\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 106, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/106\hfil Multiple solutions] {Multiple solutions for perturbed $p$-Laplacian boundary-value problems with impulsive effects} \author[M. Ferrara, S. Heidarkhani \hfil EJDE-2014/106\hfilneg] {Massimiliano Ferrara, Shapour Heidarkhani} % in alphabetical order \address{Massimiliano Ferrara \newline Department of Law and Economics, University Mediterranea of Reggio Calabria, Via dei Bianchi, 2 - 89131 Reggio Calabria, Italy} \email{massimiliano.ferrara@unirc.it} \address{Shapour Heidarkhani \newline Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran} \email{s.heidarkhani@razi.ac.ir} \thanks{Submitted August 8, 2013. Published April 15, 2014.} \subjclass[2000]{34B15, 34B18, 34B37, 58E30} \keywords{Multiple solutions; perturbed $p$-Laplacian; critical point theory; \hfill\break\indent boundary-value problem with impulsive effects; variational methods} \begin{abstract} We establish the existence of three distinct solutions for a perturbed $p$-Laplacian boundary value problem with impulsive effects. Our approach is based on variational methods. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this work, we show the existence of at least three solutions for the nonlinear perturbed problem \begin{equation}\label{e1} \begin{gathered} -(\rho(x)\Phi_{p}(u'(x)))'+s(x)\Phi_{p}(u'(x)) =\lambda f(x,u(x))+\mu g(x,u(x))\quad \text{a.e. }x\in (a,b),\\ \alpha_1 u'(a^{+})-\alpha_2u(a)=0,\quad \beta_1u'(b^{-})+\beta_2u(b)=0 \end{gathered} \end{equation} with the impulsive conditions \begin{equation}\label{e2} \Delta(\rho(x_j) \Phi_{p}(u'(x_j)))=I_j(u(x_j)),\quad j=1,2,\dots ,l \end{equation} where $a,b\in \mathbb{R}$ with $a1$, $\Phi_{p}(t)=|t|^{p-2}t$, $\rho,s\in L^\infty([a,b])$ with $\rho_{0}:=\operatorname{ess\,inf}_{x\in[a,b]}\rho(x)>0$, $s_0:=\operatorname{ess\,inf}_{x\in[a,b]}s(x)>0$, $\rho(a^{+})=\rho(a)>0$, $\rho(b^-)=\rho(b)>0$, $\alpha_1$, $\alpha_2$, $\beta_1$, $\beta_2$ are positive constants, $f,g:[a,b]\times \mathbb{R}\to \mathbb{R}$ are two $L^1$-Carath\'{e}odory functions, $x_{0}=a1$, $\Phi_{p}(t)=|t|^{p-2}t$, $\rho,s\in L^\infty([a,b])$ with $\operatorname{ess\,inf}_{t\in[a,b]}\rho(t)>0$, $\operatorname{ess\,inf}_{t\in[a,b]}s(t)>0$, $0<\rho(a),\rho(b)<+\infty$, $A\leq 0,\ B\geq 0$, $\alpha$, $\beta$, $\gamma$, $\sigma$ are positive constants, $I_i\in C( [0,+\infty),\ [0,+\infty))$ for $i=1,\dots ,l$, $f\in C([a,b]\times [0,+\infty), [0,+\infty))$, $f(t,0)\neq 0$ for $t\in[a,b]$, $t_{0}=a1$, $\Phi_{p}(t)=|t|^{p-2}t$, $\rho,s\in L^\infty([a,b])$ with $\operatorname{ess\,inf}_{t\in[a,b]}\rho(t)>0$, $\operatorname{ess\,inf}_{t\in[a,b]}s(t)>0$, $0<\rho(a),\rho(b)<+\infty$, $\lambda$ is a positive parameter, $A,B$ are constant, $\alpha$, $\beta$, $\gamma$, $\sigma$ are positive constants, $f:[a,b]\times \mathbb{R}\to \mathbb{R}$ is a continuous function, $I_i:\mathbb{R}\to \mathbb{R}$ for $i=1,\dots ,l$ are continuous functions, $t_{0}=a0$ and $\overline{x}\in X$, with $r< \Phi(\overline{x})$ such that \begin{itemize} \item[(a1)] $\frac{1}{r} \sup_{ \Phi(x)\leq r} \Psi(x) < \frac{\Psi(\overline{x})}{\Phi(\overline{x})}$, \item[(a2)] for each $\lambda\in \Lambda_{r}:= ]\frac{\Phi(\overline{x})}{\Psi(\overline{x})}, \frac{r}{\sup_{\Phi(x)\leq r}\Psi(x)}[$ the functional $ \Phi-\lambda \Psi$ is coercive. \end{itemize} Then, for each $\lambda\in\Lambda_{r}$ the functional $\Phi-\lambda \Psi$ has at least three distinct critical points in $X$. \end{theorem} Let $ X:=W^{1,p}([a,b])$ equipped with the norm $$ \|u\| := \Big(\int_a^b\rho(x)|u'(x)|^pdx + \int_a^b s(x)|u(x)|^pdx\Big)^{1/p} $$ which is equivalent to the usual one. The following lemma is useful for proving our main result. \begin{lemma}[{\cite[Lemma 2.6]{TG1}}]\label{lem1} Let $u\in X$. Then \begin{equation}\label{e3} \| u\|_{\infty}=\max_{x\in[a,b]}| u(x)|\leq M\|u\| \end{equation} where $$ M=2^{1/q}\max\Big\{\frac{1}{(b-a)^{1/p}s_0^{1/p}},\; \frac{(b-a)^{1/p}}{\rho_{0}^{1/p}}\Big\}, \quad \frac{1}{p}+\frac{1}{q}=1. $$ \end{lemma} By a classical solution of the problem \eqref{e1}-\eqref{e2}, we mean a function $u\in\{u(x)\in X: \rho(x)\Phi_{p}(u')(.)\in W^{1,\infty}(x_j,x_{j+1}),\, j=0,1,\dots ,l\}$ such that $u$ satisfies \eqref{e1}-\eqref{e2}. We say that a function $u\in X$ is a weak solution of the problem \eqref{e1}-\eqref{e2} if \begin{align*} &\int_a^b \rho(x)\Phi_{p}(u'(x))v'(x)dx +\int_a^b s(x)\Phi_{p}(u(x))v(x)dx \\ &+\rho(a)\Phi_{p}\Big(\frac{\alpha_2u(a)}{\alpha_1}\Big)v(a) +\rho(b)\Phi_{p}\Big(\frac{\beta_2u(b)}{\beta1}\Big)v(b) +\sum_{j=1}^{l}I_j(u(x_j))v(x_j)\\ &-\lambda\int_{a}^{b}f(x,u(x))v(x)dx-\mu\int_{a}^{b}g(x,u(x))v(x) dx=0 \end{align*} for every $v\in X$. For the sake of convenience, in the sequel, we define \begin{gather*} F(x,t)=\int_{0}^{t}f(x,\xi)d\xi\quad \text{for all }(x,t)\in[a,b]\times\mathbb{R},\\ G(x,t)=\int_{0}^{t}g(x,\xi)d\xi\quad \text{for all }(x,t)\in[a,b]\times\mathbb{R},\\ C_1=\frac{M^p}{p}\Big(\frac{\rho(a)\alpha_2^{p-1}}{\alpha_1^{p-1}} +\frac{\rho(b)\beta_2^{p-1}}{\beta_1^{p-1}}\Big)\\ C_2=\frac{1}{p}-\sum_{j=1}^{l}\frac{b_j}{\gamma_j+1}M^{\gamma_j+1},\\ C_3=\frac{1}{p}+\sum_{j=1}^{l}\frac{b_j}{\gamma_j+1}M^{\gamma_j+1},\\ C_4=\sum_{j=1}^{l}\Big(a_jM+\frac{b_j}{\gamma_j+1} M^{\gamma_j+1}\Big). \end{gather*} For given constants $\delta_1,\ \delta_2,\ \eta_1$ and $\eta_2$ put \begin{gather*} K_1:=\Big((b-a)\Big(\frac{\delta_1}{\eta_1}+\frac{\delta_2}{\eta_2}\Big) +\frac{\alpha_1}{\alpha_2}\delta_1+ \frac{\beta_1}{\beta_2}\delta_2\Big)/ \Big((b-a)\Big(\frac{1}{\eta_1}+\frac{1}{\eta_2}-1\Big)\Big),\\ K_2:=|\delta_1|^p\int_{a}^{a+\frac{b-a}{\eta_1}}\rho(x)dx+|K_1|^p \int_{a+\frac{b-a}{\eta_1}}^{b-\frac{b-a}{\eta_2}}\rho(x)dx +|\delta_2|^p\int_{b-\frac{b-a}{\eta_1}}^{b}\rho(x)dx,\\ K_3=\max\Big{\{}\frac{\alpha_1}{\alpha_2}|\delta_1|,\; \Big(\frac{b-a}{\eta_1}+\frac{\alpha_1}{\alpha_2} \Big)|\delta_1|,\; \Big(\frac{b-a}{\eta_2}+\frac{\beta_1}{\beta_2} \Big)|\delta_2|,\ \frac{\beta_1}{\beta_2}|\delta_2|\Big{\}},\\ K_4:=(C_1+C_3)\Big(K_2+K_3^p\int_{a}^{b}s(x)dx\Big) +C_4\Big(K_2+K_3^p\int_{a}^{b}s(x)dx\Big)^{1/p},\\ h_1(x)=\delta_1\Big(x+\frac{\alpha_1}{\alpha_2}-a\Big),\ h_2(x)=K_1\Big(x-a-\frac{b-a}{\eta_1}\Big) +\delta_1\Big(\frac{b-a}{\eta_1}+\frac{\alpha_1}{\alpha_2}\Big),\\ h_3(x)=\delta_2\Big(x-\frac{\beta_1}{\beta_2}-b\Big), \end{gather*} and $$ K^F:=\int_{a}^{a+\frac{b-a}{\eta_1}}F(x,h_1(x))dx +\int_{a+\frac{b-a}{\eta_1}}^{b-\frac{b-a}{\eta_2}}F(x,h_2(x))dx +\int_{b-\frac{b-a}{\eta_2}}^{b}F(x,h_3(x))dx. $$ In this article, we assume throughout, and without further mention, that the following condition holds: \begin{itemize} \item[(A1)] The impulsive functions $I_j$ have sublinear growth, i.e., there exist constants $a_j>0$, $b_j>0$, and $\gamma_j\in[0,p-1)$ for $j=1,2,\dots ,l$ such that $$ | I_j(t)| \leq a_j+b_j|t|^{\gamma_j}\quad \text{for very } t\in \mathbb{R},\; j=1,2,\dots ,l. $$ \end{itemize} Moreover, set $G^\theta:=\int_{\Omega}\max_{|t|\leq \theta}G(x,t)dt$ for all $\theta>0$, and $G_\eta:=\inf_{\Omega\times [0,\eta]}G$ for all $\eta>0$. If $g$ is sign-changing, then clearly, $G^\theta\geq 0$ and $G_\eta\leq 0$. A special case of our main results is the following theorem, whose proof we delay until the end of the paper. \begin{theorem}\label{t1.1} Assume that $C'_2:=\frac{1}{p}-\sum_{j=1}^{l}\frac{b_j}{\gamma_j+1} 2^{\frac{\gamma_j+1}{q}}>0$. Let $f:\mathbb{R}\to \mathbb{R}$ be a non-negative continuous function. Put $F(t)=\int_0^tf(\xi)d\xi$ for each $t\in \mathbb{R}$. Suppose that $$ \liminf_{\xi\to 0}\frac{F(\xi)}{\frac{C'_2}{2^{p/q}}\xi^p -\frac{C'_4}{2^{1/q}}\xi}= \limsup_{\xi\to +\infty}\frac{F(\xi)}{\frac{C'_2}{2^{p/q}}\xi^p -\frac{C'_4}{2^{1/q}}\xi}=0 $$ where $$ C'_4:=\sum_{j=1}^{l}\Big(a_j2^{1/q}+\frac{b_j}{\gamma_j+1} 2^{\frac{\gamma_j+1}{q}}\Big). $$ Then, there is $\lambda^*>0$ such that for each $\lambda>\lambda^*$ and for every $L^1$-Carath\'eodory function $g:[0,1]\times \mathbb{R}\to \mathbb{R}$ satisfying the condition $$ \limsup_{|t|\to\infty}\frac{\sup_{x\in [0,1]} \int_{0}^{t}g(x,s)ds}{\frac{C'_2}{2^{p/q}}t^p -\frac{C'_4}{2^{1/q}}t}<+\infty, $$ there exists $\delta^{*}_{\lambda, g}>0$ such that, for each $\mu\in[0,\delta^{*}_{\lambda, g}[$, the problem \begin{gather*} -(\Phi_{p}(u'(x)))'+\Phi_{p}(u'(x))=\lambda f(u(x))+\mu g(x,u(x))\quad \text{a.e. }x\in (0,1),\\ u'(0^{+})-u(0)=0,\quad u'(1^{-})+u(1)=0 \end{gather*} with the impulsive conditions $$ \Delta(\rho(x_j) \Phi_{p}(u'(x_j)))=I_j(u(x_j)),\quad j=1,2,\dots ,l $$ admits at least three weak solutions. \end{theorem} We need the following proposition in the proof our main result. \begin{proposition}\label{p1} Let $T:X\to X^{*}$ be the operator defined by \begin{align*} T(u)v&=\int_a^b \rho(x)\Phi_{p}(u'(x))h'(x)dx +\int_a^b s(x)\Phi_{p}(u(x))h(x)dx \\ &\quad +\rho(a)\Phi_{p}\Big(\frac{\alpha_2u(a)}{\alpha_1}\Big)h(a) +\rho(b)\Phi_{p}\Big(\frac{\beta_2u(b)}{\beta1}\Big)h(b)\\ &\quad +\sum_{j=1}^{l}I_j(u(x_j))v(x_j) \end{align*} for every $u,h\in X$. Then $T$ admits a continuous inverse on $X^{*}$. \end{proposition} \begin{proof} For any $u\in X\setminus\{0\}$, \begin{align*} &\lim_{\|u\|\to\infty}\frac{\langle T(u), u\rangle}{\|u\|} \\ &= \lim_{\|u\|\to\infty}\Big(\frac{\int_a^b \rho(x)\Phi_{p}(u'(x))u'(x)dx +\int_a^b s(x)\Phi_{p}(u(x))u(x)dx}{\|u\|}\\ &\quad + \frac{\rho(a)\Phi_{p} \Big(\frac{\alpha_2u(a)}{\alpha_1}\Big)u(a) +\rho(b)\Phi_{p}\Big(\frac{\beta_2u(b)}{\beta1}\Big)u(b) +\sum_{j=1}^{l}I_j(u(x_j))u(x_j)}{\|u\|}\Big) \\ &= \lim_{\|u\|\to\infty}\Big(\frac{\int_a^b \rho(x)|u'(x)|^pdx +\int_a^b s(x)|u(x)|^pdx}{\|u\|}\\ &\quad + \frac{\rho(a)\Phi_{p}\Big(\frac{\alpha_2u(a)}{\alpha_1}\Big)u(a) +\rho(b)\Phi_{p}\Big(\frac{\beta_2u(b)}{\beta1}\Big)u(b) +\sum_{j=1}^{l}I_j(u(x_j))u(x_j)}{\|u\|}\Big)\\ &= \lim_{\|u\|\to\infty}\frac{\|u\|^p+\rho(a)\Phi_{p} \Big(\frac{\alpha_2u(a)}{\alpha_1}\Big)u(a) +\rho(b)\Phi_{p}\Big(\frac{\beta_2u(b)}{\beta1}\Big)u(b)}{\|u\|}\\ &\quad + \frac{\sum_{j=1}^{l}I_j(u(x_j))u(x_j)}{\|u\|} =\infty. \end{align*} Thus, the map $T$ is coercive. For any $u\in X$ and $v\in X$, we have \begin{align*} &\langle T(u)-T(v), u-v\rangle \\ &=\int_{a}^{b}\Big(\rho(x)(\Phi_{p}(u'(x))-\Phi_{p}(v'(x)))(u'(x)-v'(x))\\ &\quad +s(x)(\Phi_{p}(u(x))-\Phi_{p}(u(x))) (u(x)-v(x))\Big)dx \\ &\quad +\rho(a)(\Phi_{p}\Big(\frac{\alpha_2u(a)}{\alpha_1}\Big)- \Phi_{p}\Big(\frac{\alpha_2v(a)}{\alpha_1}\Big))(u(a)-v(a)) +\rho(b)(\Phi_{p}\Big(\frac{\beta_2u(b)}{\beta_1}\Big)\\ &\quad - \Phi_{p}\Big(\frac{\beta_2v(b)}{\beta_1}\Big))(u(b)-v(b)) +\sum_{j=1}^{l}(I_j(u(x_j))-I_j(v(x_j)))(u(x_j)-v(x_j)). \end{align*} Hence, from our assumptions on the data, we have \begin{align*} \langle T(u)-T(v), u-v\rangle &\geq\int_{a}^{b}\Big(\rho(x)(\Phi_{p}(u'(x))-\Phi_{p}(v'(x)))(u'(x)-v'(x))\\ &\quad +s(x)(\Phi_{p}(u(x))-\Phi_{p}(u(x))) (u(x)-v(x))\Big)dx. \end{align*} Now, taking into account \cite[(2.)]{S}, there exist $c_p,\, d_p>0$ such that \begin{equation}\label{e4} \begin{aligned} &\langle T(u)-T(v), u-v\rangle \\ &\geq \begin{cases} c_p\int_{a}^{b}\Big(\rho(x)|u'(x)-v'(x)|^p+s(x)|u(x)-v(x)|^p\Big) dx &\text{if } p\geq 2,\\[4pt] d_p\int_{a}^{b}\Big(\frac{\rho(x)|u'(x)-v'(x))|^2}{(|u'(x)|+|v'(x)|)^{2-p}}+ \frac{s(x)|u(x)-v(x))|^2}{(|u(x)|+|v(x)|)^{2-p}}\Big)dx &\text{if } 10$, $\delta_1$ and $\delta_2$ such that $$ \frac{K_4}{K^F}< \frac{\frac{C_2}{M^p}\theta^p-\frac{C_4}{M}\theta}{\int_{a}^{b}\sup_{| t|\leq \theta}F(x,t)dx} $$ and taking $$ \lambda\in\Lambda:=\big]\frac{K_4}{K^F},\ \frac{\frac{C_2}{M^p}\theta^p-\frac{C_4}{M}\theta}{\int_{a}^{b}\sup_{| t|\leq \theta}F(x,t)dx}\big[, $$ we set \begin{equation}\label{e7} \delta_{\lambda, g}:=\min\Big\{\frac{\frac{C_2}{M^p}\theta^p-\frac{C_4}{M}\theta-\lambda \int_{a}^{b}\sup_{|t|\leq \theta}F(x,t)dx}{G^\theta},\ \frac{K_4-\lambda K^F}{(b-a)G_\eta}\Big\} \end{equation} and \begin{equation}\label{e8} \overline{\delta}_{\lambda, g}:=\min\Big\{\delta_{\lambda, g},\ \frac{1}{\max\{0,(b-a)\limsup_{|t|\to\infty}\frac{\sup_{x\in [a,b]}G(x,t)}{\frac{C_2}{M^p}t^p-\frac{C_4}{M}t}\}}\Big\}, \end{equation} where we define $\frac{r}{0}=+\infty$, so that, for instance, $\overline{\delta}_{\lambda, g}=+\infty$ when \[ \limsup_{|t|\to\infty}\frac{\sup_{x\in [a,b]}G(x,t)}{\frac{C_2}{M^p}t^p-\frac{C_4}{M}t}\leq 0, \] and $G_\eta=G^\theta=0$. Now, we formulate our main result. \begin{theorem}\label{thm3} Assume that $C_2>0$ and there exist constants $\delta_1$ and $\delta_2$, and positive constants $\theta$, $\eta_1$ and $\eta_2$ with $\delta_1^{2}+\delta_2^{2}\neq 0$, $\eta_1+\eta_2<\eta_1\eta_2$ and \[ K_2^{1/p}>\frac{\theta}{M}>(\frac{C_4}{C_1})^{1/(p-1)} \] such that \begin{itemize} \item[(A2)] $\frac{\int_{a}^{b}\sup_{|t|\leq \theta}F(x,t)dx} {\frac{C_2}{M^p}\theta^p-\frac{C_4}{M}\theta}<\frac{K^F}{K_4}$; \item[(A3)] $\limsup_{|t|\to +\infty}\frac{\sup_{x\in[a,b]} F(x,t)}{\frac{C_2}{M^p}t^p-\frac{C_4}{M}t}\leq0$. \end{itemize} Then, for each $$ \lambda\in\Lambda:=\big]\frac{K_4}{K^F},\, \frac{\frac{C_2}{M^p}\theta^p-\frac{C_4}{M}\theta}{\int_{a}^{b}\sup_{| t|\leq \theta}F(x,t)dx}\big[ $$ and for every $L^1$-Carat\'eodory function $g:[a,b]\times \mathbb{R}\to \mathbb{R}$ satisfying the condition $$ \limsup_{|t|\to\infty}\frac{\sup_{x\in [a,b]}G(x,t)}{\frac{C_2}{M^p}t^p -\frac{C_4}{M}t}<+\infty, $$ there exists $\overline{\delta}_{\lambda, g}>0$ given by \eqref{e8} such that, for each $\mu\in[0,\overline{\delta}_{\lambda, g}[$, the problem \eqref{e1}-\eqref{e2} admits at least three distinct weak solutions in $X$. \end{theorem} \begin{proof} To apply Theorem \ref{t1} to our problem, we introduce the functionals $\Phi, \Psi:X \to \mathbb{R} $ for each $u\in X$, as follows \begin{gather*} \Phi(u)=\frac{1}{p}\|u\|^p +\sum_{j=1}^{l}\int_{0}^{u(x_j)}I_j(t)dt +\frac{\rho(a)\alpha_2^{p-1}}{p\alpha_1^{p-1}}|u(a)|^p +\frac{\rho(b)\beta_2^{p-1}}{p\beta_1^{p-1}}|u(b)|^p,, \\ \Psi(u)=\int_{a}^{b}[F(x,u(x))+\frac{\mu}{\lambda}G(x,u(x))]dx. \end{gather*} Now we show that the functionals $\Phi$ and $\Psi$ satisfy the required conditions. It is well known that $\Psi$ is a differentiable functional whose differential at the point $u\in X$ is $$ \Psi'(u)(v)=\int_{a}^{b}[f(x,u(x))+\frac{\mu}{\lambda}g(x,u(x))]v(x)dx, $$ for every $v\in X$, as well as, is sequentially weakly upper semicontinuous. Furthermore, $\Psi':X \to X^{*}$ is a compact operator. Indeed, it is enough to show that $\Psi'$ is strongly continuous on $X$. For this, for fixed $u\in X$, let $u_{n}\to u$ weakly in $X$ as $n\to +\infty$. Then we have $u_{n}$ converges uniformly to $u$ on $[a,b]$ as $n\to +\infty$ (see \cite{Z}). Since $f$ and $g$ are $L^1$-Carath\'eodory functions, $f$ and $g$ are continuous in $\mathbb{R}$ for every $x\in [a,b]$. So $f(x,u_{n})+\frac{\mu}{\lambda}g(x,u_{n})\to f(x,u)+\frac{\mu}{\lambda}g(x,u)$ strongly as $n\to +\infty$, from which follows $\Psi'(u_{n})\to \Psi'(u)$ strongly as $n\to +\infty$. Thus we have established that $\Psi'$ is strongly continuous on $X$, which implies that $\Psi'$ is a compact operator by Proposition 26.2 of \cite{Z}. Moreover, $\Phi$ is continuously differentiable and whose differential at the point $u\in X$ is \begin{align*} \Phi'(u)v &=\int_a^b \rho(x)\Phi_{p}(u'(x))v'(x)dx +\int_a^b s(x)\Phi_{p}(u(x))v(x)dx\\ &\quad +\rho(a)\Phi_{p}\Big(\frac{\alpha_2u(a)}{\alpha_1}\Big)v(a) +\rho(b)\Phi_{p}\Big(\frac{\beta_2u(b)}{\beta1}\Big)v(b) +\sum_{j=1}^{l}I_j(u(x_j))v(x_j) \end{align*} for every $v\in X$, while Proposition \ref{p1} gives that $\Phi'$ admits a continuous inverse on $X^{*}$. Furthermore, $\Phi$ is sequentially weakly lower semicontinuous. Indeed, let for fixed $u\in X$, assume $u_{n}\to u$ weakly in $X$ as $n\to +\infty$. The continuity and convexity of $\|u\|^p$ imply $\|u\|^p$ is sequentially weakly lower semicontinuous, which combining the continuity of $I_j$ for $j=1,\dots ,l$ yields that \begin{align*} &\lim_{n\to +\infty}\Big(\frac{1}{p}\|u_{n}\|^p +\sum_{j=1}^{l}\int_{0}^{u_{n}(x_j)}I_j(t)dt +\frac{\rho(a)\alpha_2^{p-1}}{p\alpha_1^{p-1}}|u_{n}(a)|^p +\frac{\rho(b)\beta_2^{p-1}}{p\beta_1^{p-1}}|u_{n}(b)|^p\Big)\\ &\geq \frac{1}{p}\|u\|^p +\sum_{j=1}^{l}\int_{0}^{u(x_j)}I_j(t)dt +\frac{\rho(a)\alpha_2^{p-1}}{p\alpha_1^{p-1}}|u(a)|^p +\frac{\rho(b)\beta_2^{p-1}}{p\beta_1^{p-1}}|u(b)|^p, \end{align*} namely $$ \liminf_{n\to +\infty}\Phi(u_n)\geq\Phi(u) $$ which means $\Phi$ is sequentially weakly lower semicontinuous. Clearly, the weak solutions of the problem \eqref{e1} are exactly the solutions of the equation $\Phi'(u)-\lambda\Psi'(u)=0$. Put $r=\frac{C_2}{M^p}\theta^p-\frac{C_4}{M}\theta$ and \begin{equation}\label{e9} w(x)= \begin{cases} h_1(x), &x\in[a,a+\frac{b-a}{\eta_1}),\\ h_2(x), &x\in[a+\frac{b-a}{\eta_1},b-\frac{b-a}{\eta_1}],\\ h_3(x), &x\in(a+\frac{b-a}{\eta_1},b]. \end{cases} \end{equation} It is easy to see that $w\in X$ and, in particular, in view of $$ \int_{a}^{b}\rho(x)|w'(x)|^pdx=K_2\quad \text{and}\quad 0\leq\int_{a}^{b}s(x)|w(x)|^pdx\leq K_3^p\int_{a}^{b}s(x)dx, $$ we have $$ \|w\|\leq \Big(K_2 +K_3^p\int_{a}^{b}s(x)dx\Big)^{1/p}, $$ which in conjunction with the inequality \begin{equation}\label{e10} \Phi(u)\leq (C_1+C_3)\|u\|^p+C_4\|u\| \end{equation} for all $u\in X$ (see\cite{BD3}), yields \begin{equation}\label{e11} \Phi(w)\leq K_4. \end{equation} Moreover, by the same reasoning as given given in the proof \cite[Lemma 5]{BD3}, using \eqref{e11}, from the condition $$ K_2^{1/p}>\frac{\theta}{M}>\big(\frac{C_4}{C_1}\big)^{1/(p-1)} $$ one has $0\frac{1}{\lambda}. $$ Then \begin{equation}\label{e14} \frac{\int_{a}^{b} \sup_{|t|\leq \theta}F(x,t)dx +\frac{\mu}{\lambda}G^{\theta}}{\frac{C_2}{M^p}\theta^p-\frac{C_4}{M}\theta} <\frac{1}{\lambda}<\frac{K^F+(b-a)\frac{\mu}{\lambda} G_{\eta}}{K_4}. \end{equation} Hence from \eqref{e12}-\eqref{e14}, the condition (a1) of Theorem \ref{t1} is verified. Finally, since $\mu<\overline{\delta}_{\lambda, g}$, we can fix $l>0$ such that $$ \limsup_{|t|\to\infty}\frac{\sup_{x\in [a,b]}G(x,t)}{\frac{C_2}{M^p}t^p-\frac{C_4}{M}t}\frac{\frac{1}{12\times 2.011\times 10^{-3}}}{3.125\times 10^{-1}}$ and every $\mu\geq 0$ (since $g_\infty=0$), the problem \eqref{e15} has at least three solutions in $W^{1,3}([1,2])$. \end{example} The following example illustrates the result in Theorem \ref{t1.1}. \begin{example}\label{examp2} \rm Consider the problem \begin{equation}\label{e16} \begin{gathered} -(|u'(x)|u'(x))'+|u(x)|u(x)=\lambda e^{-u(x)}u^{2}(x)(3-u(x))+\mu e^{x-u(x)^{+}}(u(x)^{+})^\gamma,\\ \text{a.e. } x\in(0,1)\\ u'(0^{+})-u(0)=0,\quad u'(1^{-})+u(1)=0,\\ \Delta((x_1+3)|u'(x_1)|u'(x_1)=-(\frac{1}{12}+\frac{5}{24}|u(x_1)|^{3/2}),\quad x_1\in(0,1) \end{gathered} \end{equation} where $u^{+}=\max\{u,0\}$, $I_1(u(x_1))=-(\frac{1}{12}+\frac{5}{24}|u(x_1)|^{3/2})$ satisfying the condition $(|v(x_1)|^{3/2}-|u(x_1)|^{3/2})(u(x_1)-v(x_1))\geq 0$ for all $u,v\in W^{1,3}([1,2])$ and $\gamma$ is a positive real number. It is obvious that $C'_2=1/4$ and $C'_4=1/6$. Also a direct calculation shows $F(t)=e^{-t}t^3$ for all $t\in\mathbb{R}$. So, one has $$ \liminf_{\xi\to 0}\frac{F(\xi)}{\frac{1}{16}\xi^{3}-\frac{1}{6\sqrt[3]{4}}\xi}= \limsup_{\xi\to +\infty}\frac{F(\xi)}{\frac{1}{16}\xi^{3} -\frac{1}{6\sqrt[3]{4}}\xi}=0. $$ Hence, using Theorem \ref{t1.1}, there is $\lambda^*>0$ such that, since $g_\infty=0$, for each $\lambda>\lambda^*$ and $\mu\geq 0$, the problem \eqref{e16} admits at least three solutions. \end{example} \begin{proof}[Proof of Theorem \ref{t1.1}] Fix $\lambda>\lambda^*:=\frac{K'_4}{K'^{F}}$ for some constants $\delta_1$ and $\delta_2$, and positive constants $\eta_1$ and $\eta_2$ with $\delta_1^{2}+\delta_2^{2}\neq 0$, $\eta_1+\eta_2<\eta_1\eta_2$ where \begin{align*} K_4'&:=(C'_1+C'_3)\Big(\frac{|\delta_1|^p}{4} +\frac{5^p}{2^{p+1}}(|\delta_1|+|\delta_2|)^p+\frac{|\delta_2|^p}{4} +(\frac{5}{4}\max\{|\delta_1|,|\delta_2|\})^p\Big) \\ &\quad +C'_4\Big(\frac{|\delta_1|^p}{4} +\frac{5^p}{2^{p+1}}(|\delta_1|+|\delta_2|)^p+\frac{|\delta_2|^p}{4} +(\frac{5}{4}\max\{|\delta_1|,|\delta_2|\})^p\Big)^{1/p} \end{align*} where $C'_1:=\frac{2^p}{p}$ and $C'_3=\frac{1}{p}+\sum_{j=1}^{l}\frac{b_j}{\gamma_j+1} 2^{\frac{\gamma_j+1}{q}}$, and \begin{align*} K'^F&:=\int_{0}^{1/4}F(|\delta_1|(x+1))dx +\int_{1/4}^{3/4}F\Big(-\frac{5}{2}(|\delta_1|+|\delta_2|)(x-\frac{1}{4}) +\frac{5|\delta_1|}{4}\Big)dx\\ &\quad +\int_{3/4}^1F(|\delta_2|(x-2))dx. \end{align*} Recalling that $$ \liminf_{\xi\to 0}\frac{F(\xi)}{\frac{C'_2}{2^{p/q}}\xi^p -\frac{C'_4}{2^{1/q}}\xi}=0, $$ there is a sequence $\{\theta_n\}\subset ]0,+\infty[$ such that $\lim_{n\to \infty} \theta_{n}=0$ and $$ \lim _{n\to \infty}\frac{\sup_{|\xi| \leq \theta_{n}}F(\xi)}{\frac{C'_2}{2^{p/q}}\theta_n^p -\frac{C'_4}{2^{1/q}}\theta_n}=0. $$ Indeed, one has $$ \lim _{n\to \infty}\frac{\sup_{|\xi| \leq \theta_n}F(\xi)}{\frac{C'_2}{2^{p/q}}\theta_n^p -\frac{C'_4}{2^{1/q}}\theta_n} =\lim _{n\to\infty}\frac{F(\xi_{\theta_n})}{\frac{C_2}{2^{p/q}}\xi_{\theta_n}^p -\frac{C'_4}{2^{1/q}}\xi_{\theta_n}} \frac{\frac{C'_2}{2^{p/q}}\xi_{\theta_n}^p-\frac{C'_4}{2^{1/q}} \xi_{\theta_n}}{\frac{C'_2}{2^{p/q}}\theta_n^p -\frac{C'_4}{2^{1/q}}\theta_n}=0, $$ where $F(\xi_{\theta_n})=\sup_{|\xi| \leq \theta_{n}}F(\xi)$. Hence, there exists $\overline{\theta}>0$ such that $$ \frac{\sup_{|\xi| \leq\overline{\theta}}F(\xi)}{\frac{C'_2}{2^{p/q}} \overline{\theta}^p-\frac{C'_4}{2^{1/q}} \overline{\theta}}< \min\big\{\frac{K'^{F}}{ (b-a)K'_4};\ \frac{1}{ (b-a)\lambda}\big\} $$ and \[ \Big(\frac{|\delta_1|^p}{4}+\frac{5^p}{2^{p+1}} (|\delta_1|+|\delta_2|)^p+\frac{|\delta_2|^p}{4}\Big)^{1/p} >\frac{\overline{\theta}}{2^{1/q}}>(\frac{C'_4}{C'_1})^{1/(p-1)}. \] The conclusion follows by using Theorem \ref{thm3} with $\eta_1=\eta_2=4$. \end{proof} \begin{remark} \rm The methods used here can be applied studying discrete boundary value problems as in \cite{CMo}, and also non-smooth variational problems as in \cite{MMM}. \end{remark} \begin{thebibliography}{99} \bibitem{BD2} L. Bai, B. Dai; \emph{Existence and multiplicity of solutions for impulsive boundary value problem with a parameter via critical point theory,} Math. Comput. Modelling 53 (2011) 1844-1855. \bibitem{BD3} L. Bai, B. Dai; \emph{Three solutions for a $p$-Laplacian boundary value problem with impulsive effects,} Appl. Math. Comput. 217 (2011) 9895-9904. \bibitem{BS} D. Bainov, P. Simeonov; \emph{Systems with Impulse Effect, Ellis Horwood Series: Mathematics and Its Applications,} Ellis Horwood, Chichester, 1989. \bibitem{BHN} M. Benchohra, J. Henderson, S. Ntouyas; \emph{Theory of Impulsive Differential Equations,} Contemporary Mathematics and Its Applications, 2. Hindawi Publishing Corporation, New York, (2006). \bibitem{BM} G. Bonanno, S. A. Marano; \emph{On the structure of the critical set of non-differentiable functions with a weak compactness condition,} Appl. Anal. 89 (2010) 1-10. \bibitem{BM1} G. Bonanno, G. Molica Bisci; \emph{Three weak solutions for elliptic Dirichlet problems,} J. Math. Anal. Appl. 382 (2011) 1-8. \bibitem{BMR1} G. Bonanno, G. Molica Bisci, V. R\v{a}dulescu, \emph{Existence of three solutions for a non-homogeneous Neumann problem through Orlicz-Sobolev spaces,} Nonlinear Anal. \textbf{74} (14) (2011) 4785-4795. \bibitem{BMR2} G. Bonanno, G. Molica Bisci, V. R\v{a}dulescu; \emph{Multiple solutions of generalized Yamabe equations on Riemannian manifolds and applications to Emden-Fowler problems,} Nonlinear Anal. Real World Appl. 12 (2011) 2656-2665. \bibitem{CMo} P. Candito, G. Molica Bisci; \emph{Existence of two solutions for a second-order discrete boundary value problem,} Advanced nonlinear studies 11 (2011) 443-453. \bibitem{Ca} T. E. Carter; \emph{Necessary and sufficient conditions for optimal impulsive rendezvous with linear equations of motion,} Dyn. Control 10 (2000) 219-227. \bibitem{FKH} M. Ferrara, S. Khademloo, S. Heidarkhani; \emph{Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems,} Applied Mathematics and Computation 234 (2014) 316-325. \bibitem{HH1} S. Heidarkhani, J. Henderson; \emph{Critical point approaches to quasilinear second order differential equations depending on a parameter,} Topological Methods in Nonlinear Analysis, to appear. \bibitem{LAS} V. Lakshmikantham, D. D. Bainov, P. S. Simeonov; \emph{Impulsive differential equations and inclusions,} World Scientific, Singapore (1989). \bibitem{LBS} V. Lakshmikantham, D. D. Bainov, P. S. Simeonov; \emph{Theory of impulsive differential equations,} Series in Modern Applied Mathematics, vol.6, World Scientific, Teaneck, NJ, 1989. \bibitem{LJ} X.N. Lin, D. Q. Jiang; \emph{Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations,} J. Math. Anal. Appl. 321 (2006) 501-514. \bibitem{LW} X. Liu, A. R. Willms; \emph{Impulsive controllability of linear dynamical systems with applications to maneuvers of spacecraft,} Math. Probl. Eng. 2 (1996) 277-299. \bibitem{MMM} S. A. Marano, G. Molica Bisci, D. Motreanu; \emph{Multiple solutions for a class of elliptic hemivariational inequalities,} J. Math. Anal. Appl. 337 (2008) 85-97. \bibitem{NO} J. J. Nieto, D. O'Regan; \emph{Variational approach to impulsive differential equations,} Nonlinear Anal. Real World Appl. 10 (2009) 680-690. \bibitem{NR1} J. J. Nieto, R. Rodr\'{i}guez-L\'{o}pez; \emph{Boundary value problems for a class of impulsive functional equations,} Comput. Math. Appl. 55 (2008) 2715-2731. \bibitem{R3} B. Ricceri; \emph{On a three critical points theorem,} Arch. Math. (Basel) 75 (2000) 220-226. \bibitem{SP} A. M. Samoilenko, N. A. Perestyuk; \emph{Impulsive differential equations,} World Scientific, Singapore, 1995. \bibitem{S} J. Simon; \emph{Regularit\`e de la solution d'une equation non lineaire dans $\mathbb{R}^N$}, in: Journ\'ees d'Analyse Non Lin\'eaire (Proc. Conf., Besancon, 1977), (P. B\'enilan, J. Robert, eds.), Lecture Notes in Math., 665, pp. 205-227, Springer, Berlin-Heidelberg-New York, 1978. \bibitem{TG1} Y. Tian, W. Ge; \emph{Applications of variational methods to boundary value problem for impulsive differential equations,} Proc. Edinburgh Math. Soc. 51 (2008) 509-527. \bibitem{TG2} Y. Tian, W. Ge; \emph{Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations,} Nonlinear Anal. 72 (2010) 277-287. \bibitem{Z}E. Zeidler; \emph{Nonlinear functional analysis and its applications,} Vol. II. Berlin-Heidelberg-New York 1985. \bibitem{ZD} D. Zhang, B. Dai; \emph{Existence of solutions for nonlinear impulsive differential equations with Dirichlet boundary conditions,} Math. Comput. Modelling 53 (2011) 1154-1161. \bibitem{ZY} Z. Zhang, R. Yuan; \emph{An application of variational methods to Dirichlet boundary value problem with impulses,} Nonlinear Anal. Real World Appl. 11 (2010) 155-162. \end{thebibliography} \end{document}