\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 74, pp. 1--19.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/74\hfil Generalized Riemann derivative] {Generalized Riemann derivative} \author[ S. R\u adulescu, P. Alexandrescu, D.-O. Alexandrescu \hfil EJDE-2013/74\hfilneg] {Sorin R\u adulescu, Petru\c s Alexandrescu, Diana-Olimpia Alexandrescu} \address{Sorin R\u adulescu \newline Institute of Mathematical Statistics and Applied Mathematics, Calea 13 Septembrie, no. 13, Bucharest 5, RO-050711, Romania} \email{xsradulescu@gmail.com} \address{Petru\c s Alexandrescu \newline Institute of Sociology, Casa Academiei Rom\^ane, Calea 13 Septembrie, no. 13, Bucharest 5, RO-050711, Romania} \email{alexandrescu\_petrus@yahoo.com} \address{Diana-Olimpia Alexandrescu \newline Department of Mathematics, University of Craiova, 200585 Craiova, Romania} \email{alexandrescudiana@yahoo.com} \thanks{Submitted January 10, 2013. Published March 18, 2013.} \subjclass[2000]{26A24, 28A15} \keywords{Riemann generalized derivative; symmetric derivative; \hfill\break\indent Schwarz derivative; $(\sigma,\tau)$ differentiable function} \begin{abstract} Initiated by Marshall Ash in 1966, the study of generalized Riemann derivative draw significant attention of the mathematical community and numerous studies where carried out since then. One of the major areas that benefits from these developments is the numerical analysis, as the use of generalized Riemann derivatives leads to solving a wider class of problems that are not solvable with the classical tools. This article studies the generalized Riemann derivative and its properties and establishes relationships between Riemann generalized derivative and the classical one. The existence of classical derivative implies the existence of the Riemann generalized derivative, and we study conditions necessary for the generalized Riemann derivative to imply the existence of the classical derivative. Furthermore, we provide conditions on the generalized Riemann derivative that are sufficient for the existence of the classical derivative. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Marshall Ash initiated the study of generalized Riemann derivative in his thesis \cite{ref2} in In 1966. Urged by Zygmund and starting from his papers \cite{ref19,ref20,ref29}, Ash begun his studies with symmetric derivative and Schwarz derivative of second order: Given an interval $I$ of real numbers, $x\in \operatorname{Int}(I)$ and $f:I\to\mathbb{R}$ a function, then for all $h\in \mathbb{R}\setminus \{0\}$ such that $x-h \in I$ and $x+h \in I$ we define the following ratios: $$ R_1 f(x,h)=\frac{f\big( x+\frac{h}{2}\big) -f\big( x-\frac{h}{2}\big)}{h},\quad R_2 f(x,h)=\frac{f(x+h)-2f(x)+f(x-h)}{h^2}. $$ If the limit $ \lim_{h\to 0}R_1 f(x,h)=R_1 f(x)$ exists and is finite, then $R_1 f(x)$ is known as the symmetric derivative of $f$ at $x$, cf. \cite{ref7,ref10}. If the limit $ \lim_{h\to 0} R_2 f(x,h)=R_2 f(x)$ exists and is finite, then $R_2 f(x)$ is known as the Schwarz derivative of $f$ at $x$, cf. \cite{ref21,ref22}. Both derivatives have important applications in trigonometrical series theory and in numerical analysis, see \cite{ref18,ref25,ref26,ref25,ref28}. A natural generalization of these two derivatives is the generalized Riemann derivative of order $r$ of a function $f$ at a point $x$. We consider $a_i$, $b_i$, $i=1,2,\dots ,n$ real numbers and suppose that the following conditions of consistency are satisfied: \begin{equation} \label{e1} \sum_{i=1}^n a_i b_i^k= \begin{cases} 0, & k=0,1,\dots ,r-1 \\ 1, & k=r. \end{cases} \end{equation} If we have $k=0$ and $b_i=0$ in relation \eqref{e1}, then we denote by $b_i^k=1$. Further we consider the ratio \[ R_r^{a,b}f(x,h)= \frac{\sum_{i=1}^n a_i f(x+b_i h)}{h^r}. \] In the case when \[ \lim_{h\to 0} R_r^{a,b}f(x,h)=R_r^{a,b}f(x) \] exists and is finite, we say that the function $f$ is generalized Riemann differentiable of order $r$ at $x$. We denote by $D_r^{a,b}f(x)=r!\cdot R_r^{a,b}f(x)$ and we say that $D_r^{a,b}f(x)$ is the generalized Riemann derivative of order $r$ of function $f$ at $x$. One can easily observe that if $f$ is a function differentiable of order $r$ in classical sense then $f$ is generalized Riemann differentiable of order $r$ and the two derivatives are equal. The converse does not hold. More generally if $f$ is Peano differentiable of order $r$, then $f$ is generalized Riemann differentiable of order $r$. The converse does not hold. Among the most important contributions to the generalized Riemann derivative are those of Humke, Laczkovich and Mukhopadhyay in \cite{ref16,ref17,ref Muk}. In \cite{ref2}--\cite{ref6} and \cite{ref8}, Ash gives a number of problems linked to generalized Riemann derivative. These papers deals with the applications of generalized Riemann derivative to some uniqueness theorems in trigonometric series theory. It can be noted that by replacing the classical derivative with the generalized Riemann derivative in the process of solving ordinary differential equations, the resulting solutions are no longer differentiable in the classical sense. Such solutions are known in ordinary differential equations theory as weak solutions. Therefore, it is necessary to study the system of parameters $a_i, b_i$, $i=1,\dots ,n$ that satisfy conditions of consistency and for which the generalized Riemann derivative coincides with the classical derivative. It can also be noticed that the speed of convergence of numerical scheme associated to differential equation depends essentially on the type of generalized Riemann derivative and consequently on the parameters $a_i$, $b_i$, $i=1,\dots ,n$. In the following section we study the links between generalized Riemann derivative and classical derivative. We give conditions in which the existence of generalized Riemann derivative implies the existence of classical derivative. We give sufficient conditions on the system of vectors $(a,b)$ that define generalized Riemann derivative, such that any function which is generalized Riemann differentiable is also classical differentiable. \section{$(\sigma, \tau)$-Riemann differentiable functions} We study further a new class of generalized differentiable functions - the functions $(\sigma,\tau)$-Riemann differentiable. The motivation for this definition is that we mark out the system $(\sigma,\tau)$ in $\mathbb{K}^n\times \mathbb{K}^n$ (where $\mathbb{K}=\mathbb{R}$ or $\mathbb{C}$), on which we give conditions such that a function $f$ is generalized Riemann differentiable and such that a series of theorems hold. Denote by $\mathbb{K}=\mathbb{R}$ or $\mathbb{C}$. Let $G\subset \mathbb{K}$ an open subset and the function $f:G\to \mathbb{K}$. For $p, n\in \mathbb{N}^*, p\le n$, define the set: \begin{align*} L(p,n,\mathbb{K}) :=\Big\{&(\sigma,\tau)\in\mathbb{K}^{*n}\times\mathbb{K}^n : \sum_{k=1}^n\sigma_k\tau_k^j=0, \text{ for } j\in\{0,1,\dots ,p-1\}, \\ & \sum_{k=1}^n\sigma_k \tau_k^p=p! \text{ and $\tau$ has all the components distinct}\Big\}. \end{align*} \begin{definition} \label{def2.1}\rm The function $f$ is $(\sigma,\tau)$-differentiable of order $p$ at $x$ ($x$ in $G$) if $(\sigma,\tau)\in L(p,n,\mathbb{K})$ and if the following limit exists and belongs to $\mathbb{K}$: \[ \lim_{h\to 0}\frac{1}{h^p} \sum_{k=1}^n\sigma_k f(x+\tau_k h). \] If the limit above exists, we denote it by $D_p(\sigma,\tau)f(x)$. \end{definition} \begin{remark} \label{rmk2.2}\rm If $G\subset \mathbb{K}$ is an open set, $(\sigma,\tau)\in L(p,n,\mathbb{K})$, $f:G\to \mathbb{K}$ is $(\sigma, \tau)$-differentiable at $x$, ($x\in G$), then for all $\lambda\in K$ the function $\lambda f$ is $(\sigma,\tau)$-differentiable at $x$ and the following relation holds: \[ D_p(\sigma,\tau)(\lambda f)(x)=\lambda D_p (\sigma,\tau)f(x). \] \end{remark} \begin{remark} \label{rmk2.3} \rm If $f$, $g:G\to\mathbb{K}$ are two functions $(\sigma,\tau)$ differentiable at $x$, then the function $f+g$ is $(\sigma, \tau)$ differentiable at $x$ and the following relation holds: \[ D_p(\sigma,\tau)(f+g)(x)=D_p(\sigma,\tau)f(x)+D_p(\sigma,\tau)g(x). \] The proof is straightforward and we let the reader to complete it, if needed. \end{remark} \begin{remark} \label{rmk2.4}\rm Let $G\subset \mathbb{R}$ with $\operatorname{Int} G\neq\emptyset$ and $x\in \operatorname{Int} G$, $f:G\to \mathbb{R}$ and $(\sigma,\tau)\in L(p,n,\mathbb{R})$. If $f$ is differentiable of order $p$ at $x$ in the classic sense, then $D_p(\sigma,\tau)f(x)$ exists and these two derivatives are equal: \[ D_p(\sigma,\tau)f(x)=f^{(p)}(x). \] \end{remark} \begin{theorem} \label{thm2.5} Let $G\subset\mathbb{K}$ such that $\operatorname{Int} G\neq\emptyset$, $x\in \operatorname{Int} G$, $f:G\to \mathbb{K}$ and $(\sigma',\tau')\in L(p,m,\mathbb{K})$, $(\sigma'',\tau'')\in L(p,n,\mathbb{K})$. If $D_p(\sigma',\tau')f(x)$ and $D_p(\sigma'',\tau'')f(x)$ exist and belong to $\mathbb{K}$, then they are equal. \end{theorem} \begin{proof} Using Definition \ref{def2.1}, we obtain \begin{align*} D_p(\sigma',\tau')f(x) &=\frac{1}{p!}p!D_p(\sigma',\tau')f(x)\\ &=\frac{1}{p!}\sum_{j=1}^n\sigma_j''\tau_j''^pD_p(\sigma',\tau')f(x)\\ &=\frac{1}{p!}\sum_{j=1}^n\sigma_j''\tau_j''^p \lim_{j\to 0} \frac{1}{h^p}\sum_{k=1}^m \sigma_k'f(x+\tau_k'h)\\ &=\frac{1}{p!}\sum_{j=1}^n\sigma_j''\tau_j''^p \lim_{h\to 0} \frac{1}{(\tau_j''h)^p}\sum_{k=1}^m\sigma_k'f(x+\tau_k'\tau_k''h)\\ &=\frac{1}{p!}\lim_{h\to 0} \frac{1}{h^p} \sum_{j=1}^n \sum_{k=1}^m \sigma_j''\tau_j''^p \sigma_k' \frac{1}{\tau_j''^p}f(x+\tau_k'\tau_j''h)\\ &=\frac{1}{p!}\lim_{h\to 0} \frac{1}{h^p} \sum_{j=1}^n \sum_{k=1}^m \sigma_j''\sigma_k' f(x+\tau_k'\tau_j''h)\\ &=\frac{1}{p!} \lim_{h\to 0} \sum_{k=1}^m \sigma_k' \sum_{j=1}^n \sigma_j'' f(x+\tau_k'\tau_j''h)\\ &=\frac{1}{p!} \sum_{k=1}^m\sigma_k'\tau_k'^p \lim_{h\to 0} \frac{1}{(h\tau_k')^p}\sum_{j=1}^n \sigma_j'' f(x+\tau_j''(\tau_k'h))\\ &=\frac{1}{p!} \sum_{k=1}^m \sigma_k'\tau_k'^p D_p (\sigma'',\tau'')f(x)\\ &=\frac{1}{p!} p! D_p(\sigma'',\tau'')f(x)=D_p(\sigma'',\tau'')f(x). \end{align*} \end{proof} This theorem shows that if a function is differentiable in the generalized sense of order $p$ in relation with two systems $(\sigma', \tau')$ and $(\sigma'',\tau'')$, then these two generalized derivatives of order $p$ are equal. We can formulate with the aid of notion of divided difference, the $(\sigma,\tau)$ derivative. \begin{remark} \label{rmk2.6} Let $f:G\to\mathbb{K}$, $G\subset\mathbb{K}$ open set. 1. Then $f$ is $(\sigma,\tau)$ differentiable if and only if the following limit exists: \[ \lim_{h\to 0}\sum_{j=1}^n \sigma_j \tau_j [x+\tau_j h,x;f]=D_1(\sigma,\tau)f(x). \] with $(\sigma,\tau)\in L(1,n,\mathbb{K})$. 2. If $p=n-1$ and $(\sigma,\tau)\in L(p,n,\mathbb{K})$ and $G\subset K$ open set and $f:G\to\mathbb{K}$, then \[ D_p(\sigma,\tau)f(x)=(n-1)!\lim_{h\to 0}[x+\tau_1 h, x+\tau_2 h, \dots ,x+\tau_n h;f]. \] \end{remark} The following theorem gives conditions on a $(\sigma, \tau)$-differentiable function at a point $x$ and on the system of vectors $(\sigma, \tau)$ for such function to become differentiable in the classical sense and such that the two derivatives to be equal. \begin{theorem} \label{thm2.7} Let $G\subset \mathbb{R}$, $(\sigma,\tau)\in L(1,n,\mathbb{R})$, $x\in \operatorname{Int} G\neq\emptyset$ and $f:G\to \mathbb{R}$. Suppose that the following conditions hold: \begin{itemize} \item[(i)] $f$ is $(\sigma,\tau)$-differentiable at $x$; \item[(ii)] there exist left and right derivatives $f_l'(x)$ and $f_r'(x)$ and are finite; \item[(iii)] $ \sum_{\tau_k<0}\sigma_k\tau_k\neq \sum_{\tau_k>0}\sigma_k\tau_k$. \end{itemize} Under these conditions $f$ is differentiable at $x$ and $D_1(\sigma,\tau)f(x)=f'(x)$. \end{theorem} \begin{proof} On the one hand, by the definition of $(\sigma,\tau)$-derivative of $f$ we obtain: \begin{equation} \label{e2.1} \begin{aligned} &D_1(\sigma,\tau)f(x)\\ &=\lim_{h\to 0, h>0}\frac{1}{h}\sum_{k=1}^n\sigma_k f(x+\tau_k h)\\ &=\lim_{h\to 0, h>0}\frac{1}{h}\sum_{k=1}^n\sigma_k [f(x+\tau_k h)-f(x)]\\ &= \lim_{h\to 0, h>0,\tau_k\neq 0} \sum_{k=1}^n \sigma_k\tau_k \frac{f(x+\tau_k h)-f(x)}{\tau_k h}\\ &= \lim_{h\to 0, h>0} \Big\{ \sum_{\tau_k>0}^n\sigma_k \tau_k \frac{f(x+\tau_k h)-f(x)}{\tau_k h} +\sum_{\tau_k<0} \sigma_k \tau_k\frac{f(x+\tau_k h)-f(x)}{\tau_k h} \Big\} \\ &= \Big( \sum_{\tau_k>0}\sigma_k \tau_k\Big)f'_r(x) +\Big( \sum_{\tau_k<0}\sigma_k\tau_k\Big)f'_l(x). \end{aligned} \end{equation} On the other hand, we have \begin{equation} \begin{aligned} & D_1(\sigma,\tau)f(x)\\ &=\lim_{h\to0, h<0}\frac{1}{h}\sum_{k=1}^n\sigma_kf(x+\tau_k h)\\ &=\lim_{h'\to 0, h'>0}\frac{1}{-h'}\sum_{k=1}^n\sigma_k f(x-\tau_k h')\\ &=\lim_{h'\to 0, h'>0}\sum_{k=1}^n \sigma_k \tau_k \frac{f(x-\tau_k h')-f(x)}{-\tau_k h'}\\ &=\lim_{h'\to 0, h'>0}\Big\{ \sum_{\tau_k>0}\sigma_k \tau_k \frac{f(x-\tau_k h')-f(x)}{-\tau_k h'}+\sum_{\tau_k<0}\sigma_k\tau_k \frac{f(x-\tau_k h')-f(x)}{-\tau_k h'}\Big\}\\ &= f_l'(x)\sum_{\tau_k>0}\sigma_k\tau_k+f'_r(x)\sum_{\tau_k<0}\sigma_k \tau_k. \end{aligned} \label{e2.2} \end{equation} From \eqref{e2.1} and \eqref{e2.2} we obtain \[ \Big( \sum_{\tau_k>0}\sigma_k \tau_k-\sum_{\tau_k<0} \sigma_k \tau_k\Big)(f_r'(x)-f_l'(x))=0. \] Taking into account (iii) it follows that: $f_l'(x)=f_r'(x)=f'(x)$. This lead us to conclude that $f$ is differentiable at $x$. In addition we have \[ D_1 (\sigma, \tau)f(x)=f'(x)\Big[ \sum_{\tau_k>0}\sigma_k\tau_k +\sum_{\tau_k<0}\sigma_k\tau_k\Big]=f'(x)\sum_{k=1}^n\sigma_k\tau_k=f'(x). \] \end{proof} \subsection*{Remarks} (1) If $G$ is an interval, $f:G\to \mathbb{R}$ and conditions (i) and (ii) from Theorem \ref{thm2.7} hold, and \begin{itemize} \item[(iii')] $ \sum_{\tau_k<0}\sigma_k\tau_k=\sum_{\tau_k>0}\sigma_k \tau_k$, \end{itemize} then \[ D_1(\sigma,\tau)f(x)=\frac{1}{2}[f'_l(x)+f'_r(x)]. \] (2) Condition (iii') is very important because if the system $(\sigma, \tau)$ satisfies it, then a large class of non-differentiable functions at a point or on a finite set becomes $(\sigma, \tau)$-differentiable. Let us consider the function $f:\mathbb{R}\to\mathbb{R}$, \[ f(x)=\begin{cases} \alpha x, & x<0\\ \beta x, & x\ge 0 \end{cases} \] for $\alpha, \beta\in\mathbb{R}^*$, $\alpha\neq\beta$. This function is not differentiable at $x=0$. However we have \begin{align*} (D_1(\sigma,\tau)f)_r(x) &=\lim_{h\to 0, h>0} \frac{1}{h}\sum_{k=1}^n\sigma_k f(\tau_k h)\\ &=\lim_{h\to 0,h>0}\frac{1}{h} \Big[ \sum_{\tau_k>0}\sigma_k \beta \tau_k h +\sum_{\tau_k<0}\sigma_k\alpha\tau_k h\Big]\\ &=\beta\sum_{\tau_k>0} \sigma_k \tau_k +\alpha \sum_{\tau_k<0}\sigma_k\tau_k. \end{align*} For \[ \sum_{\tau_k>0}\sigma_k\tau_k =\sum_{\tau_k<0}\sigma_k \tau_k=\frac{1}{2}, \] we obtain \[ (D_1(\sigma,\tau)f)_r(x)=\frac{\alpha+\beta}{2}. \] Similarly we can prove that \[ (D_1(\sigma,\tau)f)_l(x)=\frac{\alpha+\beta}{2}. \] We conclude that function $f$ is $(\sigma,\tau)$-differentiable at $x=0$ and moreover, is $(\sigma,\tau)$-differentiable on $\mathbb{R}$. (3) As we can easily observe, condition (iii) from Theorem \ref{thm2.7} holds for the classical derivative. The $(\sigma, \tau)$-derivative has a lot of interesting properties that shall be further studied. We shall give a theorem for the Riemann generalized derivative of the product of two functions. \begin{theorem} \label{thm2.8} Let $G\subset \mathbb{K}$ open set, $f$, $g:G\to \mathbb{K}$ and $(\sigma,\tau)\in L(1,n,\mathbb{K})$. If the following conditions hold: \begin{itemize} \item[(1)] $f$ is Lipschitz and $(\sigma,\tau)$ differentiable; \item[(2)] $g$ is continuous and $(\sigma,\tau)$ differentiable, \end{itemize} then $f\cdot g$ is $(\sigma,\tau)$ differentiable and we have the following relation \begin{equation} D_1(\sigma,\tau)(f\cdot g)(x)=f(x)\cdot D_1(\sigma,\tau)g(x) +g(x)\cdot D_1(\sigma,\tau)f(x),\quad x\in G \label{e2.3} \end{equation} \end{theorem} \begin{proof} It is easy to show that \begin{equation} \begin{aligned} &\frac{1}{h}\sum_{j=1}^n \sigma_j[f(x+\tau_jh)-f(x)][g(x+\tau_jh)-g(x)]\\ &= \frac{1}{h}\sum_{j=1}^n \sigma_j f(x+\tau_j h)\cdot g(x+\tau_j h)\\ &\quad -f(x)\cdot\frac{1}{h}\sum_{j=1}^n\sigma_j g(x+\tau_jh)-g(x)\cdot \frac{1}{h}\sum_{j=1}^n \sigma_j f(x+\tau_j h)\\ &\quad +f(x)\cdot g(x)\cdot \frac{1}{h} \sum_{j=1}^n \sigma_j. \end{aligned} \label{e2.4} \end{equation} for $x\in G$, $h\neq0$, $|h|$ small enough. From (1) there exists $L\ge 0$ such that $|f(x)-f(y)|\le L|x-y|$, for all $x$, $y\in G$. By applying the modulus, the left side of \eqref{e2.4} becomes \begin{align*} &\big|\sum_{j=1}^n \sigma_j \frac{f(x+\tau_j h)-f(x)}{h}(g(x+\tau_j h) -g(x))\big|\\ &\le \sum_{j=1}^n| \sigma_j|\cdot \big| \frac{f(x+\tau_j h) -f(x)}{h}\big|\cdot |g(x+\tau_j h)-g(x)|\\ &\le L\sum_{j=1}^n|\sigma_j|\cdot|\tau_j|\cdot |g(x+\tau_j h)-g(x)| \end{align*} for all $x\in G$, $|h|$ small enough. Using that $g$ is continuous, the left side of \eqref{e2.4} tends to 0 when $h\to 0$. So we obtain \[ 0=D_1(\sigma,\tau)(f\cdot g)(x)-f(x)\cdot D_1(\sigma,\tau)g(x)-g(x) \cdot D_1(\sigma,\tau)f(x)\quad\text{for }x\in G \] which proves completes the proof. \end{proof} \begin{corollary} \label{coro2.9} Let $G\subset \mathbb{K}$ open set, $f$, $g:G\to \mathbb{K}$ and $(\sigma,\tau)\in L(1,n,\mathbb{K})$. If the following conditions hold:\ \begin{itemize} \item[(1)] $f$ is locally Lipschitz, \item[(2)] $g$ is continuous and $(\sigma,\tau)$ differentiable, \end{itemize} then $f\cdot g$ is $(\sigma,\tau)$ differentiable almost everywhere and relation \eqref{e2.3} holds almost everywhere. \end{corollary} \begin{proof} We will use that any Lipschitz function is almost everywhere differentiable. Many properties of the classical derivative correspond to $(\sigma,\tau)$ derivative and when these properties does not hold on general case, we shall find conditions on $f$ or on the system $(\sigma,\tau)$ such as these properties remain available. Such a situation shall be reveal in a theorem bellow. \end{proof} \subsection*{Notation} Let $G\subset\mathbb{K}$ such that $\operatorname{Int} G\neq\emptyset$ , $f:G\to \mathbb{K}$, $x\in \operatorname{Int} G$ and $\lambda\in \mathbb{K}$, $\lambda\neq -1$. We define: \[ R(\lambda)f(x):=\lim_{h\to 0} \frac{f(x+h)-f(x-\lambda h)}{(1+\lambda)h} \] in the hypotheses in which this limit belongs to $\mathbb{K}$, and we say that $f$ is $R(\lambda)$ differentiable at $x$. We define: \[ \sigma=\Big( \frac{1}{1+\lambda},-\frac{1}{1+\lambda}\Big), \quad \tau=\Big( 1, -\lambda\Big). \] We notice that $(\sigma,\tau)\in L(1,2,\mathbb{K})$ and $R(\lambda)f(x)=D_1(\sigma,\tau)f(x)$. \begin{theorem} \label{thm2.11} Let $G\subset K$ open set, $x\in G$ and $f,g:G\to \mathbb{K}$, $\lambda \in \mathbb{K}$, $\lambda\neq -1$, such that: \begin{itemize} \item[(1)] $f,g$ are continuous at $x$; \item[(2)] $f,g$ are $R(\lambda)$-differentiable at $x$. \end{itemize} Under these conditions the function $h=fg$ is $R(\lambda)$ differentiable at $x$ and we have the formula \[ R(\lambda)(fg)(x)=g(x)R(\lambda)f(x)+f(x)R(\lambda)g(x), \quad x\in G. \] \end{theorem} \begin{proof} The proof is based on \begin{align*} &R(\lambda)(fg)(x)\\ &= \lim_{h\to 0}\frac{f(x+h)g(x+h)-f(x-\lambda h)g(x-\lambda h)}{(1+\lambda)h}\\ &= \lim_{h\to 0}\frac{f(x+h)[g(x+h)-g(x-\lambda h)] +g(x-\lambda h)[f(x+h)-f(x-\lambda h)]}{(1+\lambda)h}\\ &=f(x)R(\lambda)g(x)+g(x)R(\lambda)f(x). \end{align*} \end{proof} \subsection*{Remarks} (1) For $ p=1$, $n=2$, $\sigma_1 =\frac{1}{2}$, $\sigma_2=-\frac{1}{2}$, $\tau_1=1$, $\tau_2=-1$ we obtain the symmetric Riemann derivative. (2). For $ p=2$, $n=3$, $\sigma_1=1$, $\sigma_2=-2$, $\sigma_3=1$, $\tau_1=1$, $\tau_2=0$, $\tau_3=-1$ we find the Schwarz derivative. (3) It is also easy to notice that $R(\lambda)$ extend the symmetric Riemann derivative, which is $R(1)$ and the classical derivative, which is $R(0)$. In conclusion, the set of $(\sigma,\tau)$-differentiable functions is larger than the set of classical differentiable functions. If $(\sigma,\tau)\in L(p,n,\mathbb{K})$ and $G$ an open set, then we denote \[ \mathfrak{T}_p(\sigma,\tau)(G,\mathbb{K})=\{f:G\to \mathbb{K}| f \text{ is $(\sigma,\tau)$-differentiable everywhere on $G$}\}. \] \begin{theorem} \label{thm2.12} If $(\sigma,\tau)\in L(p,n,\mathbb{K})$ and if any function from $\mathfrak{T}_p(\sigma,\tau)(G,\mathbb{K})$ is $p$ times differentiable in classical sense, then there exists $j\in \{1,2,\dots ,n\}$ such that $\tau_j=0$. \end{theorem} \begin{proof} Indeed, if $\tau_j\neq0$, for all $j\in \{1,2,\dots ,n\}$ we prove that there exist a function in $\mathfrak{T}_p(\sigma,\tau)(G,\mathbb{K})$ which is $(\sigma, \tau)$ differentiable and does not have the property in the theorem. This function is $f:G\to\mathbb{K}$, \[ f(x) = \begin{cases} 1 & \text{if }x=a \\ 0 & \text{if }x\in G\setminus \{a\}. \end{cases} \] This function is discontinuous at $a$ and consequently is not differentiable in the classical sense at $a$. However $D(\sigma, \tau)f(x)=0$ and this leads us to a contradiction. \end{proof} More properties of $(\sigma,\tau)$-Riemann differentiable functions were studied in \cite{ref1, ref14,ref27}. \section{Main Results} If we replace the classical derivative of the function with the Riemann generalized derivative in the process of solving numerical ordinary differential equations, we shall obtain new solutions that are not differentiable in the classical sense (see cite{ref9,ref12}). This kind of solutions are well known in ordinary differential equations theory as weak solutions. Therefore is needed to study the system of parameters $(\sigma,\tau)$ that satisfy the consistency conditions and for which, the Riemann generalized derivative which is defined by this system of parameters, is equal to classical derivative. The speed of convergence of the numerical scheme associated to the ordinary differential equation, depends on the type of derivative, consequently on the system of parameters $(\sigma,\tau)$. We shall further give some conditions in which a $(\sigma,\tau)$-differentiable function is classical differentiable. \begin{lemma} \label{lem3.1} Let $a$, $b\in\mathbb{K}$ such that $|a| \le |b|<1$ and the function $\varphi :\mathbb{K}\to \mathbb{K}$. Suppose that the conditions below hold: \begin{itemize} \item[(i)] $ \lim_{x\to 0} x\varphi(x)=0$; \item[(ii)] $\lim_{x\to 0}[\varphi(x)-a\varphi(bx)]=0$, $x\in \mathbb{K}$. \end{itemize} Then $ \lim_{x\to 0}\varphi (x)=0$. \end{lemma} \begin{proof} If $b=0$ results that $a=0$ and the statement is available in this case. For $b$ in $\mathbb{K}^*$, we denote \begin{equation} g(x):=\varphi(x)-a\varphi(bx), \quad x\in \mathbb{K} \label{e3.1}. \end{equation} This condition is equivalent to $\varphi(x)=g(x)+a\varphi(bx)$, $ x\in \mathbb{K}$. Repeating the transformation: $x\to bx$, we obtain \begin{gather*} \varphi(bx)=g(bx)+a\varphi(b^2x), \quad x\in \mathbb{K}\\ \varphi(b^2x)=g(b^2x)+a\varphi(b^3x), \quad x\in \mathbb{K}\\ \dots \\ \varphi(b^{n-1}x)=g(b^{n-1}x)+a\varphi(b^nx), \quad x\in \mathbb{K}, \; n\in \mathbb{N}^*. \end{gather*} It follows that \[ \varphi(x)=g(x)+ag(bx)+a^2g(b^2x)+\dots +a^{n-1}g(b^{n-1}x)+a^{n}\varphi(b^{n}x), \] for $ x\in \mathbb{K}$, $n\in\mathbb{N}^*$. From (1) and (ii), we have $ \lim_{x\to 0}g(x)=0$. For $0<|x|0$ we consider $V_{\epsilon}$ - the disc of radius $\epsilon$ centered in $0$ such that for any $x\in V_r\setminus\{0\}$ we have \[ |\varphi(x)|\le \frac{1}{1-|a|}\cdot \sup_{0<|y|\le r} |g(y)| +\frac{1}{|x|}\cdot \overline{\lim_{n\to\infty}}|(b^n x)\varphi(b^nx)|. \] As a consequence we obtain \[ |\varphi(x)|\le \frac{1}{1-|a|}\cdot \sup_{0<|y|\le r}|g(y)|,\quad \text{for $x$ in }V_r\setminus\{0\} \] and because $ \lim_{r\to 0}\Big( \sup_{0<|y|\le r}|g(y)|\Big)=0$ we conclude that $ \lim_{x\to 0}\varphi (x)=0$. \end{proof} We remark that Lemma \ref{lem3.1} remains true if we have the condition below instead of condition (ii): \begin{itemize} \item[(ii')] $ \lim_{x\to 0}[\varphi(x)+a\varphi(bx)]=0$, $x\in \mathbb{K}$. \end{itemize} In this chase the auxiliary function is $g(x):=\varphi(x)+a\varphi(bx)$, $\quad x\in \mathbb{K}$, and \[ \varphi (x)=g(x)-ag(bx)+a^2g(b^2x)-a^3g(b^3x)+\dots +(-a)^{n-1}g(b^{n-1}x)+(-1)^n a^n\varphi (b^nx), \] for $x\in \mathbb{K}$ and $n\in \mathbb{N}^*$. \begin{lemma} \label{lem3.2} Let $a$, $b\in \mathbb{K}$ such that $|a|\ge|b|>1$ and $\varphi :\mathbb{K}\to \mathbb{K}$ for which the following conditions hold: \begin{itemize} \item[(i)] $ \lim_{x\to 0} x\varphi(x)=0$, \item[(ii)] $ \lim_{x\to 0} [\varphi (x)+a \varphi (bx)]=0$. \end{itemize} Then $ \lim_{x\to 0}\varphi(x)=0$. \end{lemma} \begin{proof} To prove this we shall use Lemma \ref{lem3.1} with transformations: $ x=y/b=b'y$, $b\in \mathbb{K}^*$, $ b'=1/b$, $ a'=1/a$, $a'\in \mathbb{K}^*$ with $1>|b'|\ge|a'|$. For the case $b=0$ results that $a=0$ and condition (ii) validate the statement. \end{proof} \begin{lemma} \label{lem3.3} Let $a=(a_1,a_2,\dots ,a_n)\in \mathbb{K}^n$, $b=(b_1,b_2,\dots ,b_n)\in \mathbb{K}^n$ with $|a_j|\le|b_j|<1$, for all $j\in \{1,2,\dots ,n\}$ and the function $\varphi:\mathbb{K}\to\mathbb{K}$ with the properties: \begin{itemize} \item[(i)] $ \lim_{x\to 0}x\varphi(x)=0$; \item[(ii)] \begin{align*} &\lim_{x\to 0}\Big\{ \varphi(x)+\sum_{j=1}^n a_j \varphi(b_j x) +\sum_{j0$ such that $|\varphi(h)|\le M$, for all $h\in V_{\epsilon}(0)$, where $V_{\epsilon}(0)$ is a symmetric neighborhood of origin of length $2\epsilon$, $(\epsilon>0)$'' if and only if \[ \big| \frac{f(x+h)-f(x)-\ell h}{h}\big|\le M,\quad \forall h\in V_{\epsilon}(0), \] where we denoted $\ell:=D_1 (\sigma,\tau)f(x)$. This is further equivalent to \[ |f(x+h)-f(x)|\le (M+|\ell|)|h|,\quad\forall h\in V_{\epsilon}(0) \] if and only if \[ |f(y)-f(x)|\le (M+|\ell|)|y-x|, \quad\forall y\in V_{\epsilon}(0)\subset A, \] where $y=x+h$, which implies that $f$ is Lipschitz at $x$. Similarly, we have \[ 0=\lim_{h\to 0} \sum_{j=1}^n a_j \varphi (b_j h) =\lim_{h\to 0}\sum_{j=1}^n a_j \frac{f(x+b_j h)-f(x)-\ell b_j h}{b_j h} \] if and only if \[ \lim_{h\to 0} \sum_{j=1}^n a_j \frac{f(x+b_j h)-f(x)}{b_j h} =\ell \sum_{j=1}^n a_j=\ell\,. \] However, \begin{align*} \ell &=D_1 (\sigma,\tau)f(x) =\lim_{h\to 0}\frac{1}{h}\sum_{k=1}^{n+1}\sigma_k f(x+\tau_k h)\\ &=\lim_{h\to 0} \frac{1}{h}\sum_{k=1}^n \frac{a_k}{b_k}[f(x+b_k h)-f(x)]. \end{align*} As the conditions for Lemma \ref{lem3.8} are satisfied, it results that \[ \lim_{h\to 0}\varphi(h)=0 \Leftrightarrow \frac{f(x+h)-f(x)}{h}=\ell \Leftrightarrow f'(x)=D_1 (\sigma,\tau)f(x). \] \end{proof} \begin{theorem} \label{thm3.15} Let $G\subset \mathbb{K}$ such that $\operatorname{Int} G\neq 0$, $x\in \operatorname{Int} G$, $a_j\in \mathbb{K}$, $b_j\in \mathbb{K}^*$, $j\in \{1,\dots ,n \}$ and $f:G\to \mathbb{K}$ with properties: \begin{itemize} \item[(1)] $f$ is Lipschitz on a neighborhood of $x$; \item[(2)] $ \sum_{j=1}^n a_j=1$; \item[(3)] $f$ is $(\sigma,\tau)$-differentiable at $x$, where \[ \sigma=\Big( \frac{a_1}{b_1},\dots ,\frac{a_n}{b_n}, -\sum_{k=1}^n\frac{a_k}{b_k}\Big), \tau=(b_1,\dots ,b_n,0); \] \item[(4)] the system $(a,b)$ satisfy condition $(C_2)$. \end{itemize} Then $f$ is classical differentiable at $x$ and $D_1 (\sigma,\tau)f(x)=f'(x)$. \end{theorem} \begin{proof} The condition $f$-Lipschitz at $x$ is equivalent to $\varphi$ bounded on a neighborhood of origin, where $ \varphi(h)=\frac{1}{h}[f(x+h)-f(x)-\ell h]$ as we could observe in Theorem \ref{thm3.15}. Moreover, condition (ii) from Definition \ref{def3.12} of condition $(C_2)$ is also satisfied. From here results that $ \lim_{h\to 0} \varphi(h)=0$ which is equivalent to \[ \ell=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \] that is $D_1(\sigma, \tau)f(x)=f'(x)$. \end{proof} \subsection*{Conclusion} Theorems \ref{thm3.13}--\ref{thm3.15} are general criteria which state that if we find systems $(a,b)$, ($(a,b)\in \mathbb{K}^n\times \mathbb{K}^{*n}$) that satisfy conditions $(C_1)$ and $(C_2)$, then any $(\sigma,\tau)$-differentiable function at a point, satisfying the conditions from these theorems, is classical differentiable at that point and the two derivatives are equal. \begin{thebibliography}{00} \bibitem{ref1} Alexandrescu, P.; \emph{Monotonicity theorems for generalized Riemann derivatives}. Mathematical Reports, no. 4, vol.1(51) (1999), 497-501. \bibitem{ref2} Ash, J. M.; \emph{Generalizations of the Riemann derivative}. Trans. Amer. Math. Soc., 126, (1967), 181-199. \bibitem{ref3} Ash, J. M.; \emph{A characterization of the Peano derivative.} Trans. Amer. Math. Soc., 149, (1970), 489-501. \bibitem{ref4} Ash, J. M.; \emph{Very generalized Riemann derivatives, generalized Riemann derivatives and associated summability methods}. Real Anal. Exchange, 11, no. 1, (1985/86), 10-29. \bibitem{ref5} Ash, J. M.; \emph{Generalized differentiation and summability}. Real Anal. Exchange, 12, no. 1, (1986/87), 366-371. \bibitem{ref6} Ash, J. M.; \emph{Uniqueness of representation by trigonometric series}. Amer. Math. Monthly, 69, no. 10, (1979), 873-885. \bibitem{ref7} Ash, J. M.; \emph{A new harder proof that continuous functions with Schwarz derivative zero are lines}. Fourier analysis (Orono, ME, 1992) 35-46. Lecture Notes in Pure and Applic. Math., 157, Dekker New York (1994). \bibitem{ref8} Ash, J. M.; Jones, R. L.; \emph{Convergence of series conjugate to a convergent multiple trigonometric series}. Bull. Soc. Math. (2), 110, no. 2, (1986), 174-224. \bibitem{ref9} Ash, J. M.; Cohen, J.; Freiling, C.; Gatto, A. C.; Rinne, D.; \emph{Generalized derivatives. Partial differential equations with minimal smoothness and application}. (Chicago, IL 1990), 25-30, IMA, Vol. Math. Appl. 42, Springer, New York, (1992). \bibitem{ref10} Ash, J. M.; Catoiu, S.; \emph{Quantum Symmetric $L^p$ derivatives}. Trans. Amer. Math. Soc.360, no. 2, (2008), 959-987. \bibitem{ref11} Brneti\'c, I.; \emph{Inequalities for $n$ convex functions}. J. Math. Inequal., 5, no. 2, (2011), 193-197. \bibitem{ref12} O'Connor, P. T.; \emph{Generalized differentiation of functions of a real variable}, Doctoral Dissertation, Wesleyan University, Middletown, (1969). \bibitem{ref14} Freiling, C.; Rinne, D.; \emph{A symmetric density property, monotonicity and the approximative symmetric derivative}. Proc. Amer. Math. Soc., 104, (1988), 1098-1102. \bibitem{ref16} Humke, P. D.; Laczkovich, M.; \emph{The convexity theorems for generalized Riemann derivatives}. Real Anal. Exchange, 15, no. 2, (1989/90), pp. 652-674. \bibitem{ref17} Humke, P. D.; Laczkovich, M.; \emph{Monotonicity theorems for generalized Riemann derivatives}. Rend. Circ. Mat. Palermo (2) 38, no. 3, (1989), pp. 437-454. \bibitem{ref Kuczma} Kuczma, M.; \emph{An indtroduction to the theory of functional equations and inequalities}. Birkh\"auser, (2009). \bibitem{ref18} Larson, L.; \emph{The symetric derivative}. Trans. Amer. Math. Soc. 277, (1983), 589-599. \bibitem{ref19} Marcinkiewicz, J.; Zygmund, A.; \emph{Sur la d\'eriv\'ee seconde g\'eneralis\'ee. Josef Marcinkiewicz Collected Papers}, 582-587, Panst wowe Wyderwonitwo Nankowe, Warszaw, (1964). \bibitem{ref20} Marcinkiewicz, J.; Zygmund, A.; \emph{On the differentiability of functions and summability of trigonometric series}, Fund. Math. 26, (1936), 1-43. \bibitem{ref21} Mukhopadhyay, S. N.; \emph{On Schwarz differentiability I}. Proc. Nat. Acad. Sci. India, 36, (1966), 525-533. \bibitem{ref Muk} Mukhopadhyay, S. N.; \emph{Higher order derivatives}. Chapman \& Hall CRC Monographs and Surveys in Pure and Applied Mathematics 144, (2012). \bibitem{ref22} Oliver, H. W.; \emph{The exact Peano derivative}. Trans. Amer. Math. Soc., 76, (1954), 444-456. \bibitem{ref25} R\u{a}dulescu, T.-L.; R\u{a}dulescu, V.; Andreescu, T.; \emph{Problems in Real Analysis: Advanced Calculus on the Real Axis}, Springer, New York, (2009). \bibitem{ref26} Uher, J.; \emph{Some remarks on symmetric derivatives. Real Analysis Exchange}, 13, (1987/88), 35-38. \bibitem{ref27} Weil C. E.; \emph{On properties of derivatives}. Trans. Amer. Math. Soc., 114, (1965), 363-376. \bibitem{ref28} Weil, C. E.; \emph{Monotonicity, convexity and symmetric derivatives}. Trans. Amer. Math. Soc., 231, (1976), 225-237. \bibitem{ref29} Zygmund, A.; \emph{Trigonometric Series}. Vol I, Vol II, (1959). \end{thebibliography} \end{document}