\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 97, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/97\hfil Existence of infinitely many anti-periodic solutions] {Existence of infinitely many anti-periodic solutions for second-order impulsive differential inclusions} \author[S. Heidarkhani, G. A. Afrouzi, A. Hadjian, J. Henderson \hfil EJDE-2013/97\hfilneg] {Shapour Heidarkhani, Ghasem A. Afrouzi,\\ Armin Hadjian, Johnny Henderson} \address{Shapour Heidarkhani \newline Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran. \newline School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran} \email{s.heidarkhani@razi.ac.ir} \address{Ghasem A. Afrouzi \newline Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran} \email{afrouzi@umz.ac.ir} \address{Armin Hadjian\newline Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran} \email{a.hadjian@umz.ac.ir} \address{Johnny Henderson \newline Department of Mathematics, Baylor University, Waco, TX 76798-7328, USA} \email{Johnny\_Henderson@baylor.edu} \thanks{Submitted January 29, 2013. Published April 16, 2013.} \subjclass[2000]{58E05, 49J52, 34A60} \keywords{Differential inclusions; impulsive; anti-periodic solution; \hfill\break\indent non-smooth critical point theory} \begin{abstract} In this article, we establish the existence of infinitely many anti-periodic solutions for a second-order impulsive differential inclusion with a perturbed nonlinearity and two parameters. The technical approach is mainly based on a critical point theorem for non-smooth functionals. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} The aim of this article is to show the existence of infinitely many solutions for the following two parameter second-order impulsive differential inclusion subject to anti-periodic boundary conditions \begin{equation}\label{e1.1} \begin{gathered} -(\phi_p(u'(x)))'+M\phi_p(u(x))\in\lambda F(u(x))+\mu G(x,u(x))\quad \text{in } [0,T]\setminus Q,\\ -\Delta\phi_p(u'(x_k))=I_k(u(x_k)),\quad k=1,2,\dots,m,\\ u(0)=-u(T),\quad u'(0)=-u'(T), \end{gathered} \end{equation} where $Q=\{x_1,x_2,\dots,x_m\}$, $p>1$, $T>0$, $M\geq 0$, $\phi_p(x):=|x|^{p-2}x$, $0=x_01$ $(a>0)$. \end{itemize} Also, $G$ is a multifunction defined on $[0,T]\times\mathbb{R}$, satisfying \begin{itemize} \item[(G1)] $G(x,\cdot):\mathbb{R}\to 2^{\mathbb{R}}$ is upper semicontinuous with compact convex values for a.e. $x\in[0,T]\setminus Q$; \item[(G2)] $\min G,\, \max G:([0,T]\setminus Q)\times\mathbb{R}\to\mathbb{R}$ are Borel measurable; \item[(G3)] $|\xi|\leq a(1+|s|^{r-1})$ for a.e. $x\in[0,T]$, $s\in\mathbb{R}$, $\xi\in G(x,s)$, $r>1$ $(a>0)$. \end{itemize} Impulsive differential equations are used to describe various models of real-world processes that are subject to a sudden change. These models are studied in physics, population dynamics, ecology, industrial robotics, biotechnology, economics, optimal control, and so forth. Associated with this development, a theory of impulsive differential equations has been given extensive attention. Differential inclusions arise in models for control systems, mechanical systems, economical systems, game theory, and biological systems to name a few. It is very important to study anti-periodic boundary value problems because they can be applied to interpolation problems \cite{DelKno}, antiperiodic wavelets \cite{Chen}, the Hill differential operator \cite{DjaMity}, and so on. It is natural from both a physical standpoint as well as a theoretical view to give considerable attention to a synthesis involving problems for impulsive differential inclusion with anti-periodic boundary conditions. Recently, multiplicity of solutions for differential inclusions via non-smooth variational methods and critical point theory has been considered and here we cite the papers \cite{Iann1,Iann2,Kris,KrisMarVar,TianHend}. For instance, in \cite{Kris}, the author, employing a non-smooth Ricceri-type variational principle \cite{Ricceri1}, developed by Marano and Motreanu \cite{MarMot}, has established the existence of infinitely many, radially symmetric solutions for a differential inclusion problem in $\mathbb{R}^N$. Also, in \cite{KrisMarVar}, the authors extended a recent result of Ricceri concerning the existence of three critical points of certain non-smooth functionals. Two applications have been given, both in the theory of differential inclusions; the first one concerns a non-homogeneous Neumann boundary value problem, the second one treats a quasilinear elliptic inclusion problem in the whole $\mathbb{R}^N$. In \cite{Iann1}, the author, under convenient assumptions, has investigated the existence of at least three positive solutions for a differential inclusion involving the $p$-Laplacian operator on a bounded domain, with homogeneous Dirichlet boundary conditions and a perturbed nonlinearity depending on two positive parameters; his result also ensured an estimate on the norms of the solutions independent of both the perturbation and the parameters. Very recently, Tian and Henderson in \cite{TianHend}, based on a non-smooth version of critical point theory of Ricceri due to Iannizzotto \cite{Iann1}, have established the existence of at least three solutions for the problem \eqref{e1.1} whenever $\lambda$ is large enough and $\mu$ is small enough. In the present paper, motivated by \cite{TianHend}, employing an abstract critical point result (see Theorem \ref{the2.6} below), we are interested in ensuring the existence of infinitely many anti-periodic solutions for the problem \eqref{e1.1}; see Theorem \ref{the3.1} below. We refer to \cite{BonaMoliRad}, in which related variational methods are used for non-homogeneous problems. To the best of our knowledge, no investigation has been devoted to establishing the existence of infinitely many solutions to such a problem as \eqref{e1.1}. For a couple of references on impulsive differential inclusions, we refer to \cite{ErbeKraw} and \cite{FrigOreg}. A special case of our main result is the following theorem. \begin{theorem}\label{t1.1} Assume that {\rm(F1)--(F3)} hold, and $I_i(0)=0$, $I_i(s)s<0$, $s\in\mathbb{R}$, $i=1,2,\dots,m$. Furthermore, suppose that \begin{gather*} \liminf_{\xi\to+\infty} \frac{\sup_{|t|\leq\xi}\min\int_0^tF(s)ds}{\xi^p}=0,\\ \limsup_{\xi\to+\infty}\frac{\int_{0}^T\min\int_0^{\xi(\frac{T}{2}-x)} F(s)\,ds\,dx}{\frac{1}{p}\xi^{p}\left(T+\frac{2M}{p+1}(\frac{T}{2})^{p+1}\right) -\sum_{i=1}^m\int_0^{\xi(\frac{T}{2}-x_{i})}I_i(s)ds}=+\infty. \end{gather*} Then, the problem \eqref{e1.1}, for $\lambda=1$ and $\mu=0$, admits a sequence of pairwise distinct solutions. \end{theorem} \section{Basic definitions and preliminary results} Let $(X,\|\cdot\|_X)$ be a real Banach space. We denote by $X^\ast$ the dual space of $X$, while $\langle\cdot,\cdot\rangle$ stands for the duality pairing between $X^\ast$ and $X$. A function $\varphi:X\to\mathbb{R}$ is called locally Lipschitz if, for all $u\in X$, there exist a neighborhood $U$ of $u$ and a real number $L>0$ such that $$ |\varphi(v)-\varphi(w)|\leq L\|v-w\|_X\quad\text{for all } v,w\in U. $$ If $\varphi$ is locally Lipschitz and $u\in X$, the generalized directional derivative of $\varphi$ at $u$ along the direction $v\in X$ is $$ \varphi^\circ(u;v):=\limsup_{w\to u,\,\tau\to 0^+}\frac{\varphi(w+\tau v)-\varphi(w)}{\tau}. $$ The generalized gradient of $\varphi$ at $u$ is the set $$ \partial\varphi(u):=\{u^\ast\in X^\ast : \langle u^\ast,v\rangle\leq\varphi^\circ(u;v)\;\text{for all}\;v\in X\}. $$ So $\partial\varphi:X\to 2^{X^\ast}$ is a multifunction. We say that $\varphi$ has compact gradient if $\partial\varphi$ maps bounded subsets of $X$ into relatively compact subsets of $X^\ast$. \begin{lemma}[{\cite[Proposition 1.1]{MotPan}}] \label{lem2.1} Let $\varphi\in C^1(X)$ be a functional. Then $\varphi$ is locally Lipschitz and \begin{gather*} \varphi^\circ(u;v)=\langle\varphi'(u),v\rangle\quad \text{for all } u,v\in X; \\ \partial\varphi(u)=\{\varphi'(u)\}\quad\text{for all }u\in X. \end{gather*} \end{lemma} \begin{lemma}[{\cite[Proposition 1.3]{MotPan}}] \label{lem2.2} Let $\varphi:X\to\mathbb{R}$ be a locally Lipschitz functional. Then $ \varphi^\circ(u;\cdot)$ is subadditive and positively homogeneous for all $u\in X$, and \[ \varphi^\circ(u;v)\leq L\|v\|\quad\text{for all }u,v\in X, \] with $L>0$ being a Lipschitz constant for $\varphi$ around $u$. \end{lemma} \begin{lemma}[{\cite{Clarke}}] \label{lem2.3} Let $\varphi:X\to\mathbb{R}$ be a locally Lipschitz functional. Then $\varphi^\circ:X\times X\to\mathbb{R}$ is upper semicontinuous and for all $\lambda\geq 0$, $u,v\in X$, $$ (\lambda\varphi)^\circ(u;v)=\lambda\varphi^\circ(u;v). $$ Moreover, if $\varphi,\psi:X\to\mathbb{R}$ are locally Lipschitz functionals, then $$ (\varphi+\psi)^\circ(u;v)\leq\varphi^\circ(u;v)+\psi^\circ(u;v)\quad \text{for all } u,v\in X. $$ \end{lemma} \begin{lemma}[{\cite[Proposition 1.6]{MotPan}}] \label{lem2.4} Let $\varphi,\psi:X\to\mathbb{R}$ be locally Lipschitz functionals. Then \begin{gather*} \partial(\lambda\varphi)(u)=\lambda\partial\varphi(u)\quad \text{for all } u\in X,\,\lambda\in\mathbb{R}, \\ \partial(\varphi+\psi)(u)\subseteq\partial\varphi(u)+\partial\psi(u)\quad \text{for all } u\in X. \end{gather*} \end{lemma} \begin{lemma}[{\cite[Proposition 1.6]{Iann1}}] \label{lem2.5} Let $\varphi:X\to\mathbb{R}$ be a locally Lipschitz functional with a compact gradient. Then $\varphi$ is sequentially weakly continuous. \end{lemma} We say that $u\in X$ is a (generalized) critical point of a locally Lipschitz functional $\varphi$ if $0\in\partial\varphi(u)$; i.e., $$ \varphi^\circ(u;v)\geq 0\quad\text{for all}\;v\in X. $$ When a non-smooth functional, $g:X\to(-\infty,+\infty)$, is expressed as a sum of a locally Lipschitz function, $\varphi:X\to\mathbb{R}$, and a convex, proper, and lower semicontinuous function, $j:X\to(-\infty,+\infty)$; that is, $g:=\varphi+j$, a (generalized) critical point of $g$ is every $u\in X$ such that $$ \varphi^\circ(u;v-u)+j(v)-j(u)\geq 0 $$ for all $v\in X$ (see \cite[Chapter 3]{MotPan}). Hereafter, we assume that $X$ is a reflexive real Banach space, $\mathcal{N}:X\to\mathbb{R}$ is a sequentially weakly lower semicontinuous functional, $\Upsilon:X\to\mathbb{R}$ is a sequentially weakly upper semicontinuous functional, $\lambda$ is a positive parameter, $j:X\to(-\infty,+\infty)$ is a convex, proper, and lower semicontinuous functional, and $D(j)$ is the effective domain of $j$. Write $$ \mathcal{M}:=\Upsilon-j,\quad I_\lambda:=\mathcal{N}-\lambda\mathcal{M} =(\mathcal{N}-\lambda\Upsilon)+\lambda j. $$ We also assume that $\mathcal{N}$ is coercive and \begin{equation}\label{e2.1} D(j)\cap\mathcal{N}^{-1}((-\infty,r))\neq\emptyset \end{equation} for all $r>\inf_X\mathcal{N}$. Moreover, owing to \eqref{e2.1} and provided $r>\inf_X\mathcal{N}$, we can define \begin{gather*} \varphi(r):=\inf_{u\in\mathcal{N}^{-1}((-\infty,r))} \frac{\big(\sup_{v\in\mathcal{N}^{-1}((-\infty,r))}\mathcal{M}(v)\big) -\mathcal{M}(u)}{r-\mathcal{N}(u)}, \\ \gamma:=\liminf_{r\to +\infty}\varphi(r),\quad \delta:=\liminf_{r\to(\inf_X\mathcal{N})^+}\varphi(r). \end{gather*} If $\mathcal{N}$ and $\Upsilon$ are locally Lipschitz functionals, in \cite[Theorem 2.1]{BonaMoli1} the following result is proved; it is a more precise version of \cite[Theorem 1.1]{MarMot} (see also \cite{Ricceri1}). \begin{theorem}\label{the2.6} Under the above assumption on $X,\,\mathcal{N}$ and $\mathcal{M}$, one has \begin{itemize} \item[(a)] For every $r>\inf_X\mathcal{N}$ and every $\lambda\in (0,1/\varphi(r))$, the restriction of the functional $I_\lambda=\mathcal{N}-\lambda\mathcal{M}$ to $\mathcal{N}^{-1}((-\infty,r))$ admits a global minimum, which is a critical point (local minimum) of $I_\lambda$ in $X$. \item[(b)] If $\gamma<+\infty$, then for each $\lambda\in (0,1/\gamma)$, the following alternative holds: either \begin{itemize} \item[(b1)] $I_\lambda$ possesses a global minimum, or \item[(b2)] there is a sequence $\{u_n\}$ of critical points (local minima) of $I_\lambda$ such that $\lim_{n\to+\infty}\mathcal{N}(u_n)=+\infty$. \end{itemize} \item[(c)] If $\delta<+\infty$, then for each $\lambda\in (0,1/\delta)$, the following alternative holds: either \begin{itemize} \item[(c1)] there is a global minimum of $\mathcal{N}$ which is a local minimum of $I_\lambda$, or \item[(c2)] there is a sequence $\{u_n\}$ of pairwise distinct critical points (local minima) of $I_\lambda$, with $\lim_{n\to+\infty}\mathcal{N}(u_n)=\inf_X\mathcal{N}$, which converges weakly to a global minimum of $\mathcal{N}$. \end{itemize} \end{itemize} \end{theorem} Now we recall some basic definitions and notation. On the reflexive Banach space $X:=\{u\in W^{1,p}([0,T]) : u(0)=-u(T)\}$ we consider the norm $$ \|u\|_X:=\Big(\int_0^T\big(|u'(x)|^p+M|u(x)|^p\big) dx\Big)^{1/p} $$ for all $u\in X$, which is equivalent to the usual norm (note that $M\geq 0$). We recall that $X$ is compactly embedded into the space $C^0([0,T])$ endowed with the maximum norm $\|\cdot\|_{C^0}$. \begin{lemma}[{\cite[Lemma 3.3]{TianHend}}] Let $u\in X$. Then \begin{equation} \label{3}\|u\|_{C^0}\leq\frac{1}{2}T^{1/q}\|u\|_X, \end{equation} where $1/p+1/q=1$. \end{lemma} Obviously, $X$ is compactly embedded into $L^\gamma([0,T])$ endowed with the usual norm $\|\cdot\|_{L^\gamma}$, for all $\gamma\geq 1$. \begin{definition}\label{def2.7} \rm A function $u\in X$ is a weak solution of the problem \eqref{e1.1} if there exists $u^\ast\in L^\gamma([0,T])$ (for some $\gamma>1$) such that $$ \int_0^T\Big[\phi_p(u'(x))v'(x)+M\phi_p(u(x))v(x)-u^\ast(x)v(x)\Big]dx -\sum_{i=1}^m I_i(u(x_i))v(x_i)=0 $$ for all $v\in X$ and $u^\ast\in\lambda F(u(x))+\mu G(x,u(x))$ for a.e. $x\in[0,T]$. \end{definition} \begin{definition}\label{def2.8} By a solution of the impulsive differential inclusion \eqref{e1.1} we will understand a function $u:[0,T]\setminus Q\to\mathbb{R}$ is of class $C^1$ with $\phi_p(u')$ absolutely continuous, satisfying \begin{gather*} -(\phi_p(u'(x)))'+M\phi_p(u(x))=u^\ast\quad \text{in } [0,T]\setminus Q,\\ -\Delta\phi_p(u'(x_k))=I_k(u(x_k)),\quad k=1,2,\dots,m,\\ u(0)=-u(T),\quad u'(0)=-u'(T), \end{gather*} where $u^\ast\in\lambda F(u(x))+\mu G(x,u(x))$ and $u^\ast\in L^\gamma([0,T])$ (for some $\gamma>1$). \end{definition} \begin{lemma}[{\cite[Lemma 3.5]{TianHend}}] \label{lem2.9} If a function $u\in X$ is a weak solution of \eqref{e1.1}, then $u$ is a classical solution of \eqref{e1.1}. \end{lemma} We introduce for a.e. $x\in[0,T]$ and all $s\in\mathbb{R}$, the Aumann-type set-valued integral $$ \int_0^s F(t)dt=\Big\{\int_0^s f(t)dt\,:\, f:\mathbb{R}\to\mathbb{R}\text{ is a measurable selection of }F\Big\} $$ and set $\mathcal{F}(u)=\int_0^T\min\int_0^u F(s)\,ds\,dx$ for all $u\in L^p([0,T])$; the Aumann-type set-valued integral $$ \int_0^s G(x,t)dt=\Big\{\int_0^s g(x,t)dt\,:\, g:[0,T]\times\mathbb{R}\to\mathbb{R}\text{ is a measurable selection of }G\Big\} $$ and set $\mathcal{G}(u)=\int_0^T\min\int_0^u G(x,s)\,ds\,dx$ for all $u\in L^p([0,T])$. \begin{lemma}[{\cite[Lemma 3.1]{Iann2}}] \label{lem2.10} The functionals $\mathcal{F,G}:L^p([0,T])\to\mathbb{R}$ are well defined and Lipschitz on any bounded subset of $L^p([0,T])$. Moreover, for all $u\in L^p([0,T])$ and all $u^\ast\in\partial(\mathcal{F}(u)+\mathcal{G}(u))$, $$ u^\ast(x)\in F(u(x))+G(x,u(x))\quad\text{for a.e. }x\in[0,T]. $$ \end{lemma} We define an energy functional for the problem \eqref{e1.1} by setting $$ I_\lambda(u)=\frac{1}{p}\|u\|_X^p-\lambda\mathcal{F}(u)-\mu\mathcal{G}(u) -\sum_{i=1}^m\int_0^{u(x_i)}I_i(s)ds $$ for all $u\in X$. \begin{lemma}[{\cite[Lemma 4.4]{TianHend}}] \label{lem2.11} The functional $I_\lambda:X\to\mathbb{R}$ is locally Lipschitz. Moreover, for each critical point $u\in X$ of $I_\lambda$, $u$ is a weak solution of \eqref{e1.1}. \end{lemma} \section{Main results} We formulate our main result using the following assumptions: \begin{itemize} \item[(F4)] \begin{align*} &\liminf_{\xi\to+\infty}\frac{\sup_{|t|\leq\xi}\min\int_0^tF(s)ds}{\xi^p}\\ &<\frac{1}{p}(\frac{2}{T})^p\limsup_{\xi\to+\infty} \frac{\int_{0}^T\min\int_0^{\xi(\frac{T}{2}-x)} F(s)\,ds\,dx}{\frac{1}{p}\xi^{p}\big(T+\frac{2M}{p+1}(\frac{T}{2})^{p+1}\big) -\sum_{i=1}^m\int_0^{\xi(\frac{T}{2}-x_{i})}I_i(s)ds}; \end{align*} \item[(I1)] $I_i(0)=0$, $I_i(s)s<0$, $s\in\mathbb{R}$, $i=1,2,\dots,m$. \end{itemize} \begin{theorem}\label{the3.1} Assume that {\rm(F1)--(F4), (I1)} hold. Let \begin{gather*} \lambda_1:=1\Big/\limsup_{\xi\to+\infty}\frac{\int_{0}^T\min\int_0^{\xi(\frac{T}{2}-x)} F(s)\,ds\,dx}{\frac{1}{p}\xi^{p}\left(T+\frac{2M}{p+1}(\frac{T}{2})^{p+1}\right) -\sum_{i=1}^m\int_0^{\xi(\frac{T}{2}-x_{i})}I_i(s)ds}, \\ \lambda_2:=1\Big/\liminf_{\xi\to+\infty} \frac{\sup_{|t|\leq\xi}\min\int_0^tF(s)ds}{\frac{1}{p} \left(\frac{2\xi}{T}\right)^p}. \end{gather*} Then, for every $\lambda\in (\lambda_1,\lambda_2)$, and every multifunction $G$ satisfying \begin{itemize} \item[(G4)] $\int_0^{T}\min\int_0^t G(x,s)\,ds\,dx\geq 0$ for all $t\in\mathbb{R}$, and \item[(G5)] $G_\infty:=\lim_{\xi\to+\infty}\frac{\sup_{|t|\leq\xi} \min\int_0^t G(x,s)ds}{\xi^p}<+\infty$, \end{itemize} if we put \[ \mu_{G,\lambda}:=\frac{1}{pG_\infty}\frac{2^{p}}{T^p}\big(1-\lambda\frac{pT^p }{2^p}\liminf_{\xi\to+\infty}\frac{\sup_{|t|\leq\xi} \min\int_0^tF(s)ds}{\xi^p}\big), \] where $\mu_{G,\lambda}=+\infty$ when $G_\infty=0$, problem \eqref{e1.1} admits an unbounded sequence of solutions for every $\mu\in [0,\mu_{G,\lambda})$ in $X$. \end{theorem} \begin{proof} Our aim is to apply Theorem \ref{the2.6}(b) to \eqref{e1.1}. To this end, we fix $\overline{\lambda}\in (\lambda_1,\lambda_2)$ and let $G$ be a multifunction satisfying (G1)--(G5). Since $\overline{\lambda}<\lambda_2$, we have $$ \mu_{G,\overline{\lambda}}=\frac{1}{pG_\infty}\frac{2^{p}}{T^p} \big(1-\overline{\lambda}\frac{pT^p}{2^p} \liminf_{\xi\to+\infty}\frac{\sup_{|t|\leq\xi} \min\int_0^tF(s)ds}{\xi^p}\big)>0. $$ Now fix $\overline{\mu}\in (0,\mu_{g,\overline{\lambda}})$, put $\nu_1:=\lambda_1$, and $$ \nu_2:=\frac{\lambda_2}{1+\frac{pT^p }{2^p}\frac{\overline{\mu}}{\overline{\lambda}}\lambda_2\, G_\infty}. $$ If $G_\infty=0$, then $\nu_1 = \lambda_1$, $\nu_2=\lambda_2$ and $\overline{\lambda}\in (\nu_1,\nu_2)$. If $G_\infty \neq 0$, since $\overline{\mu}<\mu_{G,\overline{\lambda}}$, we have $$ \frac{\overline{\lambda}}{\lambda_2}+\frac{pT^p }{2^p}\overline{\mu}\,G_\infty<1, $$ and so $$ \frac{\lambda_2}{1+\frac{pT^p }{2^p}\frac{\overline{\mu}}{\overline{\lambda}}\lambda_2\, G_\infty} > \overline{\lambda}, $$ namely, $\overline{\lambda}<\nu_2$. Hence, taking into account that $\overline{\lambda}>\lambda_1=\nu_1$, one has $\overline{\lambda}\in(\nu_1,\nu_2)$. Now, set $$ J(x,s):=F(s)+\frac{\overline{\mu}}{\overline{\lambda}}G(x,s) $$ for all $(x,s)\in [0,T]\times\mathbb{R}$. Assume $j$ identically zero in $X$ and for each $u\in X$ put \begin{gather*} \mathcal{N}(u):=\frac{1}{p}\|u\|_X^p-\sum_{i=1}^m\int_0^{u(x_i)}I_i(s)ds,\quad \Upsilon(u):=\int_0^T\min\int_0^u J(x,s)\,ds\,dx, \\ \mathcal{M}(u):=\Upsilon(u)-j(u)=\Upsilon(u), \\ I_{\overline{\lambda}}(u):=\mathcal{N}(u)-\overline{\lambda}\mathcal{M}(u) =\mathcal{N}(u)-\overline{\lambda}\Upsilon(u). \end{gather*} It is a simple matter to verify that $\mathcal{N}$ is sequentially weakly lower semicontinuous on $X$. Clearly, $\mathcal{N}\in C^1(X)$. By Lemma \ref{lem2.1}, $\mathcal{N}$ is locally Lipschitz on $X$. By Lemma \ref{lem2.10}, $\mathcal{F}$ and $\mathcal{G}$ are locally Lipschitz on $L^p([0,T])$. So, $\Upsilon$ is locally Lipschitz on $L^p([0,T])$. Moreover, $X$ is compactly embedded into $L^p([0,T])$. So $\Upsilon$ is locally Lipschitz on $X$. Furthermore, $\Upsilon$ is sequentially weakly upper semicontinuous. For all $u\in X$, by $\rm(I_1)$, $$ \int_0^{u(x_i)}I_i(s)ds<0,\quad i=1,2,\dots,m. $$ So, we have $$ \mathcal{N}(u)=\frac{1}{p}\|u\|_X^p-\sum_{i=1}^m \int_0^{u(x_i)}I_i(s)ds>\frac{1}{p}\|u\|_X^p $$ for all $u\in X$. Hence, $\mathcal{N}$ is coercive and $\inf_X\mathcal{N}=\mathcal{N}(0)=0.$ We want to prove that, under our hypotheses, there exists a sequence $\{\overline{u}_n\}\subset X$ of critical points for the functional $I_{\overline{\lambda}}$, that is, every element $\overline{u}_n$ satisfies $$ I_{\overline{\lambda}}^\circ(\overline{u}_n,v-\overline{u}_n)\geq 0,\quad\text{for every }v\in X. $$ Now, we claim that $\gamma<+\infty$. To see this, let $\{\xi_n\}$ be a sequence of positive numbers such that $\lim_{n\to+\infty}\xi_n=+\infty$ and \begin{equation}\label{e3.1} \lim_{n\to+\infty}\frac{\sup_{|t|\leq \xi_n}\min\int_0^t J(x,s)ds}{\xi_n^p} =\liminf_{\xi\to+\infty}\frac{\sup_{|t|\leq\xi}\min\int_0^t J(x,s)ds}{\xi^p}. \end{equation} Put $$ r_n:=\frac{1}{p}\left(\frac{2\xi_n}{T^{1/q}}\right)^p,\quad \text{for all }n\in\mathbb{N}. $$ Then, for all $v\in X$ with $\mathcal{N}(v)1$ and $\lim_{n\to +\infty}\eta_n=+\infty$, we have $$ \lim_{n\to +\infty}I_{\overline{\lambda}}(w_n) =-\infty. $$ Then, the functional $I_{\overline{\lambda}}$ is unbounded from below, and it follows that $I_{\overline{\lambda}}$ has no global minimum. Therefore, from part (b) of Theorem \ref{the2.6}, the functional $I_{\overline{\lambda}}$ admits a sequence of critical points $\{\overline{u}_n\}\subset X$ such that $\lim_{n\to+\infty}\mathcal{N}(\overline{u}_n)=+\infty.$ Since $\mathcal{N}$ is bounded on bounded sets, and taking into account that $\lim_{n\to+\infty}\mathcal{N}(\overline{u}_n)=+\infty$, then $\{\overline{u}_n\}$ has to be unbounded, i.e., $$ \lim_{n\to +\infty}\|\overline{u}_n\|_X=+\infty. $$ Moreover, if $\overline{u}_n\in X$ is a critical point of $I_{\overline{\lambda}}$, clearly, by definition, one has $$ I_{\overline{\lambda}}^\circ(\overline{u}_n,v-\overline{u}_n)\geq 0,\quad\text{for every }v\in X. $$ Finally, by Lemma \ref{lem2.11}, the critical points of $I_{\overline{\lambda}}$ are weak solutions for the problem \eqref{e1.1}, and by Lemma \ref{lem2.9}, every weak solution of \eqref{e1.1} is a solution of \eqref{e1.1}. Hence, the assertion follows. \end{proof} \begin{remark}\label{rem3.2} \rm Under the conditions \begin{gather*} \liminf_{\xi\to+\infty}\frac{\sup_{|t|\leq\xi}\min\int_0^tF(s)ds}{\xi^p}=0, \\ \limsup_{\xi\to+\infty}\frac{\int_{0}^T\min\int_0^{\xi(\frac{T}{2}-x)} F(s)\,ds\,dx}{\frac{1}{p}\xi^{p}\big(T+\frac{2M}{p+1}(\frac{T}{2})^{p+1}\big) -\sum_{i=1}^m\int_0^{\xi(\frac{T}{2}-x_{i})}I_i(s)ds} =+\infty, \end{gather*} from Theorem \ref{the3.1}, we see that for every $\lambda > 0$ and for each $\mu\in \big[0,\frac{2^p}{pT^p G_\infty}\big)$, problem \eqref{e1.1} admits a sequence of solutions which is unbounded in $X$. Moreover, if $G_\infty=0$, the result holds for every $\lambda>0$ and $\mu\geq 0$. \end{remark} The following result is a special case of Theorem \ref{the3.1} with $\mu = 0$. \begin{theorem}\label{the3.3} Assume that {\rm \rm(F1)--(F4), (I1)} hold. Then, for each \begin{align*} \lambda&\in\Bigg( \frac{1}{\limsup_{\xi\to+\infty}\frac{\int_{0}^T\min\int_0^{\xi(\frac{T}{2}-x)} F(s)\,ds\,dx}{\frac{1}{p}\xi^{p}\big(T+\frac{2M}{p+1}(\frac{T}{2})^{p+1}\big) -\sum_{i=1}^m\int_0^{\xi(\frac{T}{2}-x_{i})}I_i(s)ds}},\\ &\quad \frac{1}{\liminf_{\xi\to+\infty}\frac{\sup_{|t|\leq\xi}\min\int_0^tF(s)ds}{\frac{1}{p} (\frac{2\xi}{T})^p}}\Bigg), \end{align*} the problem \begin{gather*} -(\phi_p(u'(x)))'+M\phi_p(u(x))\in\lambda F(u(x))\quad \text{in } [0,T]\setminus Q,\\ -\Delta\phi_p(u'(x_k))=I_k(u(x_k)),\quad k=1,2,\dots,m,\\ u(0)=-u(T),\quad u'(0)=-u'(T) \end{gather*} has an unbounded sequence of solutions in $X$. \end{theorem} Now, we present the following example to illustrate our results. \begin{example} \label{examp3.4} \rm Consider the problem \begin{equation}\label{e3.7} \begin{gathered} -(\phi_3(u'(x)))'+\phi_3(u(x))\in\lambda F(u(x))\quad \text{in } [0,2]\setminus\{1\},\\ -\Delta\phi_3(u'(x_1))=I_1(u(x_1)),\quad x_1=1,\\ u(0)=-u(2),\quad u'(0)=-u'(2), \end{gathered} \end{equation} where, for $s\in\mathbb{R}$, \begin{equation*} F(s)=\begin{cases} \{0\}, & \text{if } |s|<2^{-1/3},\\ {[0,1]}, & \text{if } |s|=2^{-1/3},\\ \{s-2^{-1/3}+1\}, & \text{if } s>2^{-1/3},\\ \{s+2^{-1/3}+1\}, & \text{if } s<-2^{-1/3}. \end{cases} \end{equation*} Simple calculations show that $$ \sup_{|t|\leq 2^{-1/3}}\min\int_0^tF(s)ds=0 $$ and \begin{align*} &\frac{\int_{0}^2\min\int_0^{\xi(1-x)}F(s)\,ds\,dx}{\frac{5}{6}\xi^{3} -\int_0^{\xi(1-x_1)}I_1(s)ds}\\ &= \frac{6}{5}\frac{1}{\xi^{3}}\int_{-1}^1\min\int_0^{\xi x}F(s)\,ds\,dx\\ &= \frac{6}{5}\frac{1}{\xi^{3}}\Big(\int_{-1}^{-2^{-1/3}}\int_0^{\xi x}\max F(s)\,ds\,dx +\int_{-2^{-1/3}}^{0}\int_0^{\xi x}\max F(s)\,ds\,dx\\ &\quad +\int_{0}^{2^{-1/3}}\int_0^{\xi x}\max F(s)\,ds\,dx +\int_{2^{-1/3}}^{1}\int_0^{\xi x}\max F(s)\,ds\,dx\Big)>0 \end{align*} for some $\xi\in\mathbb{R}$. So, \begin{gather*} \liminf_{\xi\to+\infty}\frac{\sup_{|t|\leq\xi}\min\int_0^tF(s)ds}{\frac{1}{3} \xi^3}=0,\\ \limsup_{\xi\to+\infty}\frac{\int_{0}^2\min\int_0^{\xi(1-x)} F(s)\,ds\,dx}{\frac{5}{6}\xi^{3}-\int_0^{\xi(1-x_1)}I_1(s)ds}>0. \end{gather*} Hence, using Theorem \ref{the3.3}, problem \eqref{e3.7}, for $\lambda$ lying in a convenient interval, has an unbounded sequence of solutions in $X:=\{u\in W^{1,3}([0,2]) : u(0)=-u(2)\}$. \end{example} Here we point out the following consequences of Theorem \ref{the3.3}, using the assumptions \begin{itemize} \item[(F5)] $\liminf_{\xi\to+\infty} \frac{\sup_{|t|\leq\xi}\min\int_0^tF(s)ds}{\xi^p} <\frac{1}{p}\big(\frac{2}{T}\big)^p$; \item[(F6)] $\limsup_{\xi\to+\infty}\frac{\int_{0}^T\min\int_0^{\xi(\frac{T}{2}-x)} F(s)\,ds\,dx}{\frac{1}{p}\xi^{p}\big(T+\frac{2M}{p+1}(\frac{T}{2})^{p+1}\big) -\sum_{i=1}^m\int_0^{\xi(\frac{T}{2}-x_{i})}I_i(s)ds}>1$. \end{itemize} \begin{corollary}\label{cor3.5} Assume that {\rm(F1)--(F3), (F5)--(F6), (I1)} hold. Then, the problem \begin{gather*} -(\phi_p(u'(x)))'+M\phi_p(u(x))\in F(u(x))\quad \text{in }[0,T]\setminus Q,\\ -\Delta\phi_p(u'(x_k))=I_k(u(x_k)),\quad k=1,2,\dots,m,\\ u(0)=-u(T),\quad u'(0)=-u'(T) \end{gather*} has an unbounded sequence of solutions in $X$. \end{corollary} \begin{remark} Theorem \ref{t1.1} in the Introduction is an immediate consequence of Corollary \ref{cor3.5}. \end{remark} Now, we give the following consequence of the main result. \begin{corollary}\label{cor3.7} Let $F_1:\mathbb{R}\to 2^{\mathbb{R}}$ be an upper semicontinuous multifunction with compact convex values, such that $\min F_1, \max F_1:\mathbb{R}\to\mathbb{R}$ are Borel measurable and $|\xi|\leq a(1+|s|^{r_1-1})$ for all $s\in\mathbb{R},\,\xi\in F_1(s),\,r_1>1\,(a>0)$. Furthermore, suppose that \begin{itemize} \item[(C1)] $\liminf_{\xi\to+\infty}\frac{\sup_{|t|\leq\xi}\min\int_0^tF_1(s)ds} {\xi^p}<+\infty$; \item[(C2)] $\limsup_{\xi\to+\infty}\frac{\int_{0}^T\min\int_0^{\xi(\frac{T}{2}-x)} F_1(s)\,ds\,dx}{\frac{1}{p}\xi^{p}\big(T+\frac{2M}{p+1}(\frac{T}{2})^{p+1}\big) -\sum_{i=1}^m\int_0^{\xi(\frac{T}{2}-x_{i})}I_i(s)ds}=+\infty$. \end{itemize} Then, for every multifunction $F_2:\mathbb{R}\to 2^{\mathbb{R}}$ which is upper semicontinuous with compact convex values, $\min F_2, \max F_2:\mathbb{R}\to\mathbb{R}$ are Borel measurable and $|\xi|\leq b(1+|s|^{r_2-1})$ for all $s\in\mathbb{R},\,\xi\in F_2(s),\,r_2>1\,(b>0)$, and satisfies the conditions $$ \sup_{t\in\mathbb{R}}\min\int_0^tF_2(s)ds\leq 0 $$ and $$ \liminf_{\xi\to+\infty}\frac{\int_{0}^T\min\int_0^{\xi(\frac{T}{2}-x)} F_2(s)\,ds\,dx}{\frac{1}{p}\xi^{p}\big(T+\frac{2M}{p+1}(\frac{T}{2})^{p+1}\big) -\sum_{i=1}^m\int_0^{\xi(\frac{T}{2}-x_{i})}I_i(s)ds}>-\infty, $$ for each $$ \lambda\in\Big(0,\ \frac{1}{\liminf_{\xi\to+\infty}\frac{\sup_{|t|\leq\xi}\min\int_0^tF_1(s)ds}{\frac{1}{p} (\frac{2\xi}{T})^p}}\Big), $$ and the problem \begin{gather*} -(\phi_p(u'(x)))'+M\phi_p(u(x))\in\lambda (F_1(u(x))+F_2(u(x)))\quad \text{in } [0,T]\setminus Q,\\ -\Delta\phi_p(u'(x_k))=I_k(u(x_k)),\quad k=1,2,\dots,m,\\ u(0)=-u(T),\quad u'(0)=-u'(T) \end{gather*} has an unbounded sequence of solutions in $X$. \end{corollary} \begin{proof} Set $F(t)=F_1(t)+F_2(t)$ for all $t\in\mathbb{R}$. Assumption (C2) along with the condition $$ \liminf_{\xi\to+\infty}\frac{\int_{0}^T\min\int_0^{\xi(\frac{T}{2}-x)} F_2(s)\,ds\,dx}{\frac{1}{p}\xi^{p}\left(T+\frac{2M}{p+1}(\frac{T}{2})^{p+1}\right) -\sum_{i=1}^m\int_0^{\xi(\frac{T}{2}-x_{i})}I_i(s)ds}>-\infty $$ yield \begin{align*} &\limsup_{\xi\to+\infty}\frac{\int_{0}^T\min\int_0^{\xi(\frac{T}{2}-x)} F(s)\,ds\,dx}{\frac{1}{p}\xi^{p}\big(T+\frac{2M}{p+1}(\frac{T}{2})^{p+1}\big) -\sum_{i=1}^m\int_0^{\xi(\frac{T}{2}-x_{i})}I_i(s)ds}\\ &=\limsup_{\xi\to+\infty}\frac{\int_{0}^T\min\int_0^{\xi(\frac{T}{2}-x)} F_1(s)\,ds\,dx+\int_{0}^T\min\int_0^{\xi(\frac{T}{2}-x)} F_2(s)\,ds\,dx}{\frac{1}{p}\xi^{p}\big(T+\frac{2M}{p+1}(\frac{T}{2})^{p+1}\big) -\sum_{i=1}^m\int_0^{\xi(\frac{T}{2}-x_{i})}I_i(s)ds}=+\infty. \end{align*} Moreover, Assumption (C1) and the condition $$ \sup_{t\in\mathbb{R}}\min\int_0^tF_2(s)ds\leq 0 $$ ensure that $$ \liminf_{\xi\to+\infty}\frac{\sup_{|t|\leq\xi}\min\int_0^tF(s)ds}{\xi^p} \leq\liminf_{\xi\to+\infty}\frac{\sup_{|t|\leq\xi}\min\int_0^tF_1(s)ds}{\xi^p} <+\infty. $$ Since $$ \frac{1}{\liminf_{\xi\to+\infty}\frac{\sup_{|t|\leq\xi}\min\int_0^tF(s)ds}{\frac{1}{p} (\frac{2\xi}{T})^p}}\geq \frac{1}{\liminf_{\xi\to+\infty}\frac{\sup_{|t|\leq\xi}\min\int_0^tF_1(s)ds}{\frac{1}{p} (\frac{2\xi}{T})^p}}, $$ by applying Theorem \ref{the3.3}, we have the desired conclusion. \end{proof} \begin{remark}\label{r3} \rm We observe that in Theorem \ref{the3.1} we can replace $\xi\to+\infty$ with $\xi\to 0^+$, and then by the same argument as in the proof of Theorem \ref{the3.1}, but using conclusion (c) of Theorem \ref{the2.6} instead of (b), problem \eqref{e1.1} has a sequence of solutions, which strongly converges to 0 in $X$. \end{remark} \subsection*{Acknowledgments} Shapour Heidarkhani was supported by a grant 91470046 from IPM. \begin{thebibliography}{99} \bibitem{BonaMoli1} G. Bonanno, G. Molica Bisci; {Infinitely many solutions for a boundary value problem with discontinuous nonlinearities}, \emph{Boundary Value Problems}, \textbf{2009} (2009), 1-20. \bibitem{BonaMoliRad} G. Bonanno, G. Molica Bisci, V. R\u{a}dulescu; {Existence of three solutions for a non-homogeneous Neumann problem through Orlicz-Sobolev spaces,} \emph{Nonlinear Anal.}, \textbf{74} (2011), 4785-4795. \bibitem{Chen} H. L. Chen; {Antiperiodic wavelets}, \emph{J. Comput. Math.}, \textbf{14} (1996), 32-39. \bibitem{Clarke} F. H. Clarke; \emph{Optimization and Nonsmooth Analysis}, {Wiley, New York}, 1983. \bibitem{DelKno} F. J. Delvos, L. Knoche; {Lacunary interpolation by antiperiodic trigonometric polynomials}, \emph{BIT}, \textbf{39} (1999), 439-450. \bibitem{DjaMity} P. Djakov, B. Mityagin; {Simple and double eigenvalues of the Hill operator with a two-term potential}, \emph{J. Approx. Theory}, \textbf{135} (2005), 70-104. \bibitem{ErbeKraw} L. H. Erbe, W. Krawcewicz; {Existence of solutions to boundary value problems for impulsive second order differential inclusions}, \emph{Rocky Mountain J. Math.}, \textbf{22} (1992), 519-539. \bibitem{FrigOreg} M. Frigon and D. O'Regan; {First order impulsive initial and periodic problems with variable moments}, \emph{J. Math. Anal. Appl.}, \textbf{233} (1999), 730-739. \bibitem{Iann1} A. Iannizzotto; {Three critical points for perturbed nonsmooth functionals and applications}, \emph{Nonlinear Anal.}, \textbf{72} (2010), 1319-1338. \bibitem{Iann2} A. Iannizzotto; {Three periodic solutions for an ordinary differential inclusion with two parameters}, \emph{Ann. Polon. Math.}, \textbf{103} (2012), 89-100. \bibitem{Kris} A. Krist\'{a}ly; {Infinitely many solutions for a differential inclusion problem in $\mathbb{R}^N$}, \emph{J. Differential Equations}, \textbf{220} (2006), 511-530. \bibitem{KrisMarVar} A. Krist\'{a}ly, W. Marzantowicz, C. Varga; {A non-smooth three critical points theorem with applications in differential inclusions}, \emph{J. Glob. Optim.}, \textbf{46} (2010), 49-62. \bibitem{MarMot} S. A. Marano, D. Motreanu; {Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the $p$-Laplacian}, \emph{J. Differential Equations}, \textbf{182} (2002), 108-120. \bibitem{MotPan} D. Motreanu, P.D. Panagiotopoulos; \emph{Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities}, {Kluwer Academic Publishers, Dordrecht}, 1999. \bibitem{Ricceri1} B. Ricceri; {A general variational principle and some of its applications}, \emph{J. Comput. Appl. Math.}, \textbf{113} (2000), 401-410. \bibitem{TianHend} Y. Tian, J. Henderson; {Three anti-periodic solutions for second-order impulsive differential inclusions via nonsmooth critical point theory}, \emph{Nonlinear Anal.}, \textbf{75} (2012), 6496-6505. \end{thebibliography} \end{document}