\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 07, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/07\hfil Existence of solutions] {Existence of solutions for iterative differential equations} \author[P. Zhang, X. Gong \hfil EJDE-2014/07\hfilneg] {Pingping Zhang, Xiaobing Gong} \address{Pingping Zhang \newline Department of Mathematics and Information Science, Binzhou University, Shandong 256603, China} \email{zhangpingpingmath@163.com} \address{Xiaobing Gong \newline Department of Mathematics, Neijiang Normal University, Sichuan 641100, China} \email{xbgong@163.com} \thanks{Submitted August 21, 2013. Published January 7, 2014.} \thanks{Supported by grants J12L59, 12ZA086 and 2013Y04} \subjclass[2000]{34A12, 39B12, 47H10} \keywords{Existence; nonautonomous; iteration differential equation; \hfill\break\indent Schauder's fixed point theorem} \begin{abstract} The presence of self-mapping increases the difficulty in proving the existence of solutions for general iterative differential equation. In this article we provide conditions for the existence of solutions for the initial value problem, in which the conditions are natural and easily verifiable. We generalize the relevant results and point out the mistake in some references. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Differential equations with state-dependent delays attract interests of specialists since they widely arise from application models, such as two-body problem of classical electrodynamics \cite{Dr1,Dr2}, position control \cite{MB1,MB2}, mechanical models \cite{RAJ}, infection disease transmission \cite{PW}, population models \cite{Bj91,RMN}, the dynamics of economical systems \cite{Bj89}, etc. As special type of state-dependent delay-differential equations, iterative differential equations have distinctive characteristics and have been investigated in recent years, e.g. smoothness \cite{ChengSiWang,SiWang}, equivariance \cite{YZ}, analyticity \cite{SiZh2}, \cite{zhang-2012}-\cite{zhang-2009}, monotonicity \cite{Eder,SS2}), convexity \cite{SiCheng} as well as numerical solution \cite{NO}. In the theory of differential equations, one of the fundamental and important problems is the initial value problem, there are many existence results \cite{AP,Berinde-2010}, \cite{Buica-1995}, \cite{Eder}-\cite{Lauran-2011}, \cite{Wk} on special iterative differential equations. In 1984 Eder \cite{Eder} proved the existence of the unique monotone solution for the $2$-th iterative differential equation \begin{equation} x'(t)=x(x(t))\label{Eder} \end{equation} associated with $x(t_0)=t_0\ (t_0\in[-1,1])$ by Contraction Principle. Later, M. Fe$\check{c}$kan (\cite{FM}) investigated the generally $2$-th iterative differential equation \begin{equation} x'(t)=f(x(x(t))) \label{FM} \end{equation} with the initial value $x(0)=0$ and obtained the local solution applying Contraction Principle. By using Schauder's fixed point theorem, Wang \cite{Wk} obtained the strong solutions of equation \eqref{FM} associated with $x(a)=a$, where $a$ is an endpoint of the well-defined interval. Consequently, Ge and Mo \cite{GM} provided the sufficient conditions for the initial value problem of \eqref{FM} associated with \begin{equation} x(t_0)=x_0 \label{initial value} \end{equation} on a given compact interval, where the endpoints of the interval are two adjacent null points of $f$. The $2$-th nonautonomous equation \begin{equation} x'(t)=f(t,x(t),x(x(t))), \label{AP} \end{equation} together with initial value $$ x(0)=c\quad (c>0) $$ was investigated by P. Andrzej (\cite{AP}) using Picard's successive approximation, where $0$ is the left end point of the domain. In 2010 Berinde \cite{Berinde-2010} applied the nonexpansive operators to investigate \eqref{FM} associated with \eqref{initial value} and extended the existence results in \cite{Buica-1995}. Subsequently, Lauran investigated the nonautonomous equation \eqref{AP} together with \eqref{initial value} in \cite{Lauran-2011}. We see that the existence of solutions for the general iterative differential equation \begin{equation} x'(t)=f(t,x^{[1]} (t),x^{[2]} (t),\dots ,x^{[n]} (t)) \label{consider} \end{equation} associated with \eqref{initial value} is still open, $x^{[i]} (t):=x(x^{[i-1]}(t))$ indicates the $i$-th iterate of self-mapping $x$, where $i=1,2,\dots ,n$. In this paper we provide two existence results for the initial value problem, in which the conditions are natural and easily verifiable. We generalize the relevant results and point out the mistake in \cite{Berinde-2010} and \cite{Lauran-2011}. As the application, we consider the smooth solutions of the equation discussed in \cite{SiWang} by Theorem \ref{thm1} and give an example to verify Theorem \ref{thm2}. \section{Main results} For the continuous function $\varphi(x)$, we use the supremum norm $$ \|\varphi\|_{P}=\sup_{x\in P\subset\mathbb{R}^n}\|\varphi(x)\| $$ and need the following lemma (the statement is slightly different from the original one presented in \cite{Zhang} but perfectly equivalent): \begin{lemma}[\cite{Zhang}] \label{lem1} Let $$ \Phi_M=\{x\in\,C^{0}([t_0-h,t_0+h]): |x(t)-x(s)|\le M|t-s|, \forall t, s \in [t_0-h,t_0+h]\}, $$ where $M<1$. If $f, g\in \Phi_M$, then \begin{equation} \|f^{[j]}-g^{[j]}\|_{[t_0-h,t_0+h]}\leq \frac{1-M^j}{1-M} \|f-g\|_{[t_0-h,t_0+h]},\quad j=1,2,\dots . \label{2.8} \end{equation} \end{lemma} \begin{theorem} \label{thm1} Suppose that $f:{\mathbb{R}}^{n+1}\rightarrow{\mathbb{R}}$ is continuous. If there exists a positive $r$ such that \begin{equation} (1-M_1)\ r\geq l_0, \label{main condition} \end{equation} where $M_1=\|f\|_{\bar{B}(y_0,r)}\leq1$ and $l_0 =|x_0-t_0|$ and $\bar{B}(y_0,r)$ denotes the closed ball centered at $y_0=(t_0,x_0,\dots ,x_0)$ with radius $r$. Then equation \eqref{consider} associated with \eqref{initial value} has a solution defined on $[t_0-l,t_0+l]$ for any $l\in[\ l_0 /(1-M_1),r]$. \end{theorem} \begin{proof} The existence of solutions of equation \eqref{consider} associated with \eqref{initial value} is equivalent to find a continuous solution of the integral equation \begin{equation} x(t)=x_0+\int_{t_0}^t f(s,x^{[1]}(s),x^{[2]}(s),\dots ,x^{[n]}(s))ds. \label{2.3} \end{equation} Define \begin{align*} \Phi_{M_1} = \big\{&x\in C^{0}([t_0-l, t_0+l]): x(t_0)=x_0, |x(t)-x(s)|\le M_1|t-s|,\\ &\forall t, s \in [t_0-l, t_0+l]\big\}. \end{align*} for any $l\in[l_0 /(1-M_1),r]$. Then for $x\in \Phi_{M_1}$, we show that $x^{[i]} (t)$ $(i=2,3,\dots ,n)$ are well defined on $[t_0 -l,t_0 +l]$. It is suffices to prove \begin{equation} |x^{[i]}(t)-t_0|\leq l \label{2.4} \end{equation} for $i\in\mathbb{N}$ by induction. In fact \begin{align*} |x(t)-t_0|&\leq |x(t)-x(t_0)|+|x(t_0)-t_0| \\ &\leq M_1 l+|x_0-t_0| \leq l, \end{align*} we assume that $|x^{[i]}(t)-t_0|\le l$ for positive integer $i\geq1$, then \begin{align*} |x^{[i+1]}(t)-t_0|&\leq |x^{[i+1]}(t)-x(t_0)|+|x(t_0)-t_0| \\ &\leq M_1 |x^{[i]}(t)-t_0|+|x_0-t_0| \\ &\leq M_1 l+|x_0-t_0| \leq l. \end{align*} Hence it follows by induction that \eqref{2.4} holds and $x^{[i]}([t_0-l,t_0+l])$ are well defined for any $x\in \Phi_{M_1}$. In the sequel we apply the Schauder's fixed point theorem to prove the existence of the continuous solution of \eqref{2.3}. To this end, we define the integral operator ${\mathcal{G}}:\ \Phi_{M_1}\rightarrow C^{0}([t_0-l,t_0+l])$ by \begin{equation} {\mathcal{G}}x(t):=x_{0}+\int_{t_{0}}^t f(s,x^{[1]}(s),x^{[2]}(s),\dots ,x^{[n]}(s))ds. \label{2.5} \end{equation} Clearly \begin{equation} {\mathcal{G}}x(t_{0}) = x_{0}+\int_{t_{0}}^{t_{0}} f(s,x^{[1]}(s),x^{[2]}(s),\dots ,x^{[n]}(s))ds=x_{0} \label{2.6} \end{equation} for any $x\in \Phi_{M_1}$. In view of \begin{align*} &\|(t,x^{[1]}(t),x^{[2]}(t),\dots ,x^{[n]}(t))-(t_0,x_0,x_0,\dots ,x_0)\| \\ &= \max\{|t-t_0|,|x^{[1]}(t)-x_0|,|x^{[2]}(t)-x_0|,\dots ,|x^{[n]}(t)-x_0|\} \\ &\leq \max\{|t-t_0|,M_1 |t-t_0|,M_1 |x^{[1]}(t)-t_0|,\dots ,M_1 |x^{[n-1]}(t)-t_0|\} \\ &\leq \max\{l,M_1 l,M_1 l,\dots ,M_1 l\} \\ &\leq l \leq r, \end{align*} we get \begin{equation} \begin{aligned} |{\mathcal{G}}x(t_1)-{\mathcal{G}}x(t_2)| &\leq |\int_{t_2}^{t_1}|f(s,x^{[1]}(s),x^{[2]}(s),\dots ,x^{[n]}(s))|ds| \\ &\leq M_1 |t_1-t_2| \end{aligned} \label{2.7} \end{equation} for any $t_1,t_2\in[t_0-l,t_0+l]$. Thus \eqref{2.5}, \eqref{2.6} and \eqref{2.7} yield ${\mathcal{G}}x\in \Phi_{M_1}$; i.e., ${\mathcal{G}}$ is a self-mapping operator. It remains to show that ${\mathcal{G}}$ is continuous. For this purpose, take any $x_1, x_2\in \Phi_{M_1}$, we have \begin{align*} &|{\mathcal{G}}x_1(t)-{\mathcal{G}}x_2(t)|\\ &\leq |\int_{t_{0}}^t|f(s,x_{{1}}^{[1]}(s),x_1^{[2]}(s),\dots ,x_1^{[n]}(s)) -f(s,x_2^{[1]}(s),x_2^{[2]}(s),\dots ,x_2^{[n]}(s))|ds|. \end{align*} By Lemma \ref{lem1}, \begin{align*} &\|(s,x_{{1}}^{[1]}(s),x_1^{[2]}(s),\dots ,x_1^{[n]}(s)) -(s,x_2^{[1]}(s),x_2^{[2]}(s),\dots ,x_2^{[n]}(s))\|\\ &= \max\{|x_{{1}}^{[1]}(s)-x_{{2}}^{[1]}(s)|,|x_{{1}}^{[2]}(s)-x_{{2}}^{[2]}(s)|, \dots ,|x_{{1}}^{[n]}(s)-x_{{2}}^{[n]}(s)|\}\\ &\leq \max\{\|x_1-x_2\|_{[t_0-l, t_0+l]},\frac{1-{M_1}^2}{1-M_1}\|x_1-x_2\|_{[t_0-l, t_0+l]},\\ &\quad \dots ,\frac{1-{M_1}^n}{1-M_1}\|x_1-x_2\|_{[t_0-l, t_0+l]}\}\\ &= \frac{1-{M_1}^n}{1-M_1}\|x_1-x_2\|_{[t_0-l, t_0+l]}\\ &< \frac{1}{1-M_1}\|x_1-x_2\|_{[t_0-l, t_0+l]}. \end{align*} Because of the uniform continuity of $f$ on $\bar{B}(y_0,r)$, for any $\varepsilon>0$ there exist $\delta(\varepsilon)>0$, the inequality $$\|{\mathcal{G}}x_1-{\mathcal{G}}x_2\| <\varepsilon l$$ holds for $\|x_1-x_2\|_{[t_0-l,t_0+l]}<\delta$, which implies ${\mathcal{G}}$ is continuous. $\Phi_{M_1}$ is a convex, compact subset of Banach space $C^{0}([t_0-l, t_0+l])$ and ${\mathcal{G}}$ is a continuous operator, which satisfy all conditions of the Schauder's fixed point theorem, so ${\mathcal{G}}$ has a fixed point $g\in \Phi_{M_1}$ and $g$ is a solution for equation \eqref{consider} associated with \eqref{initial value} on the interval $[t_{0}-l,t_{0}+l]$. This completes the proof. \end{proof} \begin{theorem} \label{thm2} Suppose that $f:\mathbb{R}^{n+1}\rightarrow\mathbb{R}$ is continuous and any compact interval $[a,b]$ includes $t_0$ and $x_0$. If \begin{equation} M_2 A_{t_0} \leq B_{x_0}, \label{main condition 2} \end{equation} where $A_{t_0}=\max\{t_0 -a,b-t_0\},\ B_{x_0}=\min\{x_0 -a,b-x_0\},\ M_2 =\|f\|_{[a,b]^{n+1}}$ and $[a,b]^{n+1}$ denotes the product of $n+1$ intervals $[a,b]$. Then equation \eqref{consider} associated with \eqref{initial value} has a solution defined on $[a,b]$. \end{theorem} \begin{proof} As in the proof of Theorem \ref{thm1}, we apply the Schauder fixed point theorem to prove the result. Let \begin{equation} \begin{aligned} \Phi_{M_2} = \big\{&x\in\,C^{0}([a,b],[a,b]): x(t_0)=x_0,\\ & |x(t)-x(s)|\le M_2 |t-s|,\; \forall t, s \in [a,b]\big\}, \end{aligned} \label{condition 2} \end{equation} then $\Phi_{M_2}$ is a non-empty convex and compact subset of the Banach space $C^{0}([a,b])$. We consider the mapping ${\mathcal{T}}: \Phi_{M_2}\rightarrow C^{0}([a,b])$ defined by \begin{equation} {\mathcal{T}}x(t):=x_{0}+\int_{t_{0}}^t f(s,x^{[1]}(s),x^{[2]}(s),\dots ,x^{[n]}(s))ds. \label{2.11} \end{equation} To prove $\mathcal{T}$ is a self-mapping, we note that \begin{equation} \begin{aligned} {\mathcal{T}}x(t) &\leq x_0 +|\int_{t_0}^t f(s,x^{[1]}(s),x^{[2]}(s),\dots ,x^{[n]}(s))ds| \\ &\leq x_0 +M_2 |t-t_0| \\ &\leq x_0 +M_2 A_{t_0} \\ &\leq x_0 +B_{t_0} \leq b, \label{<} \end{aligned} \end{equation} \begin{equation} \begin{aligned} {\mathcal{T}}x(t) &\geq x_0 -|\int_{t_0}^t f(s,x^{[1]}(s),x^{[2]}(s),\dots ,x^{[n]}(s))ds| \\ &\geq x_0 -M_2 |t-t_0| \\ &\geq x_0 -M_2 A_{t_0} \\ &\geq x_0 -B_{x_0} \geq a. \end{aligned} \label{>} \end{equation} Clearly, \begin{equation} {\mathcal{T}}x(t_0)=x_0. \label{x_0} \end{equation} Moreover, for any $t_1,t_2\in[a,b]$, we have \begin{equation} \begin{aligned} |{\mathcal{T}}x(t_1)-{\mathcal{T}}x(t_2)| &\leq |\int_{t_2}^{t_1}|f(s,x_{{1}}^{[1]}(s),x_1^{[2]}(s),\dots ,x_1^{[n]}(s))|ds| \\ &\leq M_2 |t_1 -t_2|. \end{aligned} \label{M_2} \end{equation} Thus \eqref{<}, \eqref{>}, \eqref{x_0} and \eqref{M_2} imply that ${\mathcal{T}}$ maps $\Phi_{M_2}$ into itself. The definitions of $A_{t_0}$ and $B_{x_0}$ show that $M_2 \leq1$, then for any $x_1,x_2\in \Phi_{M_2}$, according to Lemma \ref{lem1}, we have \begin{align*} &\|(s,x_{{1}}^{[1]}(s),x_1^{[2]}(s),\dots ,x_1^{[n]}(s)) -(s,x_2^{[1]}(s),x_2^{[2]}(s),\dots ,x_2^{[n]}(s))\|\\ &= \max\{|x_{{1}}^{[1]}(s)-x_{{2}}^{[1]}(s)|,|x_{{1}}^{[2]}(s)-x_{{2}}^{[2]}(s)|, \dots ,|x_{{1}}^{[n]}(s)-x_{{2}}^{[n]}(s)|\}\\ &\leq \max\{\|x_1-x_2\|_{[a,b]},\frac{1-{M_2}^2}{1-M_2}\|x_1-x_2\|_{[a,b]}, \dots ,\frac{1-{M_2}^n}{1-M_2}\|x_1-x_2\|_{[a,b]}\}\\ &= \frac{1-{M_2}^n}{1-M_2}\|x_1-x_2\|_{[a,b]}\\ &< \frac{1}{1-M_2}\|x_1-x_2\|_{[a,b]}. \end{align*} By the uniform continuity of $f$ on $[a,b]^{n+1}$, for any $\varepsilon>0$ there exists $\delta(\varepsilon)>0$, when $\|x_1-x_2\|_{[a,b]}<\delta$ we have $$ |f(s,x_{{1}}^{[1]}(s),x_1^{[2]}(s),\dots ,x_1^{[n]}(s)) -f(s,x_2^{[1]}(s),x_2^{[2]}(s),\dots ,x_2^{[n]}(s))|<\varepsilon. $$ Consequently, \begin{align*} &|{\mathcal{T}}x_1(t)-{\mathcal{T}}x_2(t)|\\ &\leq |\int_{t_{0}}^t|f(s,x_{{1}}^{[1]}(s),x_1^{[2]}(s),\dots ,x_1^{[n]}(s)) -f(s,x_2^{[1]}(s),x_2^{[2]}(s),\dots ,x_2^{[n]}(s))|ds|\\ &< \varepsilon (b-a), \end{align*} which means that ${\mathcal{T}}$ is a continuous operator. It follows that $\Phi_{M_2}$ is a convex, compact subset of Banach space $C^{0}([a,b])$ and ${\mathcal{T}}$ is a continuous operator. By the Schauder's fixed point theorem, ${\mathcal{T}}$ has a fixed point $h\in \Phi_{M_2}$ and $h$ is a solution of equation \eqref{consider} associated with \eqref{initial value} on the interval $[a,b]$. This completes the proof. \end{proof} \section{Examples and remarks} In this section our theorems are demonstrated by the following two examples. Firstly, we prove the existence of smooth solutions of the equation, discussed in \cite{SiWang}, together with the general initial value \eqref{initial value} by using Theorem \ref{thm1}. Here, smooth function $g\in C^n$ means the function $g$ has a number of continuous derivatives and its $n$-th continuous derivative also is Lipschtzian. We need the following lemma introduced in \cite{SiWang}. \begin{lemma}[\cite{SiWang}] \label{lem2} Let \begin{align*} \Omega(N_1,\dots ,N_{n+1}; I) =\big\{&g\in\,C^{n}(I,I): |g^{(i)}(t)|\leq\,N_{i},\, i=1,2,\dots ,n;\\ & |g^{(n)}(t)-g^{(n)}(s)|\leq N_{n+1}|t-s|,\;t,s\in I\big\}. \end{align*} For any $x(t)\in \Omega(N_1,\dots ,N_{n+1}; I)$, there is $$ x_{*jk}(t)=P_{jk}(x_{10}(t),\dots ,x_{1,j-1}(t);\dots ;x_{k0}(t),\dots ,x_{k,j-1}(t)) $$ and exist positive constants $N_{uv}^{jk}$ such that $$ |P_{jk}(\bar{\lambda}_{10},\dots ,\bar{\lambda}_{k,j-1})-P_{jk} (\tilde{\lambda}_{10},\dots ,\tilde{\lambda}_{k,j-1})| \leq\sum_{u=1}^{k}\sum_{v=0}^{j-1}N_{uv}^{jk} |\bar{\lambda}_{uv}-\tilde{\lambda}_{uv}| $$ for $(\bar{\lambda}_{10},\dots ,\bar{\lambda}_{k,j-1}), (\tilde{\lambda}_{10},\dots ,\tilde{\lambda}_{k,j-1})$ belong to compact set $[0,N_1]^{j}\times[0,N_2]^{j}\times\dots \times[0,N_{k}]^{j}$, where $x_{ij}(t)=x^{(i)}(x^{[j]}(t))$, $x_{*jk}(t)=(x^{[j]}(t))^{(k)}$ and $P_{jk}$ is a uniquely defined multivariate polynomial with nonnegative coefficients and $1\leq u \leq k$, $0\leq v\leq j-1$. \end{lemma} \begin{example} \label{exam1} \rm Consider the equation \begin{equation} x'(t)=\sum_{j=1}^{m}a_{j}(t)x^{[j]}(t)+F(t) \label{smooth} \end{equation} associated with \eqref{initial value}, where $a_{j}(t), F(t)\in C^n $ are given smooth functions. \end{example} For $R>0$, by the smoothness of the given functions, we have positive $M_{a_{j}}$ and $M_{F}$ such that $$ |a_{j}(t)|\leq M_{a_{j}},\quad |F(t)|\leq M_{F},\quad t\in[t_{0}-R, t_{0}+R],\; j=1,2,\dots ,m. $$ Denote $$ M_{a}=\max_{1\leq j\leq m}\{M_{a_{j}}\},\quad N_1=mM_{a}(|t_{0}|+R)+M_{F}. $$ If $(1-N_1)R\geq |x_0 -t_0|$, the equation \eqref{smooth} associated with \eqref{initial value} has a solution in the function set \begin{align*} \Phi_{N_1}=\big\{&x\in C^{0}([t_0-l_1, t_0+l_1]): x(t_0)=x_0,\\ & |x(t)-x(s)|\le N_1|t-s|,\, \forall t, s \in [t_0-l_1, t_0+l_1]\big\} \end{align*} by Theorem \ref{thm1}, where arbitrary $l_1 \in[|x_0 -t_0|/(1-N_1),R]$. In fact, for any $x\in\Phi_{N_1}$, we see that the function $$ f(t,x^{[1]}(t),x^{[2]}(t),\dots ,x^{[m]}(t))=\sum_{j=1}^{m}a_{j}(t)x^{[j]}(t)+F(t) $$ is continuous on $[t_{0}-l_1,t_{0}+l_1]$ and \begin{align*} |f(t,x^{[1]}(t),x^{[2]}(t),\dots ,x^{[m]}(t))| &= |\sum_{j=1}^{m}a_{j}(t)x^{[j]}(t)+F(t)| \\ &\leq \sum_{j=1}^{m}M_{a}(|t_{0}|+R)+M_{F} \\ &= mM_{a}(|t_{0}|+R)+M_{F} = N_1. \end{align*} Since $(1-N_1)R\geq |x_0 -t_0|$, the condition of Theorem \ref{thm1} is satisfied, there exists a solution $x=\varphi(t)$ of equation \eqref{smooth} together with \eqref{initial value} in the functional set $\Phi_{N_1}$. The form of equation \eqref{smooth} and $a_{j}(t), F(t)\in C^{n}([t_0-l_1,t_0+l_1])$ show that $\varphi(t)\in C^{(n+1)}([t_0-l_1,t_0+l_1])$. In the sequel, we prove $\varphi^{(n+1)}(t)$ also is Lipschtzian on the compact interval $[t_0-l_1,t_0+l_1]$. From Lemma \ref{lem2}, we have \begin{align*} x_{*jk}({t}) &= P_{jk}(x_{10}({t}),\dots ,x_{1,j-1}({t});\dots ;x_{k0}({t}),\dots , x_{k,j-1}({t}))\\ &= P_{jk}(x'({t}),x'(x_1),\dots ,x'(x_{j-1});\dots ;x^{(k)}({t}), x^{(k)}(x_1),\dots ,x^{(k)}(x_{j-1})), \end{align*} where $x_{m}=x^{[m]}({t}),\ m=1,2,\dots ,j-1$. Denote \begin{gather*} H_{jk}=P_{jk}(\stackrel{j\ terms}{\overbrace{N_1,\dots ,N_1}}; \stackrel{j\ terms}{\overbrace{N_2,\dots ,N_2}};\dots ; \stackrel{j\ terms}{\overbrace{N_{k},\dots ,N_{k}}}), \\ a_{j}(t)\in\Omega(L_{j1},\dots ,L_{j(n+1)}; [t_{0}-l_1, t_{0}+l_1]), \\ F(t)\in\Omega(M_1,\dots ,M_{n+1}; [t_{0}-l_1, t_{0}+l_1]). \end{gather*} Then for any $t_1, t_2\in[t_{0}-l_1, t_{0}+l_1]$, we get \begin{align*} & |\varphi^{(n+1)}(t_1)-\varphi^{(n+1)}(t_2)| \\ &\leq \sum_{j=1}^{m}\sum_{s=0}^{n}C_{n}^{s}|a_{j}^{(n-s)}(t_1) (\varphi^{[j]}(t_1))^{(s)}-a_{j}^{(n-s)}(t_2)(\varphi^{[j]}(t_2))^{(s)}|\\ &\quad+ |F^{(n)}(t_1)-F^{(n)}(t_2)| \\ &\leq \sum_{j=1}^{m}\{|a_{j}^{(n)}(t_1)-a_{j}^{(n)}(t_2)|\cdot |\varphi^{[j]}(t_1)|+|a_{j}^{(n)}(t_2)|\cdot|\varphi^{[j]}(t_1) -\varphi^{[j]}(t_2)|\} \\ &\quad +\sum_{j=1}^{m}\sum_{s=1}^{n}C_{n}^{s}(|a_{j}^{(n-s)} (t_1)-a_{j}^{(n-s)}(t_2)|\cdot|(\varphi^{[j]}(t_1))^{(s)}|\\ &\quad +|a_{j}^{(n-s)}(t_2)|\cdot|p_{js}(\varphi_{10}(t_1),\dots , \varphi_{s,j-1}(t_1))-p_{js}(\varphi_{10}(t_2),\dots ,\varphi_{s,j-1}(t_2))|)\\ &\quad+M_{n+1}|t_1-t_2| \\ &\le \sum_{j=1}^{m}(L_{j(n+1)}(|t_{0}|+l_1)+L_{jn}{N_1}^j)|t_1-t_2|\\ &\quad +\sum_{j=1}^{m}\sum_{s=1}^{n}C_{n}^{s}(L_{j(n+1-s)}H_{js}|t_1-t_2|+L_{j(n-s)}\sum_{u=1}^{s}\sum_{v=0}^{j-1}N_{uv}^{js}|\varphi_{uv}(t_1)-\varphi_{uv}(t_2)|)\\ &\quad +M_{n+1}|t_1-t_2|. \end{align*} Since $$ |\varphi_{uv}(t_1)-\varphi_{uv}(t_2)|\leq N_{u+1}|\varphi^{[v]}(t_1) -\varphi^{[v]}(t_2)|\leq N_{u+1}{N_1}^v|t_1-t_2|, $$ we have \begin{align*} &|\varphi^{(n+1)}(t_1)-\varphi^{(n+1)}(t_2)| \\ &\le \sum_{j=1}^{m}(L_{j(n+1)}(|t_{0}|+l_1)+L_{jn}{N_1}^j)|t_1-t_2|\\ &\quad+ \sum_{j=1}^{m}\sum_{s=1}^{n}C_{n}^{s}(L_{j(n+1-s)}H_{js}|t_1-t_2|+L_{j(n-s)}\sum_{u=1}^{s}\sum_{v=0}^{j-1}N_{uv}^{js}|\varphi_{uv}(t_1)-\varphi_{uv}(t_2)|)\\ &\quad+M_{n+1}|t_1-t_2|\\ &= \{(\sum_{j=1}^{m}L_{j(n+1)}(|t_{0}|+l_1)+L_{jn}{N_1}^j)\\ &\quad+ (\sum_{j=1}^{m}\sum_{s=1}^{n}C_{n}^{s}(L_{j(n+1-s)}H_{js}+L_{j(n-s)}\sum_{u=1}^{s}\sum_{v=0}^{j-1}N_{uv}^{js}N_{u+1}{N_1}^v))+M_{n+1} \}|t_1-t_2|. \end{align*} That is, $\varphi^{(n+1)}(t)$ is Lipschtzian. \begin{remark} \rm The existence and uniqueness of smooth solutions through $(t_{0},t_{0})$, with $ |t_{0}|<1$, for \eqref{smooth} was studied in \cite{SiWang}. According to Theorem \ref{thm1}, we have the similar conclusion for \eqref{smooth} through general point $(t_{0},x_{0})$ even for $|t_{0}|\geq1$ provided $M_a$ and $M_F$ are small enough, which generalizes the results in \cite{SiWang}. The similar discussion can be applied for the equation in \cite{ChengSiWang}. \end{remark} \begin{example} \rm Consider the equation \begin{equation} x'(t)=\frac{1}{5}x(x(t))-\frac{1}{4} \label{equation} \end{equation} associated with \begin{equation} x(-1)=-\frac{1}{2}. \label{initial} \end{equation} For the compact interval $[-1,0]$ including $t_0 =-1$ and $x_0 =- 1/2$, it is clear that $M_2 =1/5 +1/4 =9/20,\ A_{t_0}=1,\ B_{x_0}=1/2$, which satisfy the conditions of Theorem \ref{thm2}. Then the equation \eqref{equation} associated with \eqref{initial} has a solution. \label{exam2} \end{example} \begin{remark} \rm In the proof of invariant set in \cite{Berinde-2010} and \cite{Lauran-2011}, they require the inequalities \begin{gather} |(Fy)(t)|\leq |y_0 | + |\int_{x_0}^t f(s,y(s),y(y(s)))ds|\leq |y_0 | + M\cdot |t - x_0|\leq b, \label{example21} \\ |(Fy)(t)|\geq |y_0 | - |\int_{x_0}^t f(s,y(s),y(y(s)))ds|\geq y_0 - C_{y_0}\geq a. \label{example22} \end{gather} The right-most inequality of \eqref{example22} contradicts the definition of $C_{y_0}$. We overcome this difficulty by defining $B_{x_0}$. Furthermore, \eqref{example21} implies that $b$ is a nonnegative number, which is given up in Theorem \ref{thm2} such as Example \ref{exam2}. \end{remark} \begin{thebibliography}{00} \bibitem{AP} P. Andrzej; \emph{On some iterative differential equations I,} Zeszyty Naukowe Uniwersytetu Jagiellonskiego, Prace Matematyczne. \textbf{12} (1968), 53-56. \bibitem{Berinde-2010} V. Berinde; \emph{Existence and approximation of solutions of some first order iterative differential equations,} Miskolc Math. Notes, \textbf{11(1)}(2010), 13-26. \bibitem{Bj91} J. B\`elair; \emph{Population models with state-dependent delays, Lecture Notes in Pure and Applied Mathematics,} vol. \textbf{131}, Dekker, New York, 1991, pp. 165-176. \bibitem{Bj89} J. B\`elair, C. Mackey; \emph{Consumer memory and price fluctuations on commodity markets: an integro-differential model,} J. Dyn. Diff. Eqs., \textbf{1}(1989), 299-325. \bibitem{Buica-1995} A. Buica; \emph{Existence and continuous dependence of solutions of some functional differential equations,} Seminar of Fixed Point Theory, \textbf{3}(1995), 1-14. \bibitem{MB1} M. B\"uger, M. R. W. Martin; \emph{Stabilizing control for an unbounded state-dependent delay differential equation,} Dynamical Systems and Differential Equations, Kennesaw, GA, 2000, Discrete and Continuous Dynamical Systems (Added Volume), \textbf{}(2001), 56-65. \bibitem{MB2} M. B\"uger, M. R. W. Martin; \emph{The escaping disaster: A problem related to state-dependent delays,} Z. Angew. Math. Phys., \textbf{55}(2004), 547-574. \bibitem{ChengSiWang} S. Cheng, J. Si, X. Wang \emph{An existence theorem for iterative functional-differential equations,} Acta Math. Hungar., \textbf{94(1-2)}(2002), 1-17. \bibitem{Dr1} R. Driver; \emph{A two-body problem of classical electrodynamics: the one-dimensional case,} Ann.Phys., \textbf{21}(1963), 122-142. \bibitem{Dr2} R. Driver; \emph{A functional differential system of neutral type arising in a two-body problem of classical electrodynamics,} in: Proceedings of International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics, Academic Press, New York, 1963, pp. 474-484. \bibitem{Eder} E. Eder; \emph{The functional differential equation $x'(t)=x(x(t))$,} J. Diff. Equa., \textbf{54}(1984), 390-400. \bibitem{FM} M. Fe\v{c}kan; \emph{On a certain type of functional differential equations,} Math. Slovaca. \textbf{43}(1993), 39-43. \bibitem{GM} W. Ge and Y. Mo; \emph{Existence of solutions to differential-iterative equation,} Journal of Beijing Institute of Technology, \textbf{6}(3)(1997), 192-200. \bibitem{GS} L. J. Grimm, K. Schmitt; \emph{Boundary value problem for differential equations with deviating arguments,} Aequationes Math., 4(1970), 176-190. \bibitem{RAJ} R. Johnson; \emph{Functional equations, approximations, and dynamic response of systems with variable time-delay,} IEEE Trans. Automatic Control, \textbf{17}(1972), 398-401. \bibitem{Lauran-2011} M. Lauran, \emph{Existence results for some differential equations with deviating argument,} Filomat, 25(2)(2011), 21-31. \bibitem{NO} O. Nicola; \emph{Numerical solutions of first order iterative functional-differential equations by spline functions of even degree,} Scientific Bulletin of the Petru Maior University of Tirgu Mures, \textbf{6}(2009), 34-37. \bibitem{RMN} R. M. Nisbet, W. S. C. Gurney; \emph{The systematic formulation of population models for insects with dynamically varying instar duration,} Theoret. Population Biol., \textbf{23}(1983), 114-135. \bibitem{SiWang} J. Si, X. Wang; \emph{Smooth solutions of a nonhomogeneous iterative functional differential equation with variable coefficients,} J. Math. Anal. Appl., 226(1998), 377-392. \bibitem{SiCheng} J. Si, X. Wang, S. Cheng, \emph{Nondecreasing and convex $C^2$-solutions of an iterative functional-differential equation,} Aequ. Math., \textbf{60}(2000), 38-56. \bibitem{SiZh2} J. Si and W. Zhang, \emph{Analytic solutions of a class of iterative functional differential equations,} J. Comp. Appl. Math., \textbf{162}(2004), 467-481. \bibitem{SS2} S. Stan\v{e}k; \emph{On global properties of solutions of functional differential equation $x'(t)=x(x(t))+x(t)$,} Dynamic Systems Appl., \textbf{4}(1995), 263-278. \bibitem{PW} P. Waltman; \emph{Deterministic threshold models in the theory of epidemics,} Lecture Notes in Biomath., Vol. 1, Springer, New York (1974). \bibitem{Wk} K. Wang; \emph{On the equation $x'(t)=f(x(x(t)))$,} Funk. Ekva., \textbf{33}(3)(1990), 405-425. \bibitem{YZ} D. Yang and W. Zhang; \emph{Solutions of equivariance for iterative differential equations,} Appl. Math. Lett., \textbf{17}(2004), 759-765. \bibitem{zhang-2012} P. Zhang, \emph{Analytic solutions for iterative functional differential equations,} Electron. J. Diff. Equ., \textbf{2012(180)}(2012), 1-7. \bibitem{zhang-2009} P. Zhang, L. Mi; \emph{Analytic solutions of a second order iterative functional differential equation,} Appl. Math. Comp., \textbf{210}(2009), 277-283. \bibitem{Zhang} W. Zhang, \emph{Discussion on the differentiable solutions of the iterated equation $\sum_{i=1}^{n}\lambda_{i}f^{i}(x)=F(x),$} Nonlinear Anal., \textbf{15}(1990), 387-398. \end{thebibliography} \end{document}