\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 09, pp. 1--20.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{8mm}} \begin{document} \title[\hfilneg EJDE-2014/09\hfil Boundary blow-up solutions] {Boundary blow-up solutions to semilinear elliptic equations with nonlinear gradient terms} \author[S. Liu, Y. Xu \hfil EJDE-2014/09\hfilneg] {Shufang Liu, Yonglin Xu} % in alphabetical order \address{Shufang Liu \newline Department of Mathematics, Gansu Normal University for Nationalities \\ Hezuo, Gansu 747000, China} \email{shuxueliushufang@163.com} \address{Yonglin Xu (Corresponding author)\newline School of Mathematics and Computer Science Institute, Northwest University for Nationalities, Lanzhou, Gansu 730030, China} \email{xuyonglin000@163.com} \thanks{Submitted October 4, 2013. Published January 7, 2014.} \subjclass[2000]{35J25, 35B50, 65J65} \keywords{Boundary blow-up solutions; nonlinear gradient terms; \hfill\break\indent Karamata regular variation} \begin{abstract} In this article we study the blow-up rate of solutions near the boundary for the semilinear elliptic problem \begin{gather*} \Delta u\pm |\nabla u|^q=b(x)f(u), \quad x\in\Omega,\\ u(x)=\infty, \quad x\in\partial\Omega, \end{gather*} where $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$, and $b(x)$ is a nonnegative weight function which may be bounded or singular on the boundary, and $f$ is a regularly varying function at infinity. The results in this article emphasize the central role played by the nonlinear gradient term $|\nabla u|^q$ and the singular weight $b(x)$. Our main tools are the Karamata regular variation theory and the method of explosive upper and lower solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{thmeorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction and statement of main results} Let $\Omega\subset \mathbb{R}^N$ $(N\geq3)$ be a bounded domain with smooth boundary. We are interested in the asymptotic behavior of boundary blow-up solutions to the elliptic problem \begin{equation} \label{Ppm} \begin{gathered} \Delta u\pm |\nabla u|^q=b(x)f(u), \quad x\in\Omega,\\ u(x)=\infty, \quad x\in\partial\Omega. \end{gathered} \end{equation} For the functions $f(u)$ and $b(x)$, we assume the following hypotheses: \begin{itemize} \item[(F1)] $f\in C^1[0,\infty),f'(s)\geq 0$ for $s\geq 0$, $f(0)=0$ and $f(s)>0$ for $s>0$. \item[(B1)] $b\in C^\alpha(\Omega)$ for some $\alpha\in(0,1)$ and is non-negative in $\Omega$. \item[(B2)] $b$ has the property: if $x_0\in\Omega$ and $b(x_0)=0$, then there exists a domain $\Omega_0$ such that $x_0\in\Omega_0 \subset\Omega$ and $b(x)>0$, for all $x\in\partial\Omega_0$. \end{itemize} The boundary condition $u(x)=\infty$, $x\in \partial\Omega$ is to be understand as $u\to\infty$ when $d(x)=\operatorname{dist}(x,\partial\Omega)\to 0+$. The solutions of problem \eqref{Ppm} are called large solutions, boundary blow-up solutions or explosive solutions; that is, the boundary blow-up solutions provide uniform bounds for all other solutions to $\Delta u\pm |\nabla u|^{q}=b(x)f(u)$ in $\Omega$, regardless of the boundary data by the comparison principle. The study of boundary blow-up solutions of $\Delta u=e^u$ in $\Omega$ was initiated by Bieberbach \cite{B}, where $\Omega\subset \mathbb{R}^2$. Problems of this type arise in Riemannian geometry, more precisely: if a Riemannian metric of the form $|ds|^2=e^{2u(x)}|dx|^2$ has constant Gaussian curvature $-b^2$, then $\Delta u=b^2e^{2u}$. Rademacher \cite{RE} extended the results of Bieberbach to $\Omega\subset \mathbb{R}^3$. Later, Lazer and McKenna \cite{LM1} generalized the results of \cite{B,RE} to the case of bounded domains in $\mathbb{R}^N$ and nonlinearities $b(x)e^u$. Recently, C\^{i}rstea and R\v{a}dulescu\cite{C6,C7} opened a unified new approach, the Karamata regular variation theory approach, to study the uniqueness and asymptotic behavior of boundary blow-up solutions, which enables us to obtain significant information about the qualitative behavior of the boundary blow-up solutions in a general framework. C\^{i}rstea \cite{C2} obtained the asymptotic behavior of boundary blow-up solutions to \begin{equation}\label{1.1} \Delta u+au=b(x)f(u), \end{equation} provided $f(x)$ and $b(x)$ satisfy \begin{itemize} \item[(F2)] $f\circ \mathcal {L}\in RV_\rho (\rho>0)$ (see Definition \ref{df1}) for some $\mathcal{L}\in C^2[A,\infty)$ satisfying $\lim_{u\to\infty}\mathcal {L}(u)=\infty$ and $\mathcal{L}'\in NRV_{-1}$, \item[(B3)] $\lim_{d(x)\to 0}\frac{b(x)}{k^2(d(x))}=1$, $k(x)\in NRV_{\theta}(0+)$ (see Definition \ref{df2}) for some $\theta\geq0$, and $k$ is nondecreasing near the origin if $\theta=0$. \end{itemize} They showed that the blowup rate of boundary blow-up solutions $u$ to problem \eqref{1.1} can be expressed by \begin{equation}\label{1.2} \lim_{d(x)\to 0}\frac{u}{(\mathcal {L}\circ\Phi_1)(d(x))}=1, \end{equation} where the function $\Phi_1$ is defined as \begin{equation}\label{1.3} \int^\infty_{\Phi_1(t)}\frac{[\mathcal{L}'(y)]^{1/2}} {y^\frac{\rho+1}{2}[L_f(y)]^{1/2}}dy =\int^t_0k(s)dt,\quad \text{for all $x\in(0,\tau)$ with small } \tau>0. \end{equation} where $L_f$ is a normalised slowly varying function such that \begin{equation}\label{1.4} \lim_{u\to \infty}\frac{f(\mathcal {L}(u))}{u^\rho L_f(u)}=1. \end{equation} Elliptic boundary blow-up problems have been studied by a large number of authors in the last century, see \cite{CGR2005,CG2008,G2009,G2009-1,X2009} and references therein. For problem \eqref{Ppm}, with $b\equiv 1$ in $\Omega$, and$f(u)=u^p$, by ordinary differential equation theory and comparison principle, Bandle and Giarrusso \cite{BG} showed the following results: (1) If $p\geq 1$ and $q<\frac{2p}{p+1} (<2)$, then problem \eqref{Ppm} possesses at least one solution. Every solution of \eqref{Ppm} satisfies \begin{equation*} \lim_{d(x)\to 0}\frac{u(x)}{(d(x))^{-2/(p-1)}}=\big[\sqrt{2(p+1)}/(p-1)\big]^{2/(p-1)}. \end{equation*} (2) The same statement for \eqref{Ppm} is true if $\frac{2p}{p+1}0$ which satisfies \begin{equation*} \lim_{d(x)\to 0}u(x)/\ln d(x)=1. \end{equation*} Now we introduce the class of functions $K_l$ consisting of positive monotonic functions $k\in L^1(0,\vartheta)\cap C^1(0,\vartheta)$ which satisfy \begin{equation*} \lim_{t\to0+}\frac{K(t)}{k(t)}=0,\quad \lim_{t\to0+}\frac{d}{dt}\Big(\frac{K(t)}{k(t)}\Big)=l, \quad\text{where } K(t)=\int^t_0k(s)ds. \end{equation*} We point out that for each $k\in\mathcal{K}_l$, $l\in[0,1]$ if $k$ is non-decreasing and $l\in[1,\infty)$ if $k$ is non-increasing. For more propositions of $\mathcal{K}_l$, we refer reader to \cite{C1,CGR2005}. Some examples of functions $k\in \mathcal {K}_l$ are: \begin{enumerate} \item $k(t)=t^q\in \mathcal {K}_l$ with $l=1/(1+q)$; \item $k(t)=(-\ln t)^q\in \mathcal {K}_l$ for $q<0$ with $l=1$; \item $k(t)=-s/\ln t\in \mathcal {K}_l$ for $s>0$ with $l=1$; \item $k(t)=t^s/\ln (1+t^{-1})\in \mathcal {K}_l$ for $s>0$ with $l=1/(1+s)$. \end{enumerate} When $b$ satisfies (B1) and (B2), Zhang \cite{Z2} gave the following results: Assume $f$ satisfies (F1), $f'(u)=u^\rho L(u)$, $\rho>0$, $L(u)$ is slowly varying at infinity, $10. \end{equation*} (1) If $q=\frac{2(\rho+1)}{\rho+2}$ and $\lim_{u\to\infty}L(u)=(1+\rho)\gamma\in(0,+\infty)$, then every solution $u_+\in C^2(\Omega)$ to problem \eqref{Ppm}, with plus sign, satisfies \begin{equation*} \lim_{d(x)\to 0}\frac{u_+(x)}{\varphi(d(x))}=c_q^{-1/(\rho+1-q)}, \end{equation*} where \begin{equation*} \varphi(t)=\Big(\frac{2-q}{\gamma^{1/q}(q-1)}\Big)^{(2-q)/(q-1)} \Big(\int^t_0k(s)dt\Big)^{(q-2)/(q-1)},\quad t\in(0,a), \end{equation*} (2) The same statement is true if $\frac{2(\rho+1)}{\rho+2}2$, and $b(x)$ satisfy \begin{itemize} \item[(B5)] $\lim_{d(x)\to 0}\frac{b(x)}{k^q(d(x))}=1$, where $k(x)\in NRV_{\theta}(0+)$ for some $\theta\geq0$, and $k$ is nondecreasing near the origin if $\theta=0$. \end{itemize} Then problem \eqref{Ppm}, with plus sign, has a boundary blow-up solution $u_+$ satisfying \begin{equation}\label{1.5} \lim_{d(x)\to 0}\frac{u_+}{(\mathcal {L}\circ\Phi_2)(d(x))}=1, \end{equation} where $\Phi_2$ is given by \begin{equation}\label{1.6} \int^\infty_{\Phi_2(t)}\frac{\mathcal {L}'(y)}{y^{\rho/q}[L_f(y)]^{1/q}}dy=\int^t_0k(s)dt,\quad \text{for all $x\in (0,\tau)$ with small } \tau>0. \end{equation} (3) If $q>2$, then $u_-=-\ln v$ is the unique solution to problem \eqref{Ppm}, with the minus sign, where $v$ is the unique solution to problem $\Delta v=b(x)f(-\ln v)v$, $v>0$, $x\in\Omega$, $v|_{\partial\Omega}=0$. (4) If $q=2$, and $b(x)$ satisfies (B3), then problem \eqref{Ppm}, with plus sign, has a unique solution $u_+$ satisfying \begin{equation*} u(x)\sim\frac{1}{\rho}\ln\Big(\frac{2+\rho(1+\theta)}{2}\Big) +\ln\Psi(d(x))\quad\text{as }d(x)\to0, \end{equation*} where $\Psi(t)$ is given by \[ \int^\infty_{\Psi(t)}\frac{dy}{y\sqrt{f(\ln y)}}=\int_0^tk(s)dt\quad \text{for all $t\in(0,\tau)$, $\tau > 0$ small enough}. \] For more results of boundary blow-up problem with nonlinear gradient terms, see \cite{GR2004,G2000,LW1999,CP2006,CGP2008,ML2013,CPW2013,AGQ2012,GS2013}. We remark at this point that $\lim_{u\to\infty}\mathcal {L}(u)=\infty$ with $\mathcal{L}'\in NRV_{-1}$ if and only if \[ \mathcal{L}(u)=C\exp\Big\{\int^u_B\frac{s(t)}{t}dt\Big\},\quad\forall u>B>0, \] where $C>0$ is a constant and $s(t)$ is a normalised slowly varying function satisfying \[ \lim_{u\to\infty}s(u)=0,\quad \lim_{u\to\infty}\int^u_B\frac{s(t)}{t}dt=\infty. \] Note that $f\circ \mathcal {L}\in RV_\rho (\rho>0)$ is equivalent to the existence of $g\in RV_\rho$ so that $f(u)=g(\mathcal {L}^\leftarrow (u))$ for $u$ large, where $\mathcal {L}^\leftarrow$ denotes the inverse of $\mathcal {L}$, By Proposition \ref{prop5}, we know that if $\mathcal{L}'\in NRV_{-1}$, then $\mathcal {L}^\leftarrow$ is rapidly varying with index $\infty$; i.e., \begin{equation*} \lim_{u\to\infty}\frac{\mathcal {L}^\leftarrow(\lambda u)}{\mathcal {L}^\leftarrow(u)} =\begin{cases} 0, &\text{if }\lambda\in(0,1),\\ 1, &\text{if } \lambda=1,\\ \infty, &\text{if } \lambda>1, \end{cases} \end{equation*} Therefore, the nonlinear term $f(u)$ satisfies (F2), then it is rapidly varying at infinity with index $\infty$, namely $f(u)\in RV_{\infty}$. The main purpose of this article is to describe the asymptotic behavior of the boundary blow-up solution to \eqref{Ppm}, when $f$ satisfies \begin{itemize} \item[(F3)] $f\circ \mathcal {L}\in RV_\rho$ $(\rho>0)$ for some $\mathcal{L}\in C^2[A,\infty)$ satisfying $\mathcal{L}'\in NRV_{-r}$ with $0\leq r<1$. \end{itemize} Our main results are the following. \begin{theorem}\label{thm1} Let $f$ satisfy {\rm (F1), (F3)} with $q<\rho/(1-r)$, $b(x)$ satisfies {\rm (B1), (B2)} and \begin{itemize} \item[(B6)] $\lim_{d(x)\to 0}\frac{b(x)}{k^2(d(x))}=c_0$, where $k(x)\in K_l$ for some $00. \end{equation} and $\Phi_3\in RV_{-\frac{q-2}{(q-1)(r-1)}}(0+)$. \end{theorem} \begin{remark} \rm There are many functions satisfying (F1) and (F3), for example: \begin{itemize} \item[(1)] $f(u)=u^{\frac{\rho}{1-r}}(\ln(u+1))^\alpha$, for all $\alpha\geq0$. \item[(2)] $f(u)=u^{\frac{\rho}{1-r}} \exp\{(\ln u)^\alpha_1 (\ln_2 u)^\alpha_2 \cdots (\ln_m u)^\alpha_m\}$, where $\alpha_i\in(0,1)$ and \\ $\ln_m(\cdot)=\ln(\ln_{m-1}(\cdot))$. \item[(3)] $f(u)=c_0u^{\frac{\rho}{1-r}}\exp\{\int_0^u\frac{s(t)}{t}dt\}$, $u\geq0$, $s(t)\in C[0,+\infty)$ is nonnegative such that $\lim_{t\to\infty}s(t)=0$ and $\lim_{t\to\infty}s(t)/t\in[0,+\infty)$. \end{itemize} \end{remark} \begin{remark} \rm Define $\phi_1(K(dx))=\Phi_1(t)$, then $\phi_1$ satisfies \begin{equation}\label{1.15} \int^\infty_{\phi_1(t)}\frac{[\mathcal {L}'(y)]^{1/2}}{y^\frac{\rho+1}{2}[L_f(y)]^{1/2}}dy=t. \end{equation} Define $\phi_2(K(dx))=\Phi_2(t)$, then $\phi_2$ satisfies \begin{equation}\label{1.16} \int^\infty_{\phi_2(t)}\frac{\mathcal {L}'(y)}{y^{\rho/q}[L_f(y)]^\frac{1+-}{q}}dy=t. \end{equation} \end{remark} \begin{remark} \rm When $k\in \mathcal{K}_l$ with $00$, is called regularly varying (at infinity) with index $q\in R$ (written $f\in RV_q$) if for all $\xi>0$ $$ \lim_{u\to\infty}\frac{f(\xi u)}{f(u)}=\xi^q. $$ \end{definition} When the index of regular variation $q$ is zero, we say that the function is slowly varying. We say that $f(u)$ is regularly varying (on the right) at the origin with index $q\in \mathbb{R}$ (in short $f\in RV_q(0+)$) provided $f(1/u)\in RV_{-q}$. The transformation $f(u)=u^qL(u)$ reduces regular variation to slow variation. Some typical example of slowly varying functions are given by: (1) Every measurable function on $[A,\infty)$ which has a positive limit at $\infty$. (2) The logarithm $\log u$, its iterates $\log_m u$ and powers of $\log_mu$. (3) $L(u)=\exp\{(\log u)^{1/3}\cos((\log u)^{1/3})\}$, exhibits infinite oscillation in the sense that \begin{equation*} \lim _{u\to \infty}\inf L(u)=0 \quad\text{and} \quad \lim_{u \to \infty}\sup L(u)=\infty. \end{equation*} This shows that the behavior at infinity for a slowly varying function cannot be predicted. Next we state a uniform convergence theorem, \begin{proposition}\label{prop1} The convergence $L(\xi u)/L(u)\to1$ as $u\to\infty$ holds uniformly on each compact $\varepsilon-$set in $(0,\infty)$. \end{proposition} Now, we have some elementary properties of slowly varying functions. \begin{proposition} \label{prop2} If $L$ is slowly varying, then \begin{itemize} \item[(1)] For any $\alpha>0$, $u^\alpha L(u)\to\infty$, $u^{-\alpha}L(u)\to0$ as $u\to\infty$; \item[(2)] $(L(u))^\alpha$ varies slowly for every $\alpha\in \mathbb{R}$; \item[(3)] If $L_1$ varies slowly, so do $L(u)L_1(u)$ and $L(u)+ L_1(u)$. \end{itemize} \end{proposition} \begin{proposition}[Representation Theorem]\label{prop3} The function $L(u)$ is slowly varying if and only if it can be written in the form \begin{equation}\label{2.1} L(u)=M(u)\exp \big\{\int^u_B \frac{y(t)}{t}dt \big\}\quad (u\geq B) \end{equation} for some $B>0$, where $y\in C[B,\infty)$ satisfies $\lim_{u\to\infty}y(u)=0$ and $M(u)$ is measurable on $[B,\infty)$ such that $lim_{u\to\infty}M(u)=M\in(0,\infty)$. \end{proposition} If $M(u)$ is replaced by $\hat{M}$ in \eqref{2.1}, we get a normalised regularly varying function. \begin{definition}\label{df2}\rm A function $f(u)$ defined for $u>B$ is called a normalised regularly varying function of index $q$ (in short $f\in NRV_q$) if it is $C^1$ and satisfies \begin{equation}\label{2.2} \lim_{u\to\infty}\frac{uf'(u)}{f(u)}=q. \end{equation} \end{definition} Note that $f\in NRV_{q+1}$ if and only if $f$ is $C^1$ and $f'\in RV_q$. And $NRV_q(0+)$ (resp.,$ NRV_q$) denote the set of all normalised regularly varying functions at 0 (resp.,$\infty$) of index $q$. A typify example function $f(u)=u^{q+1}+\sin(u^{q+2})$ (defined for large $u$) belongs to $RV_{q+1}$ but not $NRV_{q+1}$. Next we presente[Karamata's Theorem, direct half. \begin{proposition} \label{prop4} Let $f\in RV_q$ be locally bounded in $[A,\infty)$. Then (1) For any $j\geq-(q+1)$, \begin{equation}\label{2.3} \lim_{u\to\infty}\frac{u^{j+1}f(u)}{\int^u_Ax^jf(x)dx}=j+q+1. \end{equation} (2) For any $j<-(q+1)$, (and for $j=-(q+1)$ if $\int^\infty x^{-(q+1)}f(x) dx <\infty)$ \begin{equation}\label{2.4} \lim_{u\to\infty}\frac{u^{j+1}f(u)}{\int^\infty_ux^jf(x)dx}=-(j+q+1). \end{equation} \end{proposition} \begin{definition}\label{df3}\rm A non-decreasing function $f$ defined on $(A,\infty)$ is $\Gamma-$varying at $\infty$ (written $f\in \Gamma$) if $\lim_{u\to \infty}f(u)=\infty$ and there exists $\chi: (A,\infty)\to (0,\infty)$ such that \begin{equation*} \lim_{u\to\infty}\frac{f(u+\lambda\chi(u))}{f(u)}= e^\lambda,\quad \text{for all } \lambda\in \mathbb{R}. \end{equation*} \end{definition} The function $\chi$ is called an auxiliary function and is unique up to asymptotic equivalence. The following functions $f$ with the specified auxiliary functions $\chi$. \begin{itemize} \item[(1)] $f(x)=\exp(x^p)$ for $p>0$ with \begin{equation*} \chi=\begin{cases} 1, &\text{for }x\leq0,\\ p^{-1}x^{1-p}, &\text{for } x>0. \end{cases} \end{equation*} \item[(2)] $f(x)=\exp(x\ln_+x)$ with \begin{equation*} \chi=\begin{cases} 1, &\text{for } x\leq1, \\ (\ln x)^{-1}, &\text{for } x>1. \end{cases} \end{equation*} \item[(3)] $f(x)=\exp(e^x)$ with $\chi=e^{-x}$. \end{itemize} For a non-decreasing function $H$ on R, we define the (left continuous) inverse of $H$ by \begin{equation*} H^\leftarrow (y)=\inf \{s: H(s)\geq y\}. \end{equation*} \begin{proposition} \label{prop5} We have \begin{itemize} \item[(i)] If $f(u)\in RV_q$, then $\lim_{u\to \infty}\ln f(u)/\ln u=q$. \item[(ii)] If $f_1(u)\in RV_q$ and $f_2(u)\in RV_s$ with $\lim_{u\to \infty}f_2(u)=\infty$, then $f_1\circ f_2\in RV_{qs}$. \item[(iii)] Suppose $f(u)$ is non-decreasing, $\lim_{u\to \infty}f(u)=\infty$ and $f(u)\in RV_q$, $00$ such that $\mathcal {L}'( t)$, $L_f(t)$ are positive on $(b,\infty)$. Since $\mathcal {L}'\in RV_{-r}$ and $L_f\in RV_0$, by Proposition \ref{prop2}, we have \begin{equation*} \lim_{t\to \infty} \frac{\mathcal {L}'(t)} {t^{\rho/q}[L_f(t)]^{1/q}}t^{1+\tau}=\lim_{t\to \infty}\frac{t^r\mathcal{L}'(t)}{[L_f(t)]^{1/q}} t^{1+\tau-\frac{\rho}{q}-r}=0, \text{ for~ some }~ \tau\in (0,\frac{\rho}{q}+r-1). \end{equation*} This shows that, for some $D>0$, \begin{equation*} h(x)=\int^\infty_x\frac{\mathcal {L}'(t)} {t^{\rho/q}[L_f(t)]^{1/q}}dt<\infty, \quad \text{for all }x>D. \end{equation*} So, $\Phi_2$ is well defined on $(0,\tau)$ for small enough $\tau$. We easily see that $h:(D,\infty)\to (0, h(D))$ is bijective and $\lim_{t\to 0}\int^t_0k(s)ds=0$, $\Psi= h^{-1}(\int ^t_0k(s)ds)$ for $t\in(0,\tau)$, $\tau $ is small enough. Then $\lim_{t\to0}\Phi_2(t)=\infty$. Moreover, by direct differentiating, we have $\Phi_2\in C^2$. (ii), Note that, $k(t)\in NRV_\theta(0+)$ with $\theta=1/l-1$, then by Definition \ref{df2} and Proposition \ref{prop4}, it follows that \begin{equation} \label{2.6} \lim_{t\to 0}\frac{tk'(t)}{k(t)}=\theta,~~ \lim_{t\to0}\frac{\int^t_0k(s)ds}{tk(t)}= l, \end{equation} on the other hand, by \eqref{1.6}, we have \begin{equation} \label{2.7} \frac{-\Phi_2'(t)\mathcal {L}'(\Phi_2(t))} {\Phi_2(t)^{\rho/q}[L_f(\Phi_2(t))]^{1/q}}=k(t),~~ \forall t\in(0,\tau), \end{equation} thanks to Proposition \ref{prop4}, we obtain \begin{equation*} \lim_{t\to \infty}\frac{\mathcal {L}'(t)}{t^{\frac{\rho}{q}-1}[L_f(t)]^{1/q}h(t)} =-(1-\frac{\rho}{q}-r)=\frac{\rho}{q}+r-1, \end{equation*} hence, in view of \eqref{1.6}, \begin{equation} \label{2.8} \lim_{t\to 0+}\frac{\mathcal {L}'(\Phi_2(t))} {\Phi_2(t)^{\frac{\rho}{q}-1}[L_f(\Phi_2(t))]^{1/q} \int^t_0k(s)dt}=\frac{\rho}{q}+r-1, \end{equation} which, together with \eqref{2.7}, yields, \begin{equation} \label{2.9} \lim_{t\to0+}\frac{\Phi_2'(t)\int^t_0k(s)ds}{\Phi_2(t)k(t)} =-\frac{q}{\rho+q(r-1)}, \end{equation} by \eqref{2.6} and \eqref{2.9}, \begin{equation} \label{2.10} \lim_{t\to0+}\frac{t\Phi_2'(t)}{\Phi_2(t)} =\lim_{t\to0+}\frac{\Phi_2'(t)\int^t_0k(s)ds}{\Phi_2(t)k(t)}\times \frac{tk(t)}{\int^t_0k(s)ds}=-\frac{q}{l(\rho+q(r-1))}, \end{equation} this implies $$ \Phi_2\in NRV_{-\frac{q}{l(\rho+q(r-1))}}(0+). $$ By \eqref{2.10} and L'Hospital's rule, we obtain \begin{equation*} \lim_{t\to0+}\frac{\ln\Phi_2(t)}{\ln t} =\lim_{t\to0+}\frac{t\Phi_2'(t)}{\Phi_2(t)}=-\frac{q}{l(\rho+q(r-1))}, \end{equation*} and \begin{equation*} \lim_{t\to0+}\frac{\ln(\ln\Phi_2(t))}{\ln(\ln t)} =\lim_{t\to0+}\frac{t \Phi_2'(t)}{\Phi_2(t)}\cdot\frac{\ln t}{\ln \Psi} =1, \end{equation*} we now prove \eqref{2.5} by induction, Let $m=n(n\geq2)$, we have \begin{equation*} \lim_{t\to0+}\frac{\ln_n\Phi_2(t)}{\ln_nt}=1. \end{equation*} Then, if $m=n+1$, we obtain \begin{equation*} \lim_{t\to0+}\frac{\ln_{n+1}\Phi_2(t)}{\ln_{n+1}t} =\lim_{t\to0+}\frac{\ln(\ln_n\Phi_2(t))}{\ln(\ln_nt)} =\lim_{t\to0+}\frac{\ln_nt}{\ln_n\Phi_2(t)}=1, \end{equation*} this prove \eqref{2.5}. (iii) Following from (ii), $\Phi_2\in NRV_{-\frac{q}{l(\rho+q(r-1))}}(0+)$, then the claim of (iii) is clear. (iv) Differentiating \eqref{2.7}, we deduce that \begin{equation}\label{2.11} \begin{aligned} \Phi_2''(t) &= -\frac{\Phi_2'(t)k(t)\Phi_2(t)^{\frac{\rho} {q}-1}[L_f(\Phi_2(t))]^{1/q}}{\mathcal{L}'(\Phi_2(t))} \\ &\quad \Big[\frac{\rho}{q}+\frac{k'(t)\Phi_2(t)}{k(t)\Phi_2'(t)} +\frac{L'_f(\Phi_2(t))\Phi_2(t)}{qL_f(\Phi_2(t))}-\frac{\Phi_2(t)\mathcal {L}''(\Phi_2(t))}{\mathcal {L}'(\Phi_2(t))} \Big], \end{aligned} \end{equation} since $L_f\in NRV_0$ and $\mathcal {L}'\in NRV_{-r}$, by Definition \ref{df2}, we have \begin{eqnarray}\label{2.12} \lim_{t\to0+}\frac{\Phi_2(t)L_f'(\Phi_2(t))}{L_f(\Phi_2(t))}=0,\quad \lim_{t\to0+}\frac{\Phi_2(t)\mathcal {L}''(\Phi_2(t))}{\mathcal {L}'(\Phi_2(t))} =-r, \end{eqnarray} which combined \eqref{2.7} with \eqref{2.11}, leads to \[ \lim_{t\to0+}\frac{\Phi_2''(t)\mathcal{L}'(\Phi_2(t))} {\Phi_2'(t)k(t)\Phi_2(t)^{\frac{\rho}{q}-1}[L_f(\Phi_2(t))]^{1/q}} =-(r+\frac{l(\rho+q(r-1))}{q}), \] then, thanks to \eqref{2.7}, we have \[ \lim_{t\to0+}\frac{\Phi_2''(t)\Phi_2(t)}{|\Phi_2'(t)|^2} =r+\frac{l(\rho+q(r-1))}{q}. \] (v) In a similar way to Lemma \ref{lem1} (v), we can prove that (v) holds, here we omit its proof. \end{proof} \begin{corollary} \label{coro2.3} The function $\phi_2$ given by \eqref{1.16} is well defined and \begin{itemize} \item[(i)] $\phi_2\in C^2(0,\tau)$ and $\lim_{t\to 0^+} \phi_2(t)=\infty$; \item[(ii)] $\phi_2\in NRV_{-\frac{q}{\rho+q(r-1)}}(0+)$ satisfies \begin{equation*} \lim_{t\to 0+}\frac{\ln_m\phi_2(t)}{\ln_mt}= \begin{cases} -\frac{q}{\rho+q(r-1)}, & m=1, \\ -1, & m\geq 2. \end{cases} \end{equation*} \item[(iii)] $\lim_{t\to 0+}\frac{\phi_2(t)}{\phi_2'(t)} =\lim_{t\to 0+}\frac{\phi_2'(t)}{\phi_2''(t)} =\lim_{t\to 0+}\frac{\phi_2(t)}{\phi_2''(t)}=0$. \item[(iv)] $\lim_{t\to0+}\frac{\phi_2''(t)\phi_2(t)}{|\phi_2'(t)|^2}=1+\frac{\rho+q(r-1)}{q}$. \item[(v)] $\lim_{t\to0+}\frac{(\phi_2'(t))^{2-q}}{(\phi_2(t))^{r(1-q)+1}}=0$. \end{itemize} \end{corollary} Next we Characterize of $\Phi_3$. \begin{lemma} \label{lem3} Suppose that $f$ satisfies {\rm (F3)}. Then \begin{itemize} \item[(i)] $\Phi_3\in C^2(0,\tau)$ and $\lim_{t\to 0^+} \Phi_3(t)=\infty$; \item[(ii)] $\Phi_3\in NRV_{-\frac{q-2}{(q-1)(r-1)}}(0+)$ satisfies \begin{equation*} \lim_{t\to 0+}\frac{\ln_m\Phi_3(t)}{\ln_mt}= \begin{cases} -\frac{q-2}{(q-1)(r-1)}, & m=1,\\ -1, & m\geq 2; \end{cases} \end{equation*} \item[(ii)] $\lim_{t\to 0+}\frac{\Phi_3(t)}{\Phi_3'(t)} =\lim_{t\to 0+}\frac{\Phi_3'(t)}{\Phi_3''(t)} =\lim_{t\to 0+}\frac{\Phi_3(t)}{\Phi_3''(t)}=0$; \item[(iii)] $\lim_{t\to0+}\frac{\Phi_3''(t)\phi_2(t)}{|\Phi_3'(t)|^2} =1+\frac{(q-1)(r-1)}{q-2}$; \item[(iv)] $\lim_{t\to0+}\frac{(\Phi_3'(t))^{2-q}}{(\Phi_3(t))^{r(1-q)+1}}=0$. \end{itemize} \end{lemma} The Proof of the above Lemma is similarly to the previous lemmas, here we omit it. \begin{proposition}\label{prop6} Let $\Psi(x, s, \xi )$ satisfy the following two conditions \begin{itemize} \item[(i)] $\Psi$ is non-increasing in $s$ for each $(x, \xi )\in\Omega \times \mathbb{R}^N$. \item[(ii)] $\Psi$ is continuously differentiable with respect to the $\xi$ variable in $\Omega\times (0,\infty)\times \mathbb{R}^N$. \end{itemize} If $u, v\in C(\bar\Omega )\cap C^2(\Omega)$ satisfy $\Delta u +\Psi(x,u,\nabla u)\geq\Delta v+\Psi(x, v,\nabla v)$ in $\Omega$ and $u\leq v$ on $\partial\Omega$, then $u\leq v$ in $\Omega$. \end{proposition} \section{Proof of main results} In this section we prove Theorems \ref{thm1}-\ref{thm3}. The proof of each theorem will be split in two cases according to the values of $l$. Given $\delta>0$, for $\forall\beta\in(0,\delta)$, denote \begin{gather*} \Omega_\delta=\{x\in\Omega, 00$ small enough so that \begin{gather*} \Delta u_\beta^+\pm|\nabla d(x)|^q-b(x)f(u_\beta^+)\leq0, \quad x\in\Omega^+_\beta,\\ \Delta u_\beta^-\pm|\nabla d(x)|^q-b(x)f(u_\beta^-)\geq0, \quad x\in\Omega^-_\beta, \end{gather*} Let $u(x)$ be a non-negative solution of \eqref{Ppm} and $M(2\delta)=\max_{d(x)\geq2\delta}u(x)$, $N(2\delta)=\mathcal {L}(\xi^-B(2\delta))$, it follows that \begin{gather*} u(x)\leq M(2\delta)+u_\beta^-,\quad x\in\partial \Omega^-_\beta,\\ u_\beta^+\leq N(2\delta)+u(x),\quad x\in\partial\Omega^+_\beta, \end{gather*} This, combined with Proposition \ref{prop6}, yields \begin{gather*} u(x)\leq M(2\delta)+u_\beta^-, \quad x\in \Omega^-_\beta,\\ u_\beta^+\leq N(2\delta)+u(x),~ x\in\Omega^+_\beta, \end{gather*} for each $x\in\Omega^-_\beta\cap\Omega^+_\beta$, we have $$ u_\beta^+-N(2\delta)\leq u\leq M(2\delta)+u_\beta^-, $$ we arrive at \begin{align*} \frac{u_\beta^+}{(\mathcal {L}\circ\Phi_1)(d(x))}-\frac{N(2\delta)}{(\mathcal {L}\circ\Phi_1)(d(x))} &\leq\frac{u(x)}{(\mathcal{L}\circ\Phi_1)(d(x))} \\ &\leq\frac{u_\beta^-}{(\mathcal {L}\circ\Phi_1)(d(x))}+\frac{M(2\delta)}{(\mathcal {L}\circ\Phi_1)(d(x))}, \end{align*} we note that \eqref{1.8} and Proposition \ref{prop5} leads to \[ \mathcal {L}\circ\Phi_1\in RV_{\frac{2(r-1)}{l(\rho+r-1)}}(0+) \] thus, we deduce that $\lim_{d(x)\to0}\mathcal{L}\circ\Phi_1(d(x)=\infty$. Then letting $d(x)\to0$, we conclude \eqref{1.2}. \noindent\textbf{Case 2:} $l\in(1,+\infty)$. We now diminish $\delta\in(0, \beta/2)$, such that \begin{itemize} \item[(i)] $d(x)$ is a $C^2$-function for all $x\in\Omega_{2\delta}$; \item[(ii)] $k(x)$ is non-increasing on $(0, 2\delta)$; \item[(iii)] $c_0k^{2}(d(x))0$, such that \begin{itemize} \item[(i)] $d(x)$ is a $C^2-$function on the set $\{x\in R^N: d(x)<2\delta\}$; \item[(ii)] $k(x)$ is non-decreasing on $(0, 2\delta)$; \item[(iii)] $c_qk^q(d(x)-\beta)0$ small enough so that \begin{gather*} \Delta u_\beta^+\pm|\nabla d(x)|^q-b(x)f(u_\beta^+)\leq0, \quad x\in\Omega^+_\beta,\\ \Delta u_\beta^-\pm|\nabla d(x)|^q-b(x)f(u_\beta^-)\geq0, \quad x\in\Omega^-_\beta, \end{gather*} In a similar way we can prove that that \eqref{1.13} holds. \end{proof} \subsection*{Acknowledgments} Shufang Liu was supported by the Presidential Foundation of Gansu Normal University for Nationalities (No. 12-15). Yonglin Xu was supported by the Fundamental Research Funds for the Central Universities (No. 31920130006) and by the Middle-Younger Scientific Research Fund (No. 12XB39). \begin{thebibliography}{99} \bibitem{AGQ2012} S. Alarc\'{o}n, J. Garc\'{\i}a-Meli\'{a}n, A. Quaas; \emph{Keller-Osserman type conditions for some elliptic problems with gradient terms}, J. Differential Equations, 252(2012), 886-914. \bibitem{BG} C. Bandle, E. Giarrusso; \emph{Boundary blow-up for semilinear elliptic equations with nonlinear gradient terms}, Adv. Differential Equations, 1(1996), 133-150. \bibitem{B} L. Bieberbach; \emph{$\Delta u=e^u$ und die automorphen Funktionen}, Math. Ann. 77(1916)173-212. \bibitem{BT} N. H. Bingham, C. M. Goldie, J. L. Teugels; \emph{Regular Variation}, Cambridge University Press, Cambridge, 1987. \bibitem{CG2008} S. Casanova, J. G\'{o}mez; \emph{Existence, uniqueness and blow-up rate of large solutions for a canonical class of one-dimensional problems on the half-line}, J. Differential Equations, 244(2008), 3180-3203. \bibitem{CPW2013} Y. Chen, P. Y. H. Pang, M. Wang; \emph{Blow-up rates and uniqueness of large solutions for elliptic equations with nonlinear gradient term and singular or degenerate weights}, Manuscripta Mathematica, 141(2013), 171-193. \bibitem{G2000} E. Giarrusso; \emph{Asymptotic behavior of large solutions of an elliptic quasilinear equation in a borderline case}, C. R. Acad. Sci. Paris Ser. I 331(2000), 777-782. \bibitem{CP2006} E. Giarrusso, G. Porru; \emph{Problems for elliptic singular equations with a gradient term}, Nonlinear Anal. 65(2006), 107-128. \bibitem{C1} F. C\^{i}rstea; \emph{Elliptic equations with competing rapidly varying nonlinearities and boundary blow-up}, Adv. Differential Equations. 12(2007), 995-1030. \bibitem{CGR2005} F. C\^{i}rstea, M. Ghergu, V. R\u{a}dulescu; \emph{Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type}, J. Math. Pure. Appl. 84(2005), 493-508. \bibitem{C6} F. C\^{i}rstea, V. R\u{a}dulescu; \emph{Uniqueness of the blow-up boundary solution of logistic equations with absorbtion}, C. R. Acad. Sci. Paris, Ser. I. 335(2002)447-452. \bibitem{C7} F. C\^{i}rstea, V. R\u{a}dulescu; \emph{Asymptotics for the blow-up boundary solution of the logistic equation with absorption}, C. R. Acad. Sci. Paris, Ser. I. 336(2003)231-236. \bibitem{C2} F. C\^{i}rstea, V. R\u{a}dulescu; \emph{Boundary blow-up in nonlinear elliptic equations of Bieberbach-Rademacher type}, Trans. Amer. Math. Soc. 359(2007), 3275-3286. \bibitem{CGP2008} F. Cuccu, E. Giarrusso, G. Porru; \emph{Boundary behaviour for solutions of elliptic singular equations with a gradient term}, Nonlinear Anal. 69(2008), 4550-4566. \bibitem{G2009} J. Garc\'{i}a-Meli\'{a}n; \emph{Uniqueness of positive solutions for a boundary blow-up problem}, J. Math. Anal. Appl. 360(2009), 530-536. \bibitem{G2009-1} J. Garc\'{i}a-Meli\'{a}n; \emph{Quasilinear equations with boundary blow-up and exponential reaction}, Adv. Nonlinear. Stud. 9(2009), 149-160. \bibitem{GR2004} M. Ghergu, V. R\u{a}dulescu; \emph{Nonradial blow-up solutions of sublinear elliptic equations with gradient term}, Commun. Pure Appl. Anal. 3(2004), 465-474. \bibitem{RA3} M. Ghergu, V. R\u{a}dulescu; \emph{On a class of sublinear singular elliptic problems with convection term}, J. Math. Anal. Appl. 311(2005), 635-646. \bibitem{GS2013} F. Gladiali, M. Squassina; \emph{On explosive solutions for a class of quasi-linear elliptic equations}, Adv. Nonlinear. Stud. 13(2013), 663-698. \bibitem{H} S. Huang, Q. Tian, C. Mu; \emph{Asymptotic behavior of large solution to elliptic equation of Bieberbach-Rademacher type with convection terms}, Appl. Math. Comput. 210(2009), 284-293. \bibitem{LW1999} A. Lair, A. Wood; \emph{Large solutions of semilinear elliptic equations with nonlinear gradient terms}, Int. J. Math. Math. Sci. 4(1999), 869-883. \bibitem{LM1} A. C. Lazer, P. J. McKenna; \emph{On a problem of Bieberbach and Rademacher}, Nonlinear Anal. 21(1993), 327-335. \bibitem{ML2013} L, Mi, B, Liu; \emph{Boundary behavior of large solutions to elliptic equations with nonlinear gradient terms}, 64(2013), 1283-1304. \bibitem{RE} H. Rademacher; \emph{Einige besondere probleme partieller Differentialgleichungen, in Die Differential und Integralgleichungen der Mechanik und Physik, I}, Rosenberg, New York, second ed. 838-845, 1943. \bibitem{R} S. I. Resnick; \emph{Extreme Values, Regular Variation, and Point Processes}, Springer Verlag, Berlin/New York, 1987. \bibitem{S} E. Seneta; \emph{Regularly Varying Functions}, Lecture Notes in Math. Vol. 508, Springer Verlag, Berlin/New York, 1976. \bibitem{X2009} Z. Xie; \emph{Uniqueness and blow-up rate of large solutions for elliptic equation $\Delta u=\lambda u-b(x)h(u)$}, J. Differential Equations, 247(2009), 344-363. \bibitem{Z2} Z. Zhang; \emph{Boundary blow-up elliptic problems with nonlinear gradient terms}, J. Differential Equations, 228(2006), 661-684. \bibitem{Z1} Z. Zhang; \emph{Boundary blow-up elliptic problems with nonlinear gradient terms and singular weights}, Proc. R. Soc. Edinb. Sect. A. 138(2008), 1403-1424. \end{thebibliography} \end{document}