\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 10, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/10\hfil Solutions to Kirchhoff equations] {Solutions to Kirchhoff equations with combined nonlinearities} \author[L. Ding, L. Li, J.-L. Zhang \hfil EJDE-2014/10\hfilneg] {Ling Ding, Lin Li, Jing-Ling Zhang} % in alphabetical order \address{Ling Ding \newline School of Mathematics and Computer Science, Hubei University of Arts and Science, Hubei 441053, China} \email{dingling1975@qq.com} \address{Lin Li \newline School of Mathematics and Statistics, Southwest University, Chongqing 400715, China} \email{lilin420@gmail.com} \address{Jing-Ling Zhang \newline School of Mathematics and Computer Science, Hubei University of Arts and Science, Hubei 441053, China} \email{1293503066@qq.com} \thanks{Submitted July 22, 2013. Published January 7, 2014.} \subjclass[2000]{35J60, 35J40, 35B38} \keywords{Kirchhoff equation; asymptotically linear; asymptotically 3-linear; \hfill\break\indent positive solution; mountain pass lemma} \begin{abstract} We prove the existence of multiple positive solutions for the Kirchhoff equation \begin{gather*} -\Big(a+b\int_{\Omega}|\nabla u|^2dx\Big)\Delta u =h(x)u^q+f(x,u), \quad x\in \Omega, \\ u=0, \quad x\in\partial \Omega, \end{gather*} Here $\Omega $ is an open bounded domain in $ R^{N}$ ($N=1,2,3$), $h(x)\in L^\infty(\Omega)$, $f(x,s)$ is a continuous function which is asymptotically linear at zero and is asymptotically 3-linear at infinity. Our main tools are the Ekeland's variational principle and the mountain pass lemma. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction and main results} In this article, we study the existence of positive solutions for the Kirchhoff equation \begin{equation} \begin{gathered} -\Big(a+b\int_{\Omega}|\nabla u|^2dx\Big)\Delta u =h(x)u^q+f(x,u), \quad x\in \Omega, \\ u=0, \quad x\in\partial \Omega,\label{1} \end{gathered} \end{equation} where $\Omega $ is a bounded smooth domain in $ R^{N}$ ($N=1,2,3$), $a>0$, $b>0$, $00$ be its associated eigenfunction. It is known that $\lambda_1$ can be characterized by $$ \lambda_1=\inf\Big\{\int_\Omega|\nabla u|^2dx: \ u\in H_0^1(\Omega),\; \int_\Omega|u|^2dx=1\Big\}, $$ where $H_0^1(\Omega)$ is the usual Sobolev space defined as the completion of $C_0^\infty(\Omega)$ with respect to the norm $\|u\|=\big(\int_\Omega|\nabla u|^2dx\big)^{1/2}$. Moreover, define $$ \mu_1=\inf\Big\{\|u\|^4: \ u\in H_0^1(\Omega),\ \int_\Omega|u|^4dx=1\Big\}. $$ As shown in \cite{13}, there exists $\mu_1>0$ which is the principle eigenvalue of \eqref{210} and there is a corresponding eigenfunction of $\varphi_1>0$ in $\Omega$. In this article, we assume that $h$, $f$ satisfy the following conditions: \begin{itemize} \item[(H1)] $h\in L^\infty(\Omega)$ and $h(x)\not\equiv0$; \item[(F1)] $f\in C(\Omega\times \mathbb{R})$, $f(x,0)=0$ for all $x\in \Omega$, $f(x,s)\geq0$ for all $x\in \Omega$ and $s\geq0$; \item[(F2)] \[ {\lim_{s\to 0^+}\frac{f(x,s)}{a\lambda_1s+b\mu_1s^3} =\alpha\in[0,1)},\quad {\lim_{s\to +\infty}\frac{f(x,s)}{a\lambda_1s+b\mu_1s^3} =\beta\in(1,+\infty)} \] uniformly for a.e. $x\in \Omega$. \end{itemize} It is obvious that the values of $f(x,s)$ for $s<0$ are irrelevant for us to seek for positive solutions of \eqref{1}, and we may define $$ f(x,s)=0\quad \text{for } x\in\Omega,\; s\leq0. $$ The problem \begin{equation} \begin{gathered} -(a+b\int_{\Omega}|\nabla u|^2dx)\Delta u=g(x,u),\quad x\in \Omega, \\ u=0,\quad x\in \partial\Omega, \end{gathered}\label{2} \end{equation} is related to the stationary analogue of the Kirchhoff equation which was proposed by Kirchhoff in 1883 \cite{1} as an generalization of the well-known d'Alembert's equation $$ \rho \frac{\partial ^2u}{\partial t^2}-\Big(\frac{P_0}{h}+ \frac{E}{2L}\int_0^L|\frac{\partial u}{\partial x}|^2dx\Big)\frac{\partial ^2u}{\partial x^2}=g(x,u) $$ for free vibrations of elastic strings. Kirchhoff¡¯s model takes into account the changes in length of the string produced by transverse vibrations. Here, $L$ is the length of the string, $h$ is the area of the cross section, $E$ is the Young modulus of the material, $\rho$ is the mass density and $P_0$ is the initial tension. In \cite{2}, it was pointed out that the problem \eqref{2} models several physical systems, where $u$ describes a process which depends on the average of itself. Nonlocal effect also finds its applications in biological systems. After \cite{3} and \cite{4}, there are abundant results about Kirchhoff's equations. Some interesting studies by variational methods can be found in \cite{9,12,13,14,16,17,18,19,21} references therein and for Kirchhoff-type problem \eqref{2}, they consider it in a bounded domain $\Omega$. For example, Perera and Zhang \cite{13} obtain nontrivial solutions of \eqref{2} with asymptotically 4-linear terms by using Yang index. In \cite{14}, they revisit problem \eqref{2} and establish the existence of a positive, a negative and a sign-changing solution by means of invariant sets of descent flow. Similar results can also be found in Mao and Zhang \cite{12} and in Yang and Zhang \cite{16}. Yang and Zhang in \cite{17} obtain the existence of nontrivial solutions for \eqref{2} by using the local linking theory. Sun and Tang \cite{19} prove the existence of a mountain pass type positive solution for problem \eqref{2} with the nonlinearity which is asymptotically linear near zero and superlinear at infinity. Sun and Liu \cite{21} obtain a nontrivial solution via Morse theory by computing the relevant critical groups for problem \eqref{2} with the nonlinearity which is superlinear near zero but asymptotically 4-linear at infinity and asymptotically near zero but 4-linear at infinity. In \cite{44}, the authors obtain the existence of positive solutions for \eqref{1} with $h\equiv0$ and $f(x,t)=\nu h(x,t)$ by using the topological degree argument and variational method, where $h$ is a continuous function which is asymptotically linear at zero and is asymptotically 3-linear at infinity. Inspired by \cite{44}, we shall study the existence of positive solutions for problem \eqref{1} with $h\not\equiv0$ and $f$ which is asymptotically linear at zero and asymptotically 3-linear infinity by using the Ekeland's variational principle and Mountain Pass Lemma different from \cite{44}. In \cite{44}, when $N=1,2,3,$ the authors studied equation \eqref{1} with $h\equiv0$ and obtain the existence results of positive solution for equation \eqref{1} under the conditions: $a, b>0$, and $f$ satisfies (F1) and (F2) with $\alpha>1$ and $\beta<1$; $a\geq0$, $b>0$, and $f$ satisfies (F1) and (F2) with $\alpha<1$ and $\beta>1$, respectively. But equation \eqref{1} with $h\not\equiv0$ has not been studied. We shall obtain the existence of two positive solution for equation \eqref{1} because of the nonlinearity term $h(x)t^q$($00$ ($u\geq0$) a.e. $\Omega$ and satisfies \[ \Big(a+b\int_{\Omega}| \nabla u|^2dx\Big)\int_{\Omega}\nabla u\cdot\nabla vdx =\int_{\Omega}h(x)u^qvdx+\int_{\Omega}f(x,u)vdx \] for all $v\in H_0^1(\Omega)$. By assumption (F1), we know that to seek a nonnegative weak solution of \eqref{1} is equivalent to finding a nonzero critical point of the following functional on $H_0^1(\Omega)$: \[ I(u)=\frac{1}{2}\int_{\Omega}| \nabla u|^2dx +\frac{b}{4}\Big(\int_{\Omega}| \nabla u|^2dx\Big)^2 -\frac{1}{q+1}\int_{\Omega}h(x)(u^+)^{q+1}dx -\int_{\Omega}F(x,u^+)dx, \] where $u^+=\max\{0,u\}$, $F(x,s)=\int_0^sf(x,\sigma)d\sigma$. By (F1) and (F2), $I$ is a $C^1$ functional. By the strong maximum principle, the nonzero critical points of $I$ are positive solutions to problem \eqref{1} if $h(x)\geq0$. Our results are as follows. \begin{theorem} \label{thm1.1} Suppose that $N=1, 2, 3$, $a>0$, $b>0$, $00$. \end{itemize} Then there exists a constant $m>0$ such that if $\|h\|_\infty0$ a. e. in $\Omega$. \end{theorem} \begin{theorem} \label{thm1.2} Suppose that $N=1, 2, 3$, $a>0$, $b>0$, $00$ such that if $\|h\|_\infty0$ and $I(u_2)>0$ if $h(x)\geq0$. \end{theorem} \begin{remark} \label{rmk1.1}\rm Theorem 1.1 for problem \eqref{1} with $a, b>0$ generalizes \cite[Theorem 1.1]{42} where \eqref{1} with $a=1$ and $b=0$. \end{remark} \begin{corollary} \label{coro1.1} Suppose that $N=1, 2, 3$, $a>0$, $b>0$, $00$ such that for all $h\in L^\infty(\Omega)$ with $\|h\|_\infty0$, $b>0$, $00$ such that if $\|h\|_\infty0$ such that $I(u)|_{\|u\|=\rho}\geq \gamma>0$. \item[(b)] There exists an $e\in \mathbb{R}\setminus B_\rho(0)$ such that $I(e)<0$. \end{itemize} \end{lemma} \begin{proof} (a) By (F2), $\beta\in(1,+\infty)$ and noticing that $f(x,s)/s^{p-1} \to 0$ as $s \to +\infty$ uniformly in $x \in \Omega$ for any fixed $ p\in(4,6)$ if $ N=3$; $p\in(4,+\infty)$ if $ N=1,2$. Given $\varepsilon\in(0,1)$, there exist $\delta, M_\varepsilon>0$ satisfying $0<\delta<+\infty$ such that $$ f(x,s)<\Big(\alpha+\varepsilon\Big)(a\lambda_1 s+b\mu_1 s^3),\quad 0(\beta-\varepsilon)(a\lambda_1 s+b\mu_1 s^3),\quad s>\delta_\infty. $$ Thus, we obtain $$ F(x,s)>(\beta-\varepsilon) \Big(\frac{a\lambda_1}{2} s^2+\frac{b\mu_1 }{4}s^4\Big),\quad s>\delta_\infty. $$ Together with (F1) and $f(x,s)=0$ for $x\in\Omega$, $s\leq0$, there exists a constant $B>0$ such that \begin{equation} F(x,s)\geq \frac{a}{2}(\beta-\varepsilon)\lambda_1|s|^2 +\frac{b}{4}(\beta-\varepsilon)\mu_1|s|^4-B,\quad s\in R. \label{3} \end{equation} Since $\alpha<1$, we can choose $\varepsilon>0$ such that $\varepsilon<1-\alpha$. By (H1), \eqref{63}, $\lambda_1\|u\|_2^2\leq\|u\|^2$, $\mu_1\|u\|_4^4\leq\|u\|^2$, the Sobolev's embedding theorem: $\|u\|_{q+1}^{q+1}\leq K\|u\|^{q+1}$, $\|u\|_{p+1}^{p+1}\leq M\|u\|^{p+1}$ and the Young inequality, we have \begin{equation} \begin{aligned} &I(u)\\ &= \frac{a}{2}\int_{\Omega}| \nabla u|^2dx+\frac{b}{4} \Big(\int_{\Omega}| \nabla u|^2dx\Big)^2 -\frac{1}{q+1}\int_{\Omega}h(x)(u^+)^{q+1}dx-\int_{\Omega}F(x,u^+)dx\\ &\geq \frac{a}{2}\|u\|^2+\frac{b}{4}\|u\|^4-\frac{\|h\|_\infty}{q+1} \|u^+\|_{q+1}^{q+1}- \frac{a}{2}(\alpha+\varepsilon)\lambda_1\|u^+\|_2^2\\ &\quad -\frac{b}{4}(\alpha+\varepsilon)\mu_1\|u^+\|_4^4 -A\|u^+\|_p^{p}\\ &\geq \frac{a}{2}\|u\|^2+\frac{b}{4}\|u\|^4-\frac{\|h\|_\infty}{q+1} \|u\|_{q+1}^{q+1}- \frac{a}{2}(\alpha+\varepsilon)\|u\|^2-\frac{b}{4}(\alpha+\varepsilon) \|u\|^4-A\|u\|_p^{p}\\ &\geq \frac{a[1-(\alpha+\varepsilon)]}{2}\|u\|^2 +\frac{b[1-(\alpha+\varepsilon)]}{4}\|u\|^4 -\frac{\|h\|_\infty K}{q+1}\|u\|^{q+1}-AM\|u\|^{p}\\ &\geq \|u\|^2\big(C_1-C_2\|h\|_\infty\|u\|^{q-1}-C_3\|u\|^{p-2}\big), \end{aligned} \label{17} \end{equation} where $C_1=\frac{a[1-(\alpha+\varepsilon)]}{2}$, $C_2=\frac{ K}{q+1}$ and $C_3=AM$. Let $$ g(t)=C_2\|h\|_\infty t^{q-1}+C_3t^{p-2}\quad \text{for } t\geq0. $$ Clearly, $$ g'(t)=C_2(q-1)\|h\|_\infty t^{q-2}+(p-2) C_3t^{p-3}. $$ From $g'(t_0)=0$, we have $$ t_0=(C_4\|h\|_\infty)^{\frac{1}{p-q-1}},\quad 00$ because $04$, there exists $m>0$ such that $g(t_0)0$ large enough, by \eqref{3} and $00$ such that $\varepsilon<\min\{\beta-1,1-\alpha\}$, we have \begin{align*} I(t\varphi_1) &= \frac{a t^2}{2}\int_{\Omega}| \nabla \varphi_1|^2dx +\frac{b t^4}{4}\left(\int_{\Omega}| \nabla \varphi_1|^2dx\right)^2 -\frac{t^{q+1}}{q+1}\int_{\Omega}h(x)\varphi_1^{q+1}dx\\ &\quad -\int_{\Omega}F(x,t\varphi_1)dx\\ &\leq \frac{a t^2}{2}\| \varphi_1\|^2+\frac{b t^4}{4}\|\varphi_1\|^4 -\frac{t^{q+1}}{q+1}\int_{\Omega}h(x)\varphi_1^{q+1}dx -\frac{at^2}{2}(\beta-\varepsilon)\lambda_1\|\varphi_1\|_2^2\\ &\quad -\frac{bt^4}{4}(\beta-\varepsilon)\mu_1\|\varphi_1\|_4^4 +B|\Omega|\\ &\leq \frac{a t^2}{2}\| \varphi_1\|^2+\frac{b t^4}{4}\|\varphi_1\|^4 -\frac{t^{q+1}}{q+1}\int_{\Omega}h(x)\varphi_1^{q+1}dx -\frac{bt^4}{4}(\beta-\varepsilon)\|\varphi_1\|^4+B|\Omega|\\ &= \frac{a t^2}{2}\| \varphi_1\|^2-\frac{b t^4}{4}(\beta-\varepsilon-1) \|\varphi_1\|^4-\frac{t^{q+1}}{q+1}\int_{\Omega}h(x)\varphi_1^{q+1}dx+B|\Omega|\\ &\to -\infty %\label{18} \end{align*} as $t\to\infty$. So we can choose $t^0>0$ large enough and $e=t\varphi_1$ so that $I(e)<0$ and $\|e\|>\rho$. \end{proof} \begin{proof}[Proof of Theorem 1.1] Set $\rho$ as in Lemma 2.1(a), define $$ \overline{B}_\rho=\{u\in H_0^1(\Omega): \|u\|\leq\rho\},\quad \partial B_\rho=\{u\in H_0^1(\Omega):\ \|u\|=\rho\} $$ and $\overline{B}_\rho$ is a complete metric space with the distance $$ \text{dist}(u,v)=\|u-v\|\ \text{for}\ u,\ v\in \overline{B}_\rho. $$ By Lemma 2.1, \begin{equation} I(u)|_{\partial B_\rho}\geq \gamma>0. \label{200} \end{equation} Clearly, $I\in C^1(\overline{B}_\rho, \mathbb{R})$, hence $I$ is lower semicontinuous and bounded from below on $\overline{B}_\rho$. Let \begin{equation} c_1=\inf\{I(u):\ u\in \overline{B}_\rho\}. \label{201} \end{equation} We claim that \begin{equation} c_1<0.\label{202} \end{equation} Indeed, let $v\in H_0^1(\Omega)$ be given by (H2), that is, $\int_\Omega h(x)(v^+)^{q+1}dx>0,$ then for $t>0$ small enough such that for any $\varepsilon>0$, we have $|tv|<\varepsilon$. Therefore, together (F2) and $\alpha>1$ imply \begin{align*} I(tv)&= \frac{a t^2}{2}\int_{\Omega}| \nabla v|^2dx +\frac{b t^4}{4}\Big(\int_{\Omega}| \nabla v|^2dx\Big)^2 -\frac{t^{q+1}}{q+1}\int_{\Omega}h(x)(v^+)^{q+1}dx\\ &\quad -\int_{\Omega}F(x,tv^+)dx\\ &\leq \frac{a t^2}{2}\| v\|^2+\frac{b t^4}{4}\|v\|^4 -\frac{t^{q+1}}{q+1}\int_{\Omega}h(x)(v^+)^{q+1}dx\\ &\quad - \frac{at^2}{2}(\alpha+\varepsilon)\lambda_1\|v\|_2^2 -\frac{bt^4}{4}(\alpha+\varepsilon)\mu_1\|v\|_4^4 <0, \end{align*} if $t>0$ small enough, because $00$ and $e\in E$ with $\|e\|>\rho$. Let $c\geq\gamma$ be characterized by $$ c=\inf_{h\in \Gamma}\max_{t\in[0,1]}I(h(t)), $$ where $\Gamma=\{h\in([0,1],E)| h(0)=0, h(1)=e\}$ is the set of continuous paths joining $0$ and $e$. Then, there exists a sequence $\{u_n\}\subset E$ such that $$ I(u_n)\to c\geq\gamma\quad \text{and}\quad (1+\|u_n\|)\|I'(u_n)\|_{E^{-1}}\to0 $$ as $n\to\infty$. \end{lemma} \begin{proof}[Proof of Theorem 1.2] Let $\rho$, $\gamma$ and $e$ be given in Lemma 2.1, applying Lemma 3.1 with $\kappa=0$, $E=H_0^1(\Omega)$, and for $c$ defined as in Lemma 3.1, then there exists a sequence $\{u_n\}\subset H_0^1(\Omega)$ such that $$ I(u_n)\to c\geq\gamma\quad \text{and}\quad (1+\|u_n\|)\|I'(u_n)\|_{E^{-1}}\to0 $$ as $n\to\infty$. This implies that \begin{gather}\label{204} \begin{aligned} &\frac{a}{2}\int_{\Omega}| \nabla u_n|^2 dx+\frac{b}{4} \Big(\int_{\Omega}| \nabla u_n|^2dx\Big)^2 -\frac{1}{q+1}\int_{\Omega}h(x)(u_n^+)^{q+1}dx\\ &-\int_{\Omega}F(x,u_n^+)dx=c+o(1), \end{aligned}\\ \begin{aligned} &a\int_{\Omega}\nabla u_n\cdot\nabla \varphi dx+b\int_{\Omega}| \nabla u_n|^2dx \int_{\Omega}\nabla u_n\cdot\nabla \varphi dx -\frac{1}{q+1}\int_{\Omega}h(x)(u_n^+)^{q}\varphi\\ & -\int_{\Omega}f(x,u_n^+)\varphi dx=o(1),\quad \text{for } \varphi\in H_0^1(\Omega), \end{aligned}\label{205} \\ \label{206} a\int_{\Omega}| \nabla u_n|^2dx+b\Big(\int_{\Omega}| \nabla u_n|^2dx\Big)^2 -\int_{\Omega}h(x)(u_n^+)^{q+1}dx-\int_{\Omega}f(x,u_n^+)u_n^+dx=o(1). \end{gather} By the compactness of Sobolev embedding and the standard procedures, we know that, if $\{u_n\}$ is bounded in $H_0^1(\Omega)$, there exists $u_2\in H_0^1(\Omega)$ such that $I'(u_2)=0$ and $I(u_2)=c>0$ and $u_2$ is a nonnegative weak solution of problem \eqref{1}, which is positive if $h(x)\geq0$ by the strong maximum principle. Moreover, $u_2$ is different from the solution $u_1$ obtained in Theorem 1.1 since $I(u_1)=c_1<0$. So, to prove Theorem 1.2, we only need to prove that $\{u_n\}$ given by \eqref{204}$-\eqref{206}$ is bounded in $H_0^1(\Omega)$. Next, we shall show that $\{u_n\}$ is bounded in $H_0^1(\Omega)$. By contradiction, we suppose that $\|u_n\|\to\infty$ as $n\to\infty$, and set $w_n=\frac{u_n}{\|u_n\|}$. Clearly, $\{w_n\}$ is bounded in $H_0^1(\Omega)$. Thus, there exist a subsequence, still denoted by $\{w_n\}$, and $w\in H_0^1(\Omega)$, such that % \label{iiii} \begin{gather*} w_n\rightharpoonup w\quad \text{weakly in } H_0^1(\Omega), \\ w_n\to w\quad \text{a.e. in }\Omega,\\ w_n\to w \quad \text{strongly in }L^r(\Omega) \end{gather*} as $n\to\infty$, where $r\in[1,6]$ if $N=3$ and $r\in(1,+\infty)$ if $N=1, 2$. Similarly, $w_n^+=\frac{u_n^+}{\|u_n\|}$ also satisfies % \label{iiii} \begin{gather*} w_n^+\rightharpoonup w^+\quad \text{weakly in } H_0^1(\Omega), \\ w_n^+\to w^+\quad \text{a.e. in}\ \Omega,\\ w_n^+\to w^+ \quad \text{strongly in } L^r(\Omega) \end{gather*} as $n\to\infty$. We first claim that $w\not\equiv0$. Indeed, if $w\equiv0$, then by (H1), we have \begin{equation} \lim_{n\to\infty}\int_{\Omega}h(x)(w_n^+)^{q+1}dx=0.\label{208} \end{equation} Moreover, by (F1)-(F2), for any $\varepsilon>0$, if $s>0$ large enough, we obtain $$ (\beta-\varepsilon)a\lambda_1s+(\beta-\varepsilon)b\mu_1s^3< f(x,s)<(\beta+\varepsilon)a\lambda_1s+(\beta+\varepsilon)b\mu_1s^3. $$ Therefore, we deduce $$ (\beta-\varepsilon)a\lambda_1s-\varepsilon b\mu_1s^3< f(x,s)-\beta b\mu_1s^3<(\beta+\varepsilon)a\lambda_1s+\varepsilon b\mu_1s^3. $$ It implies that \begin{align*} &\frac{(\beta-\varepsilon)\lambda_1}{\|u_n\|^2}\int_{\Omega}w_n^+\varphi dx -\varepsilon b\mu_1\int_{\Omega}(w_n^+)^{3}\varphi dx\\ &< \int_{\Omega}\frac{f(x,u_n^+)-b\beta\mu_1(u_n^+)^3}{\|u_n\|^3}\varphi dx\\ &< \frac{(\beta+\varepsilon)\lambda_1}{\|u_n\|^2}\int_{\Omega}w_n^+\varphi dx -\varepsilon b\mu_1\int_{\Omega}(w_n^+)^{3}\varphi dx \end{align*} for any $\varphi\in H_0^1(\Omega)$. By the arbitrariness of $\varepsilon$, we obtain \begin{equation} \lim_{n\to+\infty}\int_{\Omega}\frac{f(x,u_n^+) -b\beta\mu_1(u_n^+)^3}{\|u_n\|^3}\varphi dx=0.\label{209} \end{equation} Multiplying \eqref{205} by $\frac{1}{\|u_n\|^3}$, we have \begin{equation} \begin{aligned} &\frac{a}{\|u_n\|^2}\int_{\Omega}\nabla w_n\cdot\nabla\varphi dx +b\int_{\Omega}\nabla w_n\cdot\nabla\varphi dx -\frac{1}{\|u_n\|^{3-q}}\int_{\Omega}h(x)(w_n^+)^{q}\varphi dx\\ & -b\beta\mu_1\int_{\Omega}(w_n^+)^{3}\varphi dx -\int_{\Omega}\frac{f(x,u_n^+)-b\beta\mu_1(u_n^+)^3}{\|u_n\|^3}\varphi dx=o(1). \end{aligned} \label{207} \end{equation} Letting $n\to\infty$ in \eqref{207}, according to $\|u_n\|\to\infty$ as $n\to\infty$, \eqref{208}, \eqref{209} and $b\neq0$, we have \begin{align*} \int_{\Omega}\nabla w\cdot\nabla\varphi dx =\beta\mu_1\int_{\Omega}(w^+)^{3}\varphi dx \end{align*} and $w\neq0$. Hence, $\beta\mu_1$ is an eigenvalue of \eqref{210}, which contradicts with the assumption. The proof is complete. \end{proof} \subsection*{Acknowledgments} The authors express their gratitude to the anonymous referees for the useful comments and remarks. This research was supported by National Natural Science Foundation of China (No. 11101347), the Key Project in Science and Technology Research Plan of the Education Department of Hubei Province (No. D20112605, No. D20122501), Fundamental Funds for the Central Universities (No. XDJK2013D007) and the Science and Technology Funds of Chongqing Educational Commission (No. KJ130703). \begin{thebibliography}{00} \bibitem{2} C.~O. Alves, F.~J. S.~A. Corr{\^e}a, T.~F. Ma; \newblock Positive solutions for a quasilinear elliptic equation of {K}irchhoff type. \newblock {\em Comput. Math. Appl.}, 49(1):85--93, 2005. \bibitem{3} S.~Bernstein; \newblock Sur une classe d'\'equations fonctionnelles aux d\'eriv\'ees partielles. \newblock {\em Bull. Acad. Sci. URSS. S\'er. Math. [Izvestia Akad. Nauk SSSR]}, 4:17--26, 1940. \bibitem{18} C.-y. Chen, Y.-c. Kuo, and T.-f. Wu. \newblock The {N}ehari manifold for a {K}irchhoff type problem involving sign-changing weight functions. \newblock {\em J. Differential Equations}, 250(4):1876--1908, 2011. \bibitem{9} B.~Cheng, X.~Wu; \newblock Existence results of positive solutions of {K}irchhoff type problems. \newblock {\em Nonlinear Anal.}, 71(10):4883--4892, 2009. \bibitem{ChengWuLiu} B.~Cheng, X.~Wu, J.~Liu; \newblock Multiple solutions for a class of {K}irchhoff type problems with concave nonlinearity. \newblock {\em NoDEA Nonlinear Differential Equations Appl.}, 19(5):521--537, 2012. \bibitem{33} I.~Ekeland; \newblock Nonconvex minimization problems. \newblock {\em Bull. Amer. Math. Soc. (N.S.)}, 1(3):443--474, 1979. \bibitem{41} I.~Ekeland; \newblock {\em Convexity methods in {H}amiltonian mechanics}, volume~19 of {\em Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]}. \newblock Springer-Verlag, Berlin, 1990. \bibitem{45} D.~Gilbarg, N.~S. Trudinger; \newblock {\em Elliptic partial differential equations of second order}. \newblock Classics in Mathematics. Springer-Verlag, Berlin, 2001. \newblock Reprint of the 1998 edition. \bibitem{1} G.~Kirchhoff; \newblock {\em Mechanik}. \newblock Teubner, Leipzig, 1883. \bibitem{42} S.~Li, S.~Wu, H.-S. Zhou; \newblock Solutions to semilinear elliptic problems with combined nonlinearities. \newblock {\em J. Differential Equations}, 185(1):200--224, 2002. \bibitem{44} Z.~Liang, F.~Li, J.~Shi; \newblock Positive solutions to kirchhoff type equations with nonlinearity having prescribed asymptotic behavior. \newblock {\em Annales de l'Institut Henri Poincare (C) Non Linear Analysis}, (0):--, 2013. \bibitem{12} A.~Mao, Z.~Zhang; \newblock Sign-changing and multiple solutions of {K}irchhoff type problems without the {P}.{S}. condition. \newblock {\em Nonlinear Anal.}, 70(3):1275--1287, 2009. \bibitem{13} K.~Perera, Z.~Zhang; \newblock Nontrivial solutions of {K}irchhoff-type problems via the {Y}ang index. \newblock {\em J. Differential Equations}, 221(1):246--255, 2006. \bibitem{4} S.~I. Poho{\v{z}}aev; \newblock A certain class of quasilinear hyperbolic equations. \newblock {\em Mat. Sb. (N.S.)}, 96(138):152--166, 168, 1975. \bibitem{21} J.~Sun S.~Liu; \newblock Nontrivial solutions of {K}irchhoff type problems. \newblock {\em Appl. Math. Lett.}, 25(3):500--504, 2012. \bibitem{19} J.-J. Sun, C.-L. Tang; \newblock Existence and multiplicity of solutions for {K}irchhoff type equations. \newblock {\em Nonlinear Anal.}, 74(4):1212--1222, 2011. \bibitem{17} Y.~Yang, J.~Zhang; \newblock Nontrivial solutions of a class of nonlocal problems via local linking theory. \newblock {\em Appl. Math. Lett.}, 23(4):377--380, 2010. \bibitem{16} Y.~Yang, J.~Zhang; \newblock Positive and negative solutions of a class of nonlocal problems. \newblock {\em Nonlinear Anal.}, 73(1):25--30, 2010. \bibitem{14} Z.~Zhang, K.~Perera; \newblock Sign changing solutions of {K}irchhoff type problems via invariant sets of descent flow. \newblock {\em J. Math. Anal. Appl.}, 317(2):456--463, 2006. \end{thebibliography} \end{document}