\sum_{i=1,\, i\neq k}^n\frac{\alpha _{ki}}{p_k} e_{i} $ for $k=1,2,\dots ,n$. By assumption, system \eqref{121} has nonzero solutions $(e_1,e_2,\dots ,e_{n}) $ such that $\theta _k=0$ for $k=1,2,\dots ,n$, where $e_k\geq 0$ for $k=1,2,\dots ,n$ and at least one $e_{j}>0 $ for $j=\left\{ 1,2,\dots ,n\right\} $. Choosing one of the solutions $(e_1,e_2,\dots e_{n}) $, we obtain from \eqref{101} the inequality \eqref{20a}. This completes the proof. \end{proof} Another main result of this paper is the following theorem. \begin{theorem} \label{thm2.2} Assume that there exist nontrivial solutions $(e_1,e_2,\dots ,e_{n}) $ of system \eqref{121}. If $f_k\in C([ a,b] ,\mathbb{R}) $ for $k=1,2,\dots ,n$ and $(u_1(x) ,u_2(x) ,\dots ,u_{n}(x) ) $ is a nontrivial solution on $[ a,b] $ for the system \eqref{1} with $\alpha _{ki}=\alpha _{ik}$ for $k,i=1,2,\dots ,n$, then the inequality \begin{equation} 1<\prod_{k=1}^n\Big[ \int_{a}^{b}f_k^{+}(s)\prod _{i=1}^nE_{i}^{\alpha _{ki}/p_{i}}(s) ds\Big] ^{e_k} \label{e3} \end{equation} holds, where $f_k^{+}(x)=\max \{ 0,f_k(x)\} $ for $k=1,2,\dots n$. \end{theorem} \begin{proof} Let $u_k(a)=0=u_k(b)$ for $k=1,2,\dots ,n$ where $n\in \mathbb{N}, $ $a,b\in\mathbb{R}$ with $a2$ for $k=1,2,\dots ,n$, then inequality \eqref{20a} is better than \eqref{e3} in the sense that \eqref{e3} follows from \eqref{20a}, but not conversely. \end{remark} By using the inequality \eqref{30} in Theorem \ref{thm2.1} or \eqref{30a} in Theorem \ref{thm2.2}, we obtain the following result. \begin{corollary} \label{coro2.1} Assume that there exist nontrivial solutions $(e_1,e_2,\dots ,e_{n}) $ of system \eqref{121}. If $f_k\in C([ a,b] ,\mathbb{R}) $ for $k=1,2,\dots ,n$ and $(u_1(x) ,u_2(x) ,\dots ,u_{n}(x) ) $ is a nontrivial solution on $[ a,b] $ for system \eqref{1} with $\alpha _{ki}=\alpha _{ik}$ for $k,i=1,2,\dots ,n$, then \begin{equation} 1<\prod_{k=1}^n\Big(F_k\int_{a}^{b}f_k^{+}(s)ds\Big)^{e_k}\,. \label{e21} \end{equation} \end{corollary} \begin{remark} \label{rmk2.2} \rm Note that Theorem \ref{thm2.1} or \ref{thm2.2} yields a new Lyapunov-type inequality which is not covered by Theorem \ref{thmD} given by Yang et al \cite{YangKimLo2}. It is easy to see that Corollary \ref{coro2.1} coincides with Theorem \ref{thmD} under the condition $\alpha _{ki}=\alpha _{ik}$ for $k,i=1,2,\dots ,n$. \end{remark} \begin{remark} \label{rmk2.3}\rm Since $| f(x)|\geq f^{+}(x)$, the functions $f_k^{+}(x)$ for in the above results can also be replaced by $| f_k(x)| $ for $k=1,2,\dots ,n$. \end{remark} Now, we give an application of the obtained Lyapunov-type inequalities for the eigenvalue problem \begin{equation} \begin{gathered} -(r_k(x) \phi _{p_k}(u_k')) '=\lambda _kh(x)\phi _{\alpha _{kk}}(u_k) \prod_{i=1,\, i\neq k}^n| u_{i}| ^{\alpha _{ki}}\\ u_k(a) =u_k(b)=0 , \end{gathered}\label{51} \end{equation} where $h(x)>0$. Thus, if there exist nontrivial solutions $(e_1,e_2,\dots ,e_{n}) $ of linear homogeneous system \eqref{121}, then we have \begin{equation*} \Big\{ \Big(\prod_{k=1}^{n-1}\lambda _k^{e_k}\Big) \prod_{k=1}^n\Big[ \int_{a}^{b}h(s)\prod _{i=1}^nD_{i}^{\alpha _{ki}/p_{i}}(s) ds\Big] ^{e_k}\Big\} ^{-\frac{1}{e_{n}}}<\lambda _{n} \end{equation*} or \begin{equation*} \Big\{ \Big(\prod_{k=1}^{n-1}\lambda _k^{e_k}\Big) \prod_{k=1}^n\Big[ \int_{a}^{b}h(s)\prod _{i=1}^nE_{i}^{\alpha _{ki}/p_{i}}(s) ds\Big] ^{e_k}\Big\} ^{-\frac{1}{e_{n}}}<\lambda _{n}. \end{equation*} \begin{thebibliography}{99} \bibitem{Afrouzi} G. A. Afrouzi, S. Heidarkhani; \emph{Existence of three solutions for a class of Dirichlet quasilinear elliptic systems involving the $ (p_1,p_2,\dots ,p_{n})$-Laplacian}, Nonlinear Anal. 70 (2009), 135-143. \bibitem{Aktas} M. F. Akta\c{s}, D. \c{C}akmak, A. Tiryaki; \emph{A note on Tang and He's paper}, Appl. Math. Comput. 218 (2012), 4867-4871. \bibitem{CakmakTiryaki1} D. \c{C}akmak, A. Tiryaki; \emph{On Lyapunov-type inequality for quasilinear systems}, Appl. Math. Comput. 216 (2010), 3584-3591. \bibitem{Cakmak-1} D. \c{C}akmak, A. Tiryaki; \emph{Lyapunov-type inequality for a class of Dirichlet quasilinear systems involving the $(p_1,p_2,\dots ,p_{n}) $-Laplacian}, J. Math. Anal. Appl. 369 (2010), 76-81. \bibitem{Cakmak2} D. \c{C}akmak; \emph{On Lyapunov-type inequality for a class of nonlinear systems}, Math. Inequal. Appl. 16 (2013), 101-108. \bibitem{lyapunov} A. M. Liapunov; \emph{Probl\'{e}me g\'{e}n\'{e}ral de la stabilit \'{e} du mouvement}, Ann. Fac. Sci. Univ. Toulouse, 2 (1907), 203-407. \bibitem{napoli} P. L. Napoli, J. P. Pinasco; \emph{Estimates for eigenvalues of quasilinear elliptic systems}, J. Differential Equations 227 (2006), 102-115. \bibitem{Sim} I. Sim, Y. H. Lee; \emph{Lyapunov inequalities for one-dimensional p-Laplacian problems with a singular weight function}, J. Inequal. Appl. 2010, Art. ID 865096, 9 pp. \bibitem{Tang} X. H. Tang, X. He; \emph{Lower bounds for generalized eigenvalues of the quasilinear systems}, J. Math. Anal. Appl. 385 (2012), 72-85. \bibitem{Tiryaki-2} A. Tiryaki, D. \c{C}akmak, M. F. Akta\c{s}; \emph{Lyapunov-type inequalities for a certain class of nonlinear systems}, Comput. Math. Appl., 64 (2012), 1804--1811. \bibitem{YangKimLo3} X. Yang, Y. Kim, K. Lo; \emph{Lyapunov-type inequality for quasilinear systems}, Appl. Math. Comput. 219 (2012), 1670-1673. \bibitem{YangKimLo2} X. Yang, Y. Kim, K. Lo; \emph{Lyapunov-type inequality for $n$-dimensional quasilinear systems}, Math. Inequal. Appl. preprint, MIA-3062. \end{thebibliography} \end{document}