\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 05, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/05\hfil Existence of nontrivial solutions] {Existence of nontrivial solutions for a quasilinear Schr\"odinger equations with sign-changing potential} \author[X.-D. Fang, Z.-Q. Han \hfil EJDE-2014/05\hfilneg] {Xiang-Dong Fang, Zhi-Qing Han} % in alphabetical order \address{Xiang-Dong Fang \newline School of Mathematical Sciences, Dalian University of Technology\\ 116024 Dalian, China} \email{fangxd0401@gmail.com, Phone +86 15840980504} \address{Zhi-Qing Han (Corresponding author)\newline School of Mathematical Sciences, Dalian University of Technology\\ 116024 Dalian, China} \email{hanzhiq@dlut.edu.cn} \thanks{Submitted September 13, 2013. Published January 3, 2014.} \subjclass[2000]{35A01, 35A15, 35Q55} \keywords{Quasilinear Schr\"odinger equation; sign-changing potential; \hfill\break\indent Cerami sequences} \begin{abstract} In this article we consider the quasilinear Schr\"odinger equation where the potential is sign-changing. We employ a mountain pass argument without compactness conditions to obtain the existence of a nontrivial solution. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this paper we are concerned with the existence of a nontrivial solution for the quasilinear Schr\"odinger equation \begin{equation} \label{f1} -\Delta u+V(x)u-\Delta(u^{2})u=f(x,u), \quad x\in \mathbb{R}^{N} \end{equation} These type of equations come from the study of the standing wave solutions of quasilinear Schr\"odinger equations derived as models for several physical phenomena; see \cite{poppenberg}. The case $\inf_{\mathbb{R}^N}V(x)>0$ has been extensively studied in recent years. However, to our best knowledge, there is no result for the other important case $\inf_{\mathbb{R}^N}V(x)<0$. The various methods developed for the quasilinear Schr\"{o}dinger equations do not seem to apply directly in this case. In this article, we assume that the potential is sign-changing and the nonlinearity is more general than in other articles. Some authors recover the compactness by assuming that the potential $V(x)$ is either coercive or has radial symmetry, see \cite{deng,wang1,wang3,poppenberg}. Here we do not need the compactness, but we assume the potential bounded from above, but may be unbounded from below. We consider the case $\mathbb{N}\geq 3$. This work is motivated by the ideas in \cite{colin1,silva,szulkin,zhang}. First we consider the problem \begin{equation} \label{f1b} -\Delta u+V(x)u-\Delta(u^{2})u=g(x,u)+h(x), \quad u\in H^1(\mathbb{R}^N). \end{equation} We suppose that $V$ and $g$ satisfy the following assumptions: \begin{itemize} \item[(G1)] $g$ is continuous, and $|g(x,u)|\leq a(1+|u|^{p-1})$ for some $a>0$ and $44$ such that $0< \theta G(x,u)\leq g(x,u)u$, $\text{for} \ x\in \mathbb{R}^N$, $u\in \mathbb{R}\backslash \{0\}$, where $G(x,u):=\int_{0}^{u}g(x,s)ds$. \item[(V1)] $V(x)$ is sign-changing, $V^+(x)\in L^{\infty}(\mathbb{R}^N)$, $\lim_{|x|\to\infty}V^+(x)=a_0>0$ and $|V^{-}|_{L^{N/2}(\mathbb{R}^N)}<\frac{\theta -4}{S(\theta -2)}$, where $V^{\pm}(x):=\max\{\pm V(x),0\}$, and $S$ denotes the Sobolev optimal constant. \item[(V2)] $\int_{\mathbb{R}^N}|\nabla u|^2+V(x)u^2>0$ for every $u\in E\setminus \{0\}$. \item[(H1)] $h\neq 0$ and $|h|_{L^{2N/(N+2)}}0$ such that $V(x)\geq a_0$ for all $x\in \mathbb{R}^N$. It is obvious that the condition in Theorem \ref{thm1.1} is satisfied, so we have a bounded $(C)_c$ sequence by the proof of Theorem \ref{thm1.1}. Similarly as in \cite[Lemma 1.2]{silva}, under a translation if necessary, we get a nontrivial solution. \end{remark} Also, we consider the problem \begin{equation} \label{p2} -\Delta u+V(x)u-\Delta(u^{2})u=g(u), \quad u\in H^1(\mathbb{R}^{N}), \end{equation} where the nonlinearity $g$ satisfies (G1)--(G3). We assume that \begin{itemize} \item[(V1')] $V(x)$ is sign-changing, $\lim_{|x|\to\infty}V^+(x)=V^+(\infty)>0$, $V^+(x)\leq V^+(\infty)$ on $\mathbb{R}^N$ and $|V^{-}|_{L^{N/2}(\mathbb{R}^N)}<(\theta -4)/(S(\theta -2))$. \end{itemize} Note that (V1') implies (V1). The second main result of this paper, which we prove in Section 4, is the following. \begin{theorem} \label{thm1.2} Suppose that {\rm (V1'), (V2)} are satisfied. Then \eqref{p2} admits a nontrivial solution. \end{theorem} \begin{remark} \label{rmk2} \rm We would like to point out that (V1') is weaker than the assumptions (V0) and (V1) in \cite{colin1}. But they obtain the existence of a positive solution, while we do not. \end{remark} Positive constants will be denoted by $C, C_{1}, C_{2},\dots$, while $|A|$ will denote the Lebesgue measure of a set $A\subset\mathbb{R}^N$. \section{Preliminary results} \label{pr} We observe that \eqref{f1} is the Euler-Lagrange equation associated with the energy functional \begin{equation} \label{f2} J(u) :=\frac{1}{2}\int_{\mathbb{R}^N}(1+2u^{2})|\nabla u|^{2} +\frac{1}{2}\int_{\mathbb{R}^N}V(x)u^{2}-\int_{\mathbb{R}^N}(G(x,u)+h(x)u). \end{equation} To use the usual argument, we make a change of variables $v:=f^{-1}(u)$, where $f$ is defined by \[ f'(t)=\frac{1}{(1+2f^{2}(t))^{1/2}}\text{on } [0,+\infty) \quad \text{and} \quad f(t)=-f(-t) \text{on } (-\infty ,0]. \] Below we summarize the properties of $f$, whose can be found in \cite{colin1, severo, severo1}. \begin{lemma} \label{lem2.1} The function $f$ satisfies the following properties: \begin{itemize} \item[(1)] $f$ is uniquely defined, $C^{\infty}$ and invertible; \item[(2)] $|f'(t)|\leq 1$ for all $t\in \mathbb{R}$; \item[(3)] $|f(t)|\leq |t|$ for all $t\in \mathbb{R}$; \item[(4)] $f(t)/t\to 1$ as $t\to 0$; \item[(5)] $f(t)/\sqrt{t}\to 2^{1/4}$ as $t\to +\infty$; \item[(6)] $f(t)/2\leq tf'(t)\leq f(t)$ for all $t\in \mathbb{R}$; \item[(7)] $|f(t)|\leq 2^{1/4}|t|^{1/2}$ for all $t\in \mathbb{R}$; \item[(8)] $f^{2}(t)-f(t)f'(t)t\geq 0$ for all $t\in \mathbb{R}$; \item[(9)] there exists a positive constant $C$ such that $|f(t)|\geq C|t|$ for $|t|\leq 1$ and $|f(t)|\geq C|t|^{1/2}$ for $|t|\geq 1$; \item[(10)] $|f(t)f'(t)| < 1/\sqrt{2}$ for all $t\in \mathbb{R}$. \end{itemize} \end{lemma} Consider the functional $$ I(v): =\frac{1}{2}\int_{\mathbb{R}^N}|\nabla v|^{2} +\frac{1}{2}\int_{\mathbb{R}^N}V(x)f^{2}(v) -\int_{\mathbb{R}^N}(G(x,f(v))+h(x)f(v)). $$ Then $I$ is well-defined on $E$ and $I\in C^{1}(E,\mathbb{R})$ under the hypotheses (V1), (G1) and (G2). It is easy to see that \[ %\label{f4} \langle I'(v),w\rangle =\int_{\mathbb{R}^N} \nabla v \nabla w+\int_{\mathbb{R}^N}V(x)f(v)f'(v)w -\int_{\mathbb{R}^N}(g(x,f(v))+h(x))f'(v)w \] for all $v,w\in E$ and the critical points of $I$ are weak solutions of the problem $$ -\Delta v+V(x)f(v)f'(v)=(g(x,f(v))+h(x))f'(v), \quad v\in E. $$ If $v\in E$ is a critical point of the functional $I$, then $u=f(v)\in E$ and $u$ is a solution of \eqref{f1} (cf: \cite{colin1}). \section{Proof of Theorem \ref{thm1.1}} %\label{t1} In the following we assume that (V1), (V2), (G1)--(G3) and (H1) are satisfied. First, (G1) and (G2) imply that for each $\varepsilon>0$ there is $C_\varepsilon >0$ such that \begin{equation} \label{subcritical} |g(x,u)|\leq \varepsilon |u|+C_{\varepsilon}|u|^{p-1}\quad \text{for all } u\in \mathbb{R}. \end{equation} \begin{lemma} \label{lem3.2} There exist $\xi,\alpha>0$ such that $\int_{\mathbb{R}^N}|\nabla u|^{2}+\int_{\mathbb{R}^N}V(x)f^2(u) \geq \alpha \|u\|^2$, if $\|u\|=\xi$. \end{lemma} \begin{proof} Arguing by contradiction, there exist $u_n\to 0$ in $E$, such that $$ \int_{\mathbb{R}^N}|\nabla v_{n}|^{2}+V(x)\frac{f^{2}(u_n)}{u^2_n}v^2_n\to 0. $$ where $v_n:=\frac{u_n}{\|u_n\|}$. We have that $u_n\to 0$ in $L^2(\mathbb{R}^N)$, $u_n\to 0$ a.e., $v_n\rightharpoonup v$ in $E$, $v_n\to v$ in $L^{2}_{loc}$, $v_n\to v$ a.e. up to a subsequence. If $v\neq 0$, then we claim that $$ \liminf_{n\to \infty}\int_{\mathbb{R}^N}|\nabla v_{n}|^{2} +V(x)\frac{f^{2}(u_n)}{u^2_n}v^2_n \geq \int_{\mathbb{R}^N}|\nabla v|^{2}+V(x)v^2. $$ Indeed, we have $$ \liminf_{n\to \infty}\int_{\mathbb{R}^N}V^+(x)\frac{f^{2}(u_n)}{u^2_n}v^2_n \geq \int_{\mathbb{R}^N}V^+(x)v^2 $$ due to Fatou's lemma and Lemma \ref{lem2.1}-(4). Since $v^2_n\rightharpoonup v^2$ in $L^{N/(N-2)}$ and $V^-(x)\in L^{N/2}$, we obtain $$ \int_{\mathbb{R}^N}V^-(x)\frac{f^{2}(u_n)}{u^2_n}v^2_n \leq \int_{\mathbb{R}^N}V^-(x)v^2_n\to \int_{\mathbb{R}^N}V^-(x)v^2 $$ by Lemma \ref{lem2.1}(3) and the definition of the weak convergence. We have a contradiction to (V2). The other case is $v=0$. Note that $\lim_{n\to \infty}\int_{\mathbb{R}^N}V^-(x)\frac{f^{2}(u_n)}{u^2_n}v^2_n=0$, then $$ \int_{\mathbb{R}^{N}}(|\nabla v_{n}|^{2}+V^+(x)v_{n}^{2}) +\int_{\mathbb{R}^{N}}V^+(x)\Big(\frac{f^{2}(u_{n})}{u_{n}^{2}}-1\Big) v_{n}^{2}\to 0. $$ We use a similar argument as in \cite[Lemma 3.3]{fang}. Since $u_n\to 0$ in $L^2(\mathbb{R}^N)$, for every $\varepsilon >0$, $|\{x\in \mathbb{R}^N:|u_n(x)|>\varepsilon\}|\to 0$ as $n\to\infty$. We have by (V1), Lemma \ref{lem2.1}(3) and the H\"older inequality, \begin{align*} \big|\int_{|u_n|>\varepsilon}V^+(x) \Big(\frac{f^{2}(u_{n})}{u_{n}^{2}}-1\Big)v_{n}^{2}\big| &\leq C\int_{|u_n|>\varepsilon}v^2_n\\ &\leq |\{x\in \mathbb{R}^N:|u_n(x)|>\varepsilon\}|^{2/N}|v_n|^2_{2^*}\to 0. \end{align*} Now it follows from Lemma \ref{lem2.1}(4) and $\int_{\mathbb{R}^N}V^+(x)v^2_n\leq C_1$ that $$ \int_{|u_n|<\varepsilon}V^+(x)\Big(\frac{f^{2}(u_{n})}{u_{n}^{2}}-1\Big) v_{n}^{2} $$ is small as $\varepsilon$ is small. So $v_n\to 0$ in $E$ which contradicts to $\|v_n\|=1$. We finish the proof. \end{proof} \begin{lemma} \label{lem3.3} There exist $k,\rho>0$(small) such that $\inf_{\|u\|=\rho}I_1(u)\geq k\rho^{2}$, where $I_1(u):=I(u)+\int_{\mathbb{R}^N}h(x)f(u)$. \end{lemma} \begin{proof} Due to (G1) and (G2), we have for each $\varepsilon>0$, there exists $C_\varepsilon>0$, such that $ |g(x,u)|\leq \varepsilon |u|+C_\varepsilon |u|^{p-1}$. So it follows from a standard argument by Lemma \eqref{lem2.1}(3),(7) and Lemma \ref{lem3.2} that $I_1(u)\geq k\|u\|^2=k\rho^{2}$. \end{proof} \begin{lemma} \label{lem3.8} For the above $\rho$, $\inf_{\|u\|=\rho}I(u)>0$. \end{lemma} \begin{proof} By Lemma \ref{lem3.3} and Lemma \ref{lem2.1}-(3), we derive \begin{align*} I(u) &\geq k\|u\|^2-\int_{\mathbb{R}^N}h(x)f(u)\\ &\geq k\|u\|^2-|h|_{L^{2N/(N+2)}}S^{1/2} \Big(\int_{\mathbb{R}^N}|\nabla u|^2\Big)^{1/2}\\ &\geq k\|u\|^2-|h|_{L^{2N/(N+2)}}S^{1/2}\|u\|\\ &= \|u\|(k\|u\|-|h|_{L^{2N/(N+2)}}S^{1/2})>0\\ \end{align*} \end{proof} \begin{lemma} \label{lem3.4} There exists $u_0\neq 0$, such that $I(u_0)\leq 0$. \end{lemma} \begin{proof} We have by condition (G3) and Lemma \ref{lem2.1}(3), $$ \int_{u\neq 0}\frac{G(x,f(tu))}{t^4}=\int_{u\neq 0} \frac{G(x,f(tu))}{f^4(tu)}\frac{f^4(tu)}{t^4 u^4}u^4\to \infty. $$ Hence $\lim_{t\to\infty}\frac{I(tu)}{t^4}=-\infty$. \end{proof} Since the functional $I$ satisfies the mountain pass geometry, the $(C)_c$ sequence exists, where $c:=\inf_{r\in \Gamma}\max_{t\in [0,1]}I(r(t))$ and $\Gamma:=\{r\in C([0,1],E):r(0)=0,r(1)=u_0\}$. \begin{lemma} \label{lem3.5} The $(C)_c$ sequence $(u_n)$ is bounded. \end{lemma} \begin{proof} We employ a similar argument as in \cite[Lemma 3.3]{silva}. First we claim $$ \int_{\mathbb{R}^N}|\nabla u_n|^2+\int_{\mathbb{R}^N}V^+(x)f^2(u_n)\leq C_1. $$ Indeed, we have \begin{gather*} I(u_n)=\frac{1}{2}\int_{\mathbb{R}^N}|\nabla u_n|^2+V(x)f^2(u_n) -\int_{\mathbb{R}^N}(G(x,f(u_n))+h(x)f(u_n)) \to c\,, \\ \begin{aligned} I'(u_n)u_n&=\int_{\mathbb{R}^N}|\nabla u_n|^2 +V(x)f(u_n)f'(u_n)u_n\\ &\quad -\int_{\mathbb{R}^N}(g(x,f(u_n))+h(x))f'(u_n)u_n \to 0\,. \end{aligned} \end{gather*} Hence $$ I(u_n)-\frac{2}{\theta}I'(u_n)u_n=c+o(1). $$ By Lemma \ref{lem2.1}(6),(3) and (G3) we obtain \begin{align*} &C_2+C_3\Big(\int_{\mathbb{R}^N}|\nabla u_n|^2\Big)^{1/2}\\ &\geq C_2+(1-\frac{1}{\theta})\int_{\mathbb{R}^N}h(x)f(u_n)\\ &\geq (\frac{1}{2}-\frac{2}{\theta}) \Big(\int_{\mathbb{R}^N}|\nabla u_n|^2+V^+(x)f^2(u_n)\Big) -(\frac{1}{2}-\frac{1}{\theta})\int_{\mathbb{R}^N}V^-(x)f^2(u_n)\\ &\geq (\frac{1}{2}-\frac{2}{\theta}) \Big(\int_{\mathbb{R}^N}|\nabla u_n|^2+V^+(x)f^2(u_n)\Big) -(\frac{1}{2}-\frac{1}{\theta})\int_{\mathbb{R}^N}V^-(x)u_n^2\\ &\geq (\frac{1}{2}-\frac{2}{\theta}) \Big(\int_{\mathbb{R}^N}|\nabla u_n|^2+V^+(x)f^2(u_n)\Big) -(\frac{1}{2}-\frac{1}{\theta})|V^{-}|_{L^{N/2}}S \int_{\mathbb{R}^N}|\nabla u_n|^2. \end{align*} It follows from (V1) that $(\frac{1}{2}-\frac{2}{\theta}) -(\frac{1}{2}-\frac{1}{\theta})|V^{-}|_{L^{N/2}}S>0$. The claim is proved. To prove that $(u_n)$ is bounded in $E$, we only need to show that $\int_{\mathbb{R}^N}V^+(x)u^2_n$ is bounded. Due to Lemma \ref{lem2.1}(9), (V1) and the Sobolev embedding theorem, there exists $C>0$ such that $$ \int_{|u_n|\leq 1}V^+(x)u^2_n\leq \frac{1}{C^2}\int_{|u_n|\leq 1}V^+(x)f^2(u_n) \leq C_3 $$ and $$ \int_{|u_n|\geq 1}V^+(x)u^2_n\leq C_4\int_{|u_n|\geq 1}u_n^{2^{*}} \leq C_4\Big(\int_{\mathbb{R}^N}|\nabla u_n|^2\Big)^{2^*/2}\leq C_5. $$ \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.1}] Assume that $(u_n)$ is a $(C)_c$ sequence. Then $(u_n)$ is bounded by Lemma \ref{lem3.5}. Going if necessary to a subsequence, $u_n\rightharpoonup u$ in $E$. It is obvious that $I'(u)=0$, and $u\neq 0$. The proof is complete. \end{proof} \section{Proof of Theorem \ref{thm1.2}} \label{s4} In this section we look for nontrivial critical points of the functional $I_1:E\to R$ given by $$ I_1(u):=\frac{1}{2}\int_{\mathbb{R}^N}|\nabla u|^{2} +\frac{1}{2}\int_{\mathbb{R}^N}V(x)f^{2}(u)-\int_{\mathbb{R}^N}G(f(u)), $$ where $G(u):=\int^{u}_{0}g(s)ds$. And we also denote the corresponding limiting functional $$ \tilde{I}_1(u):=\frac{1}{2}\int_{\mathbb{R}^N}|\nabla u|^{2} +\frac{1}{2}\int_{\mathbb{R}^N}V^+(\infty)f^{2}(u)-\int_{\mathbb{R}^N}G(f(u)). $$ \begin{lemma} \label{lem4.1} If $\{v_n\}\subset E$ is a bounded Palais-Smale sequence for $I_1$ at level $c>0$, then, up to a subsequence, $v_n\rightharpoonup v\neq 0$ with $I'_1(v)=0$. \end{lemma} \begin{proof} Since $\{v_n\}$ is bounded, going if necessary to a subsequence, $v_n\rightharpoonup v$ in $E$. It is obvious that $I'_1(v)=0$. If $v\neq 0$, then the proof is complete. If $v=0$, we claim that $\{v_n\}$ is also a Palais-Smale sequence for $\tilde{I}_1$. Indeed, $$ \tilde{I}_1(v_n)-I_1(v_n)=\int_{\mathbb{R}^N}(V^+(\infty)-V^+(x))f^2(v_n) +\int_{\mathbb{R}^N}V^-(x)f^2(v_n)\to 0, $$ by (V1'), Lemma \ref{lem2.1}(3) and $v^2_n\rightharpoonup 0$ in $L^{N/(N-2)}$. Similarly we derive \begin{align*} \sup_{\|u\|\leq 1}|\langle \tilde{I}'_1(v_n)-I'_1(v_n),u\rangle| &=\sup_{\|u\|\leq 1}\Big|\int_{\mathbb{R}^N}(V^+(\infty) -V^+(x))f(v_n)f'(v_n)u\Big| \\ &\quad + \sup_{\|u\|\leq 1}\Big|\int_{\mathbb{R}^N}V^-(x)f(v_n)f'(v_n)u\Big|\to 0. \end{align*} In the following we use a similar argument as in \cite[lemma 4.3]{colin1}. If $$ \lim_{n\to\infty}\sup_{y\in\mathbb{R}^N}\int_{B_R(y)}v^2_ndx=0 $$ for all $R>0$, then we obtain a contradiction with the fact that $I_1(v_n)\to c>0$. So there exist $\alpha>0$, $R<\infty$ and $\{y_n\}\subset\mathbb{R}^N$ such that $$ \lim_{n\to\infty}\int_{B_R(y^n)}v^2_ndx\geq\alpha>0. $$ Denote $\tilde{v}_n(x)=v_n(x+y_n)$, then $\{\tilde{v}_n(x)\}$ is also a Palais-Smale sequence for $\tilde{I}_1$. We have that $\tilde{v}_n\rightharpoonup \tilde{v}$ and $\tilde{I}_1(\tilde{v})=0$ with $\tilde{v}\neq 0$. We obtain \[ c=\limsup_{n\to\infty}[\tilde{I}(\tilde{v}_n) -\frac{1}{2}\tilde{I}'(\tilde{v}_n)\tilde{v}_n] \geq \tilde{I}(\tilde{v})-\frac{1}{2}\tilde{I}'(\tilde{v})\tilde{v} =\tilde{I}(\tilde{v}), \] by Fatou's lemma. We could find a path $r(t)\in \Gamma$ such that $r(t)(x)>0$ for all $x\in\mathbb{R}^N$, and all $t\in(0,1]$, $\tilde{\omega}\in r([0,1])$ and $\max_{t\in [0,1]}\tilde{I}_1(r(t))=\tilde{I}_1(\tilde{\omega})\leq c$. Thus $I_1(r(t))<\tilde{I}_1(r(t))$ for all $t\in (0,1]$, and then $$ c\leq \max_{t\in [0,1]}I_1(r(t))<\max_{t\in [0,1]}\tilde{I}_1(r(t))\leq c, $$ a contradiction. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.2}] The argument is the same as in \cite{colin1}. By Lemmas \ref{lem3.3} and \ref{lem3.4}, the functional $I_1$ has a mountain pass geometry. So the $(C)_c$-sequence $\{u_n\}$ exists, where $c:=\inf_{r\in \Gamma}\max_{t\in [0,1]}I_1(r(t))$ and $\Gamma:=\{r\in C([0,1],E):r(0)=0,I_1(r(1))<0\}$. It follows from Lemma \ref{lem3.5} that $\{u_n\}$ is bounded. Hence $\{u_n\}$ is a bounded Palais-Smale sequence for $I_1$ at level $c>0$. Due to Lemma \ref{lem4.1}, we have $I'_1(v)= 0$ and $v\neq 0$. \end{proof} \subsection*{Acknowledgements} The first author would like to thank Andrzej Szulkin for valuable suggestions about the draft of the paper. The authors are supported by NSFC 11171047. \begin{thebibliography}{99} \bibitem{alves} M. J. Alves, P.C. Carri\~{a}o, O. H. Miyagaki; \emph{Non-autonomous perturbations for a class of quasilinear elliptic equations on $\mathbb{R}$}, J. Math. Anal. Appl. 344 (2008), 186--203. \bibitem{colin} M. Colin; \emph{Stability of standing waves for a quasilinear Schr\"odinger equation in space dimension 2}, Adv. Diff. Eq. 8 (2003), 1--28. \bibitem{colin1} M. Colin, L. Jeanjean; \emph{Solutions for a quasilinear Schr\"{o}dinger equation: a dual approach}, Nonl. Anal. 56 (2004), 213--226. \bibitem{deng} Y. B. Deng, S. J. Peng, J. X. Wang; \emph{Infinitely many sign-changing solutions for quasilinear Schr\"{o}dinger equations in $\mathbb{R}^N$ }, Comm. Math. Sci. 9 (2011), 859--878. \bibitem{ding} Y. H. Ding, A. Szulkin; \emph{Bound states for semilinear Schr\"{o}dinger equations with sign-changing potential}, Calc. Var. 29 (2007), 397--419. \bibitem{severo} J. M. do \'{O}, U. Severo; \emph{Quasilinear Schr\"{o}dinger equations involving concave and convex nonlinearities}, Comm. Pure Appl. Anal. 8 (2009), 621--644. \bibitem{severo1} J. M. do \'{O}, U. Severo; \emph{Solitary waves for a class of quasilinear Schr\"o\-dinger equations in dimension two}, Calc. Var. 38 (2010), 275--315. \bibitem{fang} X. D. Fang, A. Szulkin; \emph{Multiple solutions for a quasilinear Schr\"{o}dinger equation}, J. Diff. Eq. 254 (2013), 2015--2032. \bibitem{wang1} J. Q. Liu, Y. Q. Wang, Z. Q. Wang; \emph{Soliton solutions for quasilinear Schr\"{o}dinger equations, II}, J. Diff. Eq. 187 (2003), 473--493. \bibitem{wang2} J. Q. Liu, Y. Q. Wang, Z. Q. Wang; \emph{Solutions for quasilinear Schr\"{o}dinger equations via the Nehari method}, Comm. PDE 29 (2004), 879--901. \bibitem{wang3} J. Q. Liu, Z. Q. Wang; \emph{Soliton solutions for quasilinear Schr\"{o}dinger equations, I}, Proc. Amer. Math. Soc. 131 (2003), 441--448. \bibitem{poppenberg} M. Poppenberg, K. Schmitt, Z. Q. Wang; \emph{On the existence of soliton solutions to quasilinear Schr\"odinger equations}, Calc. Var. 14 (2002), 329--344. \bibitem{rabinowitz} P. H. Rabinowitz; \emph{Minimax Methods in Critical Point Theory with Applications to Differential Equations}, CBMS Reg. Conf. Ser. Math., Vol. 65, Amer. Math. Soc., Providence, RI, 1986. \bibitem{silva} E. A. Silva, G. G. Vieira; \emph{Quasilinear asymptotically periodic Schr\"{o}din\-ger equations with subcritical growth}, Nonl. Anal. 72 (2010), 2935--2949. \bibitem{szulkin} A. Szulkin, M. Willem; \emph{Eigenvalue problems with indefinite weight}, Studia Math. 135 (1999), no.2, 191--201. \bibitem{zou} Y. J. Wang, W. M. Zou; \emph{Bound states to critical quasilinear Schr\"{o}dinger equations}, Nonl. Diff. Eq. Appl. 19 (2012), 19--47. \bibitem{willem} M. Willem; \emph{Minimax Theorems}, Birkh\"{a}user, Boston, 1996. \bibitem{zhang} Z. H. Zhang, R. Yuan; \emph{Homoclinic solutions for some second order non-autonomous Hamiltonian systems without the globally superquadratic condition}, Nonl. Anal. 72 (2010), 1809--1819. \end{thebibliography} \end{document}