\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 98, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/98\hfil Sublinear Kirchhoff equations] {Infinitely many solutions for sublinear Kirchhoff equations in $\mathbb{R}^N$ with sign-changing potentials} \author[A. Bahrouni \hfil EJDE-2013/98\hfilneg] {Anouar Bahrouni} % in alphabetical order \address{Anouar Bahrouni \newline Mathematics Department, University of Monastir, Faculty of Sciences, 5019 Monastir, Tunisia} \email{bahrounianouar@yahoo.fr, Fax + 216 73 500 278} \thanks{Submitted March 6, 2013, Published April 16, 2013.} \subjclass[2000]{35J60, 35J91, 58E30} \keywords{Kirchhoff equations; symmetric Mountain Pass Theorem; \hfill\break\indent infinitely many solutions} \begin{abstract} In this article we study the Kirchhoff equation $$ -\Big(a+b \int_{\mathbb{R}^N}|\nabla u|^2dx\Big)\Delta u+V(x)u = K(x)|u|^{q-1}u, \quad\text{in }\mathbb{R}^N, $$ where $N\geq 3$, $00$ are constants and $K(x), V(x)$ both change sign in $\mathbb{R}^N$. Under appropriate assumptions on $V(x)$ and $K(x)$, the existence of infinitely many solutions is proved by using the symmetric Mountain Pass Theorem. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article, we study the existence of infinitely many solutions of the nonlinear Kirchhoff equation \begin{equation}\label{3main} \begin{gathered} -\Big(a+b \int_{\mathbb{R}^N}|\nabla u|^2dx\Big)\Delta u+V(x)u = K(x)|u|^{q-1}u, \quad\text{in }\mathbb{R}^N,\\ u\in H^1(\mathbb{R}^N)\cap L^{q+1}(\mathbb{R}^N), \end{gathered} \end{equation} where $N\geq 3$, $00$ such that $V(x)\geq \beta$ for all $|x|\geq R_0$; \item[(A2)] $K\in L^{\infty}(\mathbb{R}^N)$ and there exist $\alpha, R_1, R_2>0$, $y_0=(y_1,\cdots, y_{N})\in \mathbb{R}^N$ such that $K(x)\leq -\alpha$ for all $|x| \geq R_1$ and $K(x)>0$ for all $x\in B(y_0, R_2)$. \end{itemize} Our main result reads as follows. \begin{theorem}\label{thm1.1} Under assumptions {\rm (A1), (A2)}, problem \eqref{3main} admits infinitely many nontrivial solutions. \end{theorem} In the next section we give some notation and preliminary results; and in section 3, we prove theorem \eqref{thm1.1}. \section{Preliminaries} We will us the following notation: Let \[ \|u\|_m=\Big( \int_{\mathbb{R}^N}|u(x)|^{m} dx\Big)^{1/m}, \quad 1\leq m < +\infty. \] Let $2^{\ast}=\frac{2N}{N-2}$ for all $N\geq 3$. Let $B_R$ denote the ball centred in zero of radius $R>0$ in $\mathbb{R}^N$ and $B_R^{c}=\mathbb{R}^N\backslash B_R$. Let $F'(u):$ the Fr\'echet derivative of $F$ at $u$. For $s$, be the Sobolev constant in $$ \|u\|_{2^{\ast}}\leq s \|\nabla u\|_2, \quad \forall u\in H^1(\mathbb{R}^N). $$ Let $E=H^1(\mathbb{R}^N)\cap L^{q+1}(\mathbb{R}^N)$, $00$ such that \begin{align*} c &\geq I(u_n)\\ &=\frac{b}{4}\Big( \int_{\mathbb{R}^N}|\nabla u_n|^2dx\Big)^2 +\frac{a}{2} \int_{\mathbb{R}^N} |\nabla u_n|^2dx + \frac{1}{2} \int_{\mathbb{R}^N}V(x) u_n^2 dx \\ &\quad -\frac{1}{q+1} \int_{\mathbb{R}^N}K(x)|u_n|^{q+1} dx \\ &\geq\frac{b}{4} ( \int_{\mathbb{R}^N} |\nabla u_n|^2dx)^2 -\frac{1}{2} \int_{\mathbb{R}^N}V^{-}(x)u_n^2 dx -\frac{1}{q+1} \int_{\mathbb{R}^N} K^{+}(x) | u_n |^{q+1} dx\\ &\geq \frac{b}{4} \|\nabla u_n\|_2^{4}-\frac{s^2}{2}\| V^{-}\|_{N/2} \| \nabla u_n\|_2^2- s^{q+1}\| K^{+}\|_{\frac{2^{\ast}}{2^{\ast}-q-1}} \| \nabla u_n\|_2^{q+1}. \end{align*} Hence, there exists $\gamma_0>0$ such that \begin{equation}\label{kgrad} \|\nabla u_n\|_2\leq \gamma_0, \quad \forall n \in \mathbb{N}. \end{equation} On the other hand, there exists $c>0$ such that \begin{align*} c+\frac{\|u_n\|}{4} &\geq -\frac{1}{4} \langle I'(u_n),u_n\rangle+I( u_n)\\ &=\frac{a}{4} \int_{\mathbb{R}^N}|\nabla u_n|^2dx +\frac{1}{4} \int_{\mathbb{R}^N}V(x)u_n^2dx +(\frac{1}{4}-\frac{1}{q+1}) \int_{\mathbb{R}^N}K(x)|u_n|^{q+1}dx \\ & \geq (\frac{1}{q+1}-\frac{1}{4}) \int_{\mathbb{R}^N}(K^{-}(x) +\chi_{B_{R_1}}(x)) |u_n|^{q+1} dx \\ &\quad -(\frac{1}{q+1}-\frac{1}{4}) \int_{\mathbb{R}^N}(K^{+}(x) +\chi_{B_{R_1}}(x)) |u_n|^{q+1} dx -\frac{1}{4} \int_{\mathbb{R}^N}V^{-}(x)u_n^2dx\\ &\geq (\frac{1}{q+1}-\frac{1}{4}) \min(\alpha, 1) \int_{\mathbb{R}^N}|u_n|^{q+1}(x) dx-\frac{s^2 \|V^{-}\|_{N/2}}{4}\|\nabla u_n\|^2\\ &\quad -s^{q+1}(\frac{1}{q+1}-\frac{1}{4})\|K^{+} +\chi_{B_{R_1}}\|_{\frac{2^{\ast}}{2^{\ast}-q-1}} \|\nabla u_n\|_2^{q+1}. \end{align*} Therefore, by using \eqref{kgrad}, we obtain \begin{equation}\label{kq} \|u_n\|_{q+1}\leq \gamma_1, \quad\text{for some } \gamma_1>0. \end{equation} Combining \eqref{kgrad} and \eqref{kq}, we conclude the proof. \end{proof} We need the following Lemma to prove that the Palais-Smale condition is satisfied for $I$ on $E$. \begin{lemma}\label{apprendix} Let $x$ and $y$ two arbitrary real numbers, then there exists a constant $c>0$ such that \begin{equation}\label{xy} \big||x+y|^{q+1}-|x|^{q+1}-|y|^{q+1}\big|\leq c |x|^qy \end{equation} \end{lemma} \begin{proof} If $x=0$, the inequality \eqref{xy} is trivial. Suppose that $x\neq 0$. We consider the continuous function $f$ defined on $\mathbb{R}\backslash \{0\}$ by $$ f(t)=\frac{|1+t|^{q+1}-|t|^{q+1}-1}{|t|}. $$ Note that $ \lim_{|t|\to +\infty}f(t)=0$ and $\lim_{t\to 0\pm}f(t)=\pm (q+1)$. Then there exists a constant $c>0$ such that $|f(t)|\leq c$, for all $t\in \mathbb{R}\backslash \left\{0\right\}$. In particular $|f(\frac{y}{x})|\leq c$, so $$ \big||1+\frac{y}{x}|^{q+1}-|\frac{y}{x}|^{q+1}-1\big|\leq c |\frac{y}{x}|, $$ multiplying by $|x|^{q+1}$, we obtain the desired result. \end{proof} \begin{lemma}\label{kPalais-Smalee} Assume that {\rm (a1), (A2)} hold. Then $I$ satisfies the Palais-Smale condition in $E$. \end{lemma} \begin{proof} Let $(u_n)$ be a $(PS)$ sequence. By Lemma \eqref{kbounded}, $(u_n)$ is bounded in $E$. Then there exists a subsequence $u_n\rightharpoonup u$ in $E$, $u_n\to u$ in $L^{p}_{Loc}(\mathbb{R}^N)$ for all $1\leq p\leq 2^{\ast}$ and $u_n\to u$ a.e in $\mathbb{R}^N$. By \cite{d1}, it is sufficient to prove that for any $\epsilon>0$, there exist $R_{3}>0$ and $n_0\in \mathbb{N}^{\ast}$ such that $$ \int_{|x|\geq R_{3}}(|\nabla u_n|^2+|u_n|^{q+1})dx \leq \epsilon, \quad \text{for all } R\geq R_{3} \text{ and } n\geq n_0. $$ Let $\phi_R$ be a cut-off function so that $\phi_R=0$ on $B_{ \frac{R}{2}}$, $\phi_R=1$ on $B^{c}_R$, $0<\phi_R<1$ and \begin{equation}\label{22} |\nabla \phi_R|(x)\leq \frac{c}{R}, \quad\text{for all }x\in \mathbb{R}^N. \end{equation} We can easily remark that for any $u\in E$ and $R\geq 1$, \begin{equation}\label{23} \|\phi_R u\|\leq c \|u\|. \end{equation} Since $I'(u_n)\to 0$ in $E'$ as $n\to +\infty$, we know that for any $\epsilon>0$, there exists $n_0>0$ such that $$ |\langle I'(u_n), \phi_Ru_n\rangle|\leq c \|I'(u_n)\|_{E'} \|u_n\|\leq \frac{\epsilon}{3}, \quad \forall n\geq n_0; $$ that is, $n\geq n_0$. Then \begin{align*} &(a+b \int_{\mathbb{R}^N}|\nabla u_n|^2dx) \int_{\mathbb{R}^N}|\nabla u_n|^2\phi_R(x)dx\\ &+ \int_{\mathbb{R}^N}V(x)| u_n|^2\phi_R(x)dx - \int_{\mathbb{R}^N}K(x)| u_n|^{q+1} \phi_R(x)dx\leq \frac{\epsilon}{3}. \end{align*} Hence, \begin{equation} \label{k} \begin{aligned} &\int_{\mathbb{R}^N}(a|\nabla u_n|^2+(K^{-} +\chi_{B_{R_1}})(x)|u_n|^{q+1})\phi_R(x)dx \\ &\leq \int_{\mathbb{R}^N} V^{-}(x)u_n^2\phi_Rdx -a\int_{\mathbb{R}^N}u_n \nabla u_n \nabla \phi_Rdx\\ &\quad +\int_{\mathbb{R}^N}(K^{+}+\chi_{B_{R_1}})(x) |u_n|^{q+1}\phi_R dx +\frac{\epsilon}{3}. \end{aligned} \end{equation} By H\"older inequality and \eqref{22}, there exists $R_4>0$ such that \begin{equation}\label{25} \int_{\mathbb{R}^N} u_n\nabla u_n\nabla \phi_Rdx \leq \frac{c}{R} < \frac{\epsilon}{3}, \quad \forall |x|\geq R_4. \end{equation} From (A1) and (A2), there exists $R_5>0$ such that \begin{equation} \label{v} \begin{aligned} &\int_{\mathbb{R}^N} V^{-}(x)u_n^2 \phi_R dx +\int_{\mathbb{R}^N}(K^{+}+\chi_{B_{R_1}})(x)|u_n|^{q+1} dx\\ &\leq c \|V^{-} \phi_R\|_{N/2} +c\|(K^{+}+\chi_{B_{ R_1}}) \phi_R\|_{\frac{2^{\ast}}{2^{\ast}-q-1}}\\ &\leq \frac{\epsilon}{3} \quad \text{for } |x|\geq R_5. \end{aligned} \end{equation} Put $R_3=\max(R_4,R_5)$. By \eqref{k}, \eqref{25} and \eqref{v}, we have $$ \min(a,\min(\alpha,1))\int_{\mathbb{R}^N}(|\nabla u_n|^2+|u_n|^{q+1})\phi_R dx \leq \epsilon. $$ The proof is complete. \end{proof} \begin{lemma}\label{cubee} Assume {\rm (A1), (A2)} hold. Then for each $k\in \mathbb{N}$, there exists an $A_k \in \Gamma_k$ such that $$ \sup_{u\in A_k} I(u)<0. $$ \end{lemma} \begin{proof} We use the following geometric construction introduced by Kajikiya \cite{k1}: Let $R_2$ and $y_0$ be fixed by assumption (A1) and consider the cube $$ D(R_2)=\{(x_1,\cdots,x_{N})\in{\mathbb{R}^N}: |x_i-y_i|0$ such that $$ \|u\|^2 \leq \alpha_k \quad\text{for all } u\in W_k. $$ we need to recall the inequality \begin{equation}\label{interpolation} \| u\|_2\leq c \|\nabla u\|_2^{r} \|u\|_{q+1}^{1-r}\leq c \|u\| \end{equation} with $r=\frac{2^{\ast} (q-1)}{2(2^{\ast}-q-1)}$. Then, there is a constant $c_k>0$ such that $$ \|u \|_2^2 \leq c_k \quad\text{for all } u\in W_k. $$ Let $z>0$ and $u=\sum_{i=1}^{k}t_i \psi_i(x) \in W_k$, \begin{equation} \label{pre maj} I (z u) \leq z^{4}b\frac{\alpha_k^2}{4}+\frac{az^2}{2}\alpha_k+z^2 \frac{\|V\|_{\infty}}{2} c_k-\frac{1}{q+1}\sum_{i=1}^{k} \int_{D_i} K(x) |z t_i \psi_i|^{q+1} dx. \end{equation} By \eqref{l'en V}, there exists $j \in [1,k]$ such that $|t_{j}|=1$ and $|t_i|\leq 1$ for $i\neq j$. Then \begin{equation} \label{deux maj} \begin{aligned} &\sum_{i=1}^{k} \int_{D_i} K(x) |z t_i \psi_i|^{q+1} dx \\ &= \int_{E_{j}}K(x) |z t_{j} \psi_{j}|^{q+1} dx + \int_{D_{j}\backslash E_{j}}K(x) |z t_{j} \psi_{j}|^{q+1} dx +\sum_{i\neq j}\int_{D_i}K(x) |z t_i \psi_i|^{q+1} dx\,. \end{aligned} \end{equation} Since $\psi_{j}(x)=1$ for $x\in E_{j}$ and $|t_{j}|=1$, we have \begin{equation} \label{troi maj} \int_{E_{j}}K(x) |z t_{j} \psi_{j}|^{q+1} dx = |z|^{q+1} \int_{E_{j}}K(x)dx. \end{equation} On the other hand by (A1) we obtain \begin{equation}\label{quat maj} \int_{D_{j}\backslash E_{j}}K(x) |z t_{j} \psi_{j}|^{q+1} dx + \sum_{i\neq j} \int_{D_i}K(x) |z t_i \psi_i|^{q+1} dx\geq 0. \end{equation} From \eqref{pre maj}, \eqref{deux maj}, \eqref{troi maj} and \eqref{quat maj}, we obtain \begin{equation*} \frac{I(z u)}{z^2}\leq z^2\frac{b\alpha_k^2}{4}+\frac{a\alpha_k}{2} + \frac{\|V\|_{\infty}}{2} c_k - \frac{|z|^{q+1}}{z^2} \inf_{1\leq i \leq k}\Big( \int_{E_i}K(x) dx\Big). \end{equation*} It follows that $$ \lim_{z\to 0} \sup_{u\in W_k} \frac{I(z u)}{z^2}=-\infty. $$ We fix $z$ small such that $$ \sup\{I(u), u\in A_k\} < 0, \quad\text{where }A_k=z W_k \in \Gamma_k. $$ The proof is complete. \end{proof} \begin{proof}[Proof of Theorem \eqref{thm1.1}] Evidently, $I(0)=0$ and $I$ is an odd functional. Then by Lemmas \eqref{kbelow}, \eqref{kPalais-Smalee} and \eqref{cubee}, conditions (1) and (2) of Theorem \ref{thm2.2} are satisfied. Then, by Theorem \ref{thm2.2}, problem \eqref{3main} admits an infinitely many solutions $(u_k)\in E$ which converging to $0$ and $u_0$ can be supposed nonnegative since $$ I(u_0)=I(|u_0|). $$ \end{proof} \begin{thebibliography}{99} \bibitem{a1} C. O. Alves, G. M. Figueiredo; \emph{Nonlinear perturbations of a periodic Kirchhoff equation in $\mathbb{R}^N$}, Nonlinear Anal, Vol. 75 (2012), 2750-2759. \bibitem{a2} A. Ambrosetti, P. H. Rabinowitz; \emph{Dual variational methods in critical point theory and applications}. J. Funct. Anal. Vol. 14 (1973), 349- 381. \bibitem{a3} A. Azzollini; \emph{The elliptic Kirchhoff equation in $\mathbb{R}^N$ perturbed by a local nonlinearity}, Differential Integral Equations Vol. 25\ (2012), 543-554. \bibitem{b1} A. Bahrouni, H. Ounaies, V. Radulescu; \emph{Infinitely many solutions for a class of sublinear Schr\"odinger equations with sign-changing potentials}, preprint. \bibitem{b2} S. Bernstein; \emph{Sur une classe d'\'equations fonctionnelles aux d\'eriv\'ees partielles}, Bull. Acad. Sci. URSS. Sér. Math. Vol. 4 (1940), 17-26. \bibitem{c1} J. Chabrowski, D. G. Costa; \emph{On a class of Schr\"odinger-type equations with indefinite weight functions}, Comm. Partial Differential Equations, Vol. 33 (2008) 1368-1394. \bibitem{c2} F. Colasuonno, P. Pucci; \emph{Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations}, Nonlinear Anal, Vol. 74 (2011), 5962-5974. \bibitem{d1} M. del Pino, P. Felmer; \emph{Local mountain passes for semilinear elliptic problems in unbounded domains}, Calc. Var. Partial Differential Equations, Vol. 4 (1996), 121 - 137. \bibitem{h1} X. He, W. Zou; \emph{Multiplicity of solutions for a class of Kirchhoff type problems}, Acta Math. Appl. Sin., Vol. 26 (2010), 387-394. \bibitem{h2} X. He, W. Zou; \emph{Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^N$}, J. Differential Equations, Vol. 252 (2012), 1813-1834. \bibitem{h3} X. He, W. Zou; \emph{Infinitely many positive solutions for Kirchhoff-type problems}, Nonlinear Anal, Vol. 70 (2009), 1407-1414. \bibitem{h4} X. He, W. Liu; \emph{Multiplicity of high energy solutions for superlinear Kirchhoff equations}, J. App. Math Comput, Vol. 39 (2012), 473-487. \bibitem{k1} R. Kajikiya; \emph{A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations}, J. Funct. Anal. Vol. 225 (2005), 352 - 370. \bibitem{k2} G. Kirchhoff \emph{Mechanik} Teubner, Leipzig, 1883. \bibitem{l1} J. L. Lions; \emph{On some questions in boundary value problems of mathematical physics}, Contemporary Developments in Continuum Mechanics and Partial Differential Equations. Proc. Internat. Sympos. Inst. Mat. Univ. Fed. Rio de Janeiro, 1997. North-Holland Math. Stud., vol. 30 (1978), 284-346. \bibitem{m1} T. F. Ma, J. E. Mu\~noz Rivera; \emph{Positive solutions for a nonlinear nonlocal elliptic transmission problem}, Appl. Math. Lett. Vol. 16 (2003), 243-248. \bibitem{n1} J. Nie, X. Wu; \emph{Existence and multiplicity of non-trivial solutions for Schr\"odinger-Kirchhoff-type equations with radial potential}, Nonlinear Anal. Vol. 75 (2012), 3470-3479. \bibitem{p1} S. I. Poho\^zaev; \emph{A certain class of quasilinear hyperbolic equations}. Mat. Sb. Vol. 96 (1975), 152-168. \bibitem{w1} L. Wang; \emph{On a quasilinear Schr\"odinger-Kirchhoff-type equation with radial potentials}, Nonlinear Anal, Vol. 83 (2013), 58-68. \bibitem{w2} Q. Wang, Q. Zhang; \emph{Multiple solutions for a class of sublinear Schr\"odinger equations}. J. Math. Anal. App. Vol. 389 (2012), 511-518. \end{thebibliography} \end{document}