\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 119, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/119\hfil Radial positive solutions] {Radial positive solutions for a nonpositone problem in an annulus} \author[S. Hakimi, A. Zertiti \hfil EJDE-2014/119\hfilneg] {Said Hakimi, Abderrahim Zertiti} % in alphabetical order \address{Said Hakimi \newline Universit\'e Sultan Moulay Slimane\\ Facult\'e polydisciplinaire \\ D\'epartement de Math\'ematiques \\ B\'eni Mellal, Morocco} \email{h\_saidhakimi@yahoo.fr} \address{Abderrahim Zertiti \newline Universit\'e Abdelmalek Essaadi\\ Facult\'e des sciences \\ D\'epartement de Math\'ematiques \\ BP 2121, T\'etouan, Morocco} \email{zertitia@hotmail.com} \thanks{Submitted April 11, 2013. Published April 25, 2014.} \subjclass[2000]{35J25, 34B18} \keywords{Nonpositone problem; radial positive solutions} \begin{abstract} The main purpose of this article is to prove the existence of radial positive solutions for a nonpositone problem in an annulus when the nonlinearity is superlinear and has more than one zero. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article we study the existence of radial positive solutions for the boundary-value problem \begin{equation} \begin{gathered} -\Delta u(x)=\lambda f(u(x))\quad x\in \Omega, \\ u(x)=0\quad x\in \partial \Omega, \end{gathered} \label{eq1} \end{equation} where $\lambda >0$, $f:[0,+\infty ) \to \mathbb{R}$ is a continuous nonlinear function that has more than one zero, and $\Omega \subset \mathbb{R}^N$ is the annulus: $\Omega =C(0,R,\widehat{R}) =\{ x\in \mathbb{R}^N :R<| x| <\widehat{R}\} $ ($N>2$, $00$. The three last lemmas concern the behaviour of the solution of \eqref{eq2}. \begin{remark} \label{rmk3} \rm In this article we follow the work of Arcoya and Zertiti \cite{a1}, and we note that the proofs of Lemmas \ref{lem2.4} and \ref{lem2.7} are analogous with those of \cite[Lemmas 1.1 and 2.3]{a1}. On the other hand, the proofs of the second and third lemmas are different from that of \cite[Lemma 2.1 and 2.2]{a1}. This is so because our $f$ has more than one zero. So we apply the Shooting method. For this we consider the auxiliary boundary-value problem \begin{equation} \begin{gathered} -u''(r)-\frac{N-1}ru'(r)=\lambda f(u(r)), \quad r>R \\ u(R)=0, \quad u'(R)=d, \label{eq3} \end{gathered} \end{equation} where $d$ is the parameter of Shooting method. \end{remark} \begin{remark} \label{rmk4} \rm For suitable $d$, problem \eqref{eq3} has a solution $u:=u(.,d,\lambda)$ such that $u>0$ on $(R,\widehat{R})$ and $u(\widehat{R})=0$. So, such solution $u$ of \eqref{eq3} is also a positive solution of \eqref{eq2}. \end{remark} In this sequel, we suppose that the nonlinearity $f\in C^1([0,+\infty ))$ is always extended to $\mathbb{R}$ by $f|_{(-\infty ,0)}\equiv f(0)$. \begin{lemma} \label{lem2.4} Let $\lambda,d>0$ and $f\in C^1([0,+\infty ))$ a function which is bounded from below. Then problem \eqref{eq3} has a unique solution $u(.,d,\lambda)$ defined in $[R,+\infty )$, In addition, for every $d>0$ there exist $M=M(d)>0$ and $\lambda =\lambda(d)>0$ such that $$ \max_{r\in [R,\widehat{R}]} | u(r,d,\lambda )| \leq M,\quad \forall \lambda \in (0,\lambda(d) ). $$ \end{lemma} \begin{proof} The proof of the existence is given in two steps. In first, we show the existence and uniqueness of a local solution of \eqref{eq3}; i.e, the existence a $\varepsilon =\varepsilon (d,\lambda )>0$ such that \eqref{eq3} has a unique solution on $[R,R+\varepsilon ]$. In the second step we prove that this unique solution can be extended to $[R,+\infty )$. \smallskip \noindent\textbf{Step 1:} (Local solution). Consider the problem \begin{equation} \begin{gathered} -u''(r) -\frac{N-1}ru'(r) =\lambda f(u(r)),\quad r>R_1\\ u(R_1)=a,\quad u'(R_1)=b, \end{gathered} \label{eq4} \end{equation} where $R_1\geq R$. Let $u$ be a solution of \eqref{eq4}. Multiplying the equation by $r^{N-1}$ and using the initial conditions, we obtain \begin{equation} u'(r)=\frac 1{r^{N-1}}\big\{ R_1^{N-1}b-\lambda \int_{R_1}^rs^{N-1}f(u(s))ds\big\}. \label{eq5} \end{equation} from which $u$ satisfies \begin{equation} u(r)=a+\frac{bR_1^{N-1}}{N-2}\Big(\frac 1{R_1^{N-2}}-\frac 1{r^{N-2}}\Big) -\lambda \int_{R_1}^r\frac 1{t^{N-1}}\Big[ \int_{R_1}^ts^{N-1}f(u(s))ds\Big] dt. \label{eq6} \end{equation} Conversely, if $u$ is a continuous function satisfying \eqref{eq6}, then $u$ is a solution of \eqref{eq4}. Hence, to prove the existence and uniqueness of a solution $u$ of \eqref{eq4} defined in some interval $[R_1,R_1+\varepsilon] $, it is sufficient to show the existence of a unique fixed point of the operator $T$ defined on $X$ (the Banach space of the real continuous functions on $[R_1,R_1+\varepsilon ]$ with the uniform norm), \begin{align*} T:X=C([R_1,R_1+\varepsilon ] ,\mathbb{R}) &\to X \\ v &\mapsto Tv, \end{align*} where \begin{equation} (Tv)(r)=a+\frac{bR_1^{N-1}}{N-2}\Big(\frac 1{R_1^{N-2}}-\frac 1{r^{N-2}}\Big) -\lambda \int_{R_1}^r\frac 1{t^{N-1}}\Big[ \int_{R_1}^ts^{N-1}f(v(s))ds\Big]dt, \label{eq7} \end{equation} for all $r\in [R_1,R_1+\varepsilon ]$ and $v\in X$. To check this, Let $\delta >0$ such that $\delta >| a| $ and $\overline{B} (0,\delta )=\{ u\in X:\|u\| \leq \delta \}$. For all $u,v\in\overline{B}(0,\delta )$, we have $$ (Tu-Tv)(r)=\lambda \int_{R_1}^r\frac 1{t^{N-1}}\Big[ \int_{R_1}^ts^{N-1}\{ f(v(s))-f(u(s))\} ds\Big] dt, $$ then \begin{align*} | (Tu-Tv)(r)| &\leq \lambda \int_{R_1}^r\frac 1{t^{N-1}}[\int_{R_1}^ts^{N-1} \sup_{\zeta \in (0,\delta]} |f'(\zeta )| \, | v(s)-u(s)| ds] dt \\ &\leq \lambda \int_{R_1}^r\frac 1{t^{N-1}}\Big[ \int_{R_1}^ts^{N-1}ds\Big] dt\sup_{\zeta \in (0,\delta] } | f'(\zeta )| \,\|u-v\|. \end{align*} However, \begin{align*} \int_{R_1}^r\frac 1{t^{N-1}}[\int_{R_1}^ts^{N-1}ds] dt &= \int_{R_1}^r\frac 1{t^{N-1}}[\frac{t^N}N-\frac{R_1^N}N] dt \\ &\leq \int_{R_1}^r\frac tNdt-\frac{R_1^N}N\int_{R_1}^r\frac{dt}{t^{N-1}} \\ &= \frac 1{2N}(r^2-R_1^2)_{-}\frac{R_1^N}N\Big(\frac 1{(2-N)r^{N-2}}-\frac 1{(2-N)R_1^{N-2}}\Big) \\ &= \frac{r^2-R_1^2}{2N}+\frac 1{N(N-2)}.\frac{R_1^N}{r^{N-2}}-\frac{R_1^2}{ N(N-2)} \\ &\leq \frac{(R_1+\varepsilon ) ^2-R_1^2}{2N},\quad \text{because $r\in [R_1,R_1+\varepsilon ]$} \\ &= \frac{\varepsilon (2R_1+\varepsilon ) }{2N}; \end{align*} therefore, \begin{align*} \|Tu-Tv\| &\leq \frac{\varepsilon ( 2R_1+\varepsilon ) }{2N} \lambda \sup_{\zeta \in [0,\delta]} |f'(\zeta )| \|u-v\| \\ &\leq \frac{\varepsilon (R_1+\varepsilon ) }N\lambda \sup_{\zeta \in [0,\delta] } | f'(\zeta )| \|u-v\|. \end{align*} Hence \begin{equation} \|Tu-Tv\|\leq \frac \lambda N\sup_{\zeta \in (0,\delta] } | f'(\zeta )| \varepsilon (R_1+\varepsilon ) \|u-v\|. \label{eq8} \end{equation} Similarly, \begin{equation} \|Tu\| \leq | a| +\frac{| b| R_1^{N-1}}{N-2 }\Big(\frac 1{R_1^{N-2}}-\frac 1{(R_1+\varepsilon )^{N-2}}\Big) +\frac \lambda N\sup_{\zeta \in [0,\delta] } |f(\zeta )| \varepsilon (R_1+\varepsilon ). \label{eq9} \end{equation} Now, by \eqref{eq8} and \eqref{eq9}, we can choose $\varepsilon =\varepsilon (\delta )>0$ (depending on $\delta $) sufficiently small such that $T$ is a contraction from $\overline{B}(0,\delta )$ to $\overline{B} (0,\delta )$. Consequently, $T$ has a fixed point $u$ in $\overline{B}(0,\delta)$. The fixed point $u$ is unique in $X\;$for a $\delta $\ as large as we wanted. \smallskip \noindent\textbf{Step 2:} Let $u(.)=u(.,d,\lambda )$ be the unique solution of \eqref{eq3} (we take $a=0$, $b=d$ and $R_1=R$ in \eqref{eq4}), and denote by $[R,R(d,\lambda ))$ its maximal domain. We shall prove by contradiction that $R(d,\lambda )=+\infty$. For it, assume $R^{*}:=R(d,\lambda )<+\infty $. $u$ is bounded on $[R,R^{*})$. In fact, using \eqref{eq6} and that $f$ is bounded from below, we have \begin{align*} \frac{dR}{N-2} &\geq \frac{dR^{N-1}}{N-2}\Big(\frac 1{R^{N-2}}-\frac 1{r^{N-2}}\Big) \\ &= u(r)+\lambda \int_R^r\frac 1{t^{N-1}}\Big[ \int_R^ts^{N-1}\;f(u(s))ds\Big] dt \\ &\geq u(r)+\lambda \inf_{\xi \in [0,+\infty )} f(\xi )\int_R^{R^{*}}\frac 1{t^{N-1}}\Big[\int_R^ts^{N-1}ds\Big] dt,\quad \forall r\in [R,R^{*}), \end{align*} then, there exists $K_1>0$ such that $u(r)\leq K_1$ for all $r\in[R,R^{*})$. On the other hand, using again \eqref{eq6}, we obtain \begin{align*} u(r) &\geq \frac{dR^{N-1}}{N-2}\Big(\frac 1{R^{N-2}}-\frac 1{r^{N-2}}\Big) -\lambda \max_{\xi \in [0,K_1 ]} f(\xi )\int_R^{R^{*}} \frac 1{t^{N-1}}\Big[\int_R^ts^{N-1}ds\Big] dt \\ &\geq -K_2,\quad \forall r\in [R,R^{*}), \end{align*} for convenient $K_2>0$. Hence $u$ is bounded. By using this and \eqref{eq5} and \eqref{eq6}, we deduce that $\{u(r_n)\}$ and $\{u'(r_n)\}$ are the Cauchy sequence for all sequence $(r_n)\subset [R,R^{*})$ converging to $R^{*}$. This is equivalent to the existence of the finite limits \begin{align*} \lim_{r\to R^{*-}} u(r)=a \quad \text{and} \quad \lim_{r\to R^{*-}} u'(r)=b. \end{align*} Now, consider the problem \begin{equation} \begin{gathered} -v''(r) -\frac{N-1}rv'(r) =\lambda f( v( r)),\quad R^{*}0$ and a solution $v$ of this problem in $ [R^{*},R^{*}+\varepsilon ]$. It is easy to see that \[ w(r)= \begin{cases} u(r),&\text{if }R\leq r\frac{2dR}{N-2}$ and \[ \lambda (d)=\min \big\{ \frac M{2M_1\max_{\xi \in [0,M]} | f(\xi )| }, \frac 1{M_1 \max_{\xi \in [0,M]} | f'(\xi )| }\} \] with $M_1=\int_R^{\widetilde{R}}\frac 1{t^{N-1}}\big[\int_R^{t}s^{N-1}ds\big]dt$. By \eqref{eq8} and \eqref{eq9}, we deduce that $T$ is a contraction from $\overline{B}(0,M,X_0)$ into $\overline{B}(0,M,X_0)$, where \[ \overline{B}(0,M,X_0)=\{ u\in X_0:\max_{r\in [R,\widehat{R}]}| u(r)| \leq M\}. \] So, the unique fixed point of $T$ belongs to $\overline{B}(0,M,X_0)$. The lemma is proved. \end{proof} \begin{lemma}\label{lem2.5} Assume {\rm (F1), (F2)} and let $d_0>0$. Then there exists $\lambda _1=\lambda _1(d_0) >0$ such that the unique solution $ u(r,d_0,\lambda ) $ of \eqref{eq3} satisfies \[ u(r,d_0,\lambda ) >0,\quad \forall r\in (R,\widehat{R}], \forall \lambda \in (0,\lambda_1). \] \end{lemma} \begin{proof} For $\lambda>0$, we consider the set \[ \Psi =\{ r\in (R,\widehat{R}) : u(.)=u(.,d_0,\lambda ) \text{is nondecreasing in }(R,r) \}. \] Since $u'(R)=d_0>0$, $\Psi$ is nonempty, and clearly bounded from above. Let $r_1=\sup \Psi $ (which depends on $\lambda $). We have two cases: \noindent\textbf{Case 1.} If $r_1=\widehat{R}$, the proof is complete. \noindent\textbf{Case 2.} If $r_1<\widehat{R}$, we shall prove $u(.)=u(.,d_0,\lambda )>0$, for all $r\in (R,\widehat{R}]$ for all $\lambda $ sufficiently small. In order to show it, assume that $r_1<\widehat{R}$. Then $u'(r_1) =0$, and since \[ u'(r)=\frac 1{r^{N-1}}\Big[R^{N-1}d_0-\lambda\int_R^rs^{N-1}f(u(s))ds\Big], \] then $u(r_1)>\beta _1$. Hence the set $\Gamma =\{r\in [r_1,\widehat{R}] : u(t) \geq \beta_1\text{ and }u'(t) \leq 0,\,\forall t\in [r_1,r] \} $ is nonempty and bounded from above. Let $r_2=\sup \Gamma >r_1$. We shall prove that for $\lambda $ sufficiently small $r_2=\widehat{R}$. We observe that $u'(r)\leq0$ for all $r\in \Gamma $, then $u(r) \leq u(r_1)$, for all $r\in [R,r_2]$. Therefore, by the mean value theorem, there exists $c\in (r_1,r_2)$ such that \[ u( r_2) =u(r_1) +u'(c)(r_2-r_1), \] but \[ u'(c)=-\frac\lambda{c^{N-1}}\int_{r_1}^ct^{N-1}f(u(t))dt, \] then \[ u( r_2) >u(r_1) -\frac{\lambda \widehat{R}}N\sup_{[\beta_1,u(r_1) ]} | f(\zeta ) |(\widehat{R}-R). \] If $M=M(d_0) >0$ and $\lambda (d_0)>0$ (defined in Lemma \ref{lem2.4}), then $$ \beta_1 0$ such that $| f(\zeta ) |u(r_1) -\frac{\lambda K\widehat{R}}N(\widehat{R}-R) (u(r_1) -\beta_1 ) ,\quad \forall \lambda \in (0,\lambda (d_0)), \] Thus, if $\lambda \in (0,\lambda _1)$ with $\lambda _1=\min\{\lambda (d_0),\frac N{K\widehat{R}(\widehat{R} -R) }\}$ we have $u(r_2) >\beta_1$, which implies that $r_2=\widehat{R}$. \end{proof} \begin{lemma}\label{lem2.6} Assume {\rm (F1)--(F3)}. Let $\lambda >0$. Then \begin{itemize} \item[(i)] $\lim_{d\to +\infty } r_1(d,\lambda )=R$ \item[(ii)] $\lim_{d\to +\infty } u(r_1,d,\lambda) =+\infty $ \end{itemize} \end{lemma} \begin{proof} If (i) is not true, then there exists $\varepsilon >0$ so that for all $n$ there exists $d_n$ such that \[ | r_1(d_n,\lambda ) -R| \geq \varepsilon, \] from which \[ r_1(d_n,\lambda ) \geq R+\varepsilon \quad (\text{because } r_1(d_n,\lambda ) \geq R), \] then there exists $R_0\in (R,\widehat{R}) $ and a sequence $(d_n) \subset (0,+\infty ) $ converging to $\infty$ such that $u_n:=u(.,d_n,\lambda ) $ satisfies \[ u_n(r) >0,\quad u_n'(r) \geq 0,\quad \forall r\in (R,R_0] ,\quad \forall n\in \mathbb{N}. \] Let $\overline{r}=\frac{R+R_0}2$. By the equality \[ u_n(\overline{r}) =\frac{d_nR^{N-1}}{N-2}\Big(\frac 1{R^{N-2}}-\frac 1{^{ \overline{r}^{N-2}}}\Big) -\lambda \int_R^{\overline{r}}\frac 1{t^{N-1}}\Big[\int_R^ts^{N-1}f(u_{n}(s))ds\Big]dt, \] we observe that $(u_n(\overline{r}))$ is unbounded. Passing to a subsequence of $(d_n)$, if it is necessary, we can suppose $\lim_{n\to +\infty } u_n(\overline{r}) =+\infty $. Now, consider \[ M_n=\inf \big\{ \frac{f(u_n(r) )}{u_n(r) }:r\in (\overline{r},R_0)\big\}. \] By (F3), $\lim_{n\to +\infty} M_n=+\infty $. Let $n_0\in \mathbb{N}$ such that $\lambda M_{n_0}>\mu _3$ where $\mu _3$ is the third eigenvalue of $-[\frac{d^2}{d^2r}+\frac{N-1}r\frac d{dr}] $\ in $( \overline{r},R_0) $ with Dirichlet boundary conditions. We take a nonzero eigenfunction $\phi _3$ associated to $\mu _3$; i.e., \begin{gather*} \phi _3''(r) +\frac{N-1}r\phi _3'(r) +\mu _3\phi _3(r) =0,\quad \overline{r}0$ for all $r\in (R,R_0]$ and all $n\in \mathbb{N}$). (ii) Let $r_1$ be the same number as in the proof of lemma \ref{lem2.5}. we have $u'(r_1)=0$. However, \[ u'(r_1) =\frac 1{r_1^{N-1}}\Big[dR^{N-1}-\lambda \int_R^{r_1}t^{N-1}f(u(t) ) dt\Big], \] then \[ dR^{N-1}=\lambda \int_R^{r_1}t^{N-1}f(u(t) )dt. \] Hence \[ \underset{d\to +\infty }{\lim }u(r_1,d,\lambda )=+\infty. \] \end{proof} \begin{lemma}\label{lem2.7} Assume {\rm (F1)--(F4)} and let $\gamma _1$ be a positive number. Then there exists a $\lambda _2>0$ such that: \begin{itemize} \item[(a)] For all $\lambda \in (0,\lambda _2) $ the unique solution $u(r,d,\lambda )$ of \eqref{eq3} satisfies $$ u^2(r,d,\lambda ) +u'^2(r,d,\lambda )>0,\quad \forall r\in [R,\widehat{R}] ,\; \forall d\geq \gamma _1. $$ \item[(b)] For all $\lambda \in (0,\lambda _2)$, there exists $d>\gamma _1$ such that $u(r,d,\lambda ) <0$ for some $r\in (R,\widehat{R}]$. \end{itemize} \end{lemma} \begin{proof} (a) Let $\lambda, d>0$ and $u(.)=u(.,d,\lambda ) $ the unique solution of \eqref{eq3}. We define the auxiliary function $H$ on $[R,+\infty ) $ by setting \[ H(r) =r\frac{u'^2(r)}2+\lambda rF(u(r) ) +\frac{N-2}2u(r) u'(r) ,\quad \forall r\in [R,+\infty ). \] We can prove, as in \cite{c1, h1} the next identity of Pohozaev-type: \[ r^{N-1}H(r) =t^{N-1}H(t) +\lambda\int_t^rs^{N-1}[NF(u(s) )-\frac{N-2}2f(u(s) ) u(s) ] ds,\quad \forall t\in [R,r]. \] Taking $t=R$, in this identity we obtain \[ r^{N-1}H(r)=\frac{R^Nd^2}2+\lambda \int_R^rs^{N-1}\Big[NF( u(s) )-\frac{N-2}2f(u(s))u(s) \Big] ds, \] hence \begin{equation} r^{N-1}H(r)\geq \frac{R^Nd^2}2+\lambda m\Big( \frac{r^N}N-\frac{R^N}N\Big), \label{eq11} \end{equation} where $m$ is a strictly negative real such that $NF(u) -\frac{N-2}2f(u) u\geq m$ for all $u\in \mathbb{R}$, so \[ r^{N-1}H(r)\geq \frac{R^N\gamma _1^2}2+\lambda m\Big(\frac{\widehat{R}^N}N-\frac{R^N }N\Big) ,\quad \forall r\in [ R,\widehat{R}], \;\forall d\geq \gamma _1. \] We note that $m$ exists by $(f_4)$. Hence there exists $\lambda _2>0$ such that \begin{equation} H(r) >0,\quad \forall r\in [R,\widehat{R}] ,\;\forall d\geq \gamma _1,\;\forall \lambda \in (0,\lambda _2). \label{eq12} \end{equation} Therefore, \[ u^2(r,d,\lambda ) +u'^2(r,d,\lambda ) >0,\quad \forall r\in [R,\widehat{R}] , \quad \forall d\geq \gamma _1,\;\forall \lambda \in (0,\lambda _2). \] (b) We argue by contradiction: fix $\lambda \in (0,\lambda _2) $ and suppose that \[ u(r,d,\lambda ) \geq 0,\quad \forall r\in [R,\widehat{R}] ,\;\forall d\geq \gamma _1. \] Choose $\varrho >0$ such that there exists a solution of $\omega''+\frac{N-1}r\omega'+\varrho \omega =0$, where $$ \omega(0)=1,\quad \omega'(0)=0, \quad \frac{\widehat{R}-R}{4}\text{ is the first zero of } \omega. $$ We note (see \cite{g1}) that $\omega(r)\geq0$ and $\omega'(r)<0$ , for all $r\in (0,\frac{\widehat{R}-R}4]$. By (F3), there exists $d_0=d_0(\lambda )>\gamma _1$ such that \begin{equation} \frac{f(u)}u\geq \frac \varrho \lambda, \quad \forall u\geq d_0. \label{eq13} \end{equation} On the other hand, let $r_1=r_1(d,\lambda ) $ and $r_2=r_2(d,\lambda ) $ be the same numbers as in the proof of Lemma \ref{lem2.5}. By Lemma \ref{lem2.6}, we can assume that \[ r_1=r_1(d,\lambda )d_0,\quad \forall d\geq d_0, \] the definitions of $r_1$ and $r_2$ imply \begin{equation} u'(r,d,\lambda )\leq0,\quad \forall r\in [r_1,\widehat{R}] ,\quad \forall d\geq d_0. \label{eq14} \end{equation} Define $v(r)=u(r_1) \omega (r-r_1)$, hence $v''(r) +\frac{N-1}{r-r_1}v'(r) +\varrho v(r)=0$, for all $r\in (r_1,r_1+\frac{\widehat{R}-R}4)$ with $u(r_1)=v(r_1)$, $v'(r_1)=0$, $v(r_1+\frac{\widehat{R}-R}4)=0$, $v(r)>0$ and $v'(r)\leq 0$, for all $r\in(r_1,r_1+\frac{\widehat{R}-R}4)$, thus \[ v''(r)+\frac{N-1}rv'(r)+\varrho v(r)\geq 0,\quad\forall r\in (r_1,r_1+\frac{\widehat{R}-R}4), \] if $u(r)\geq d_0$, for all $r\in(r_1,r_1+\frac{\widehat{R}-R}4) $, hence by \eqref{eq13} and the Sturm comparison theorem (see \cite{h3}), $u$ have a zero in $(r_1,r_1+\frac{\widehat{R}-R}4) $. Which is a contradiction. Hence, there exists $r^{*}\in (r_1,r_1+\frac{\widehat{R}-R}4)$ such that $u(r^{*},d,\lambda)=d_0$. Now, consider the energy function \[ E(r,d,\lambda ) =\frac{u^{^{\prime }2}(r,d,\lambda) }2+\lambda F(u(r,d,\lambda ) ) ,\quad \forall r\geq R. \] By \eqref{eq11}, \eqref{eq14} and the equality $H(r)=rE(r)+\frac{N-2}{2}u(r)u'(r)$, we obtain \begin{align*} r^NE(r,d,\lambda ) &\geq r^{N-1}H(r,d,\lambda ) \\ &\geq \frac{R^Nd^2}2+\lambda m\Big(\frac{\widehat{R}^N}N-\frac {R^N}N\Big) ,\quad \forall r\in [r_1,\widehat{R}] , \end{align*} hence, there exists $d_1=d_1(\lambda) \geq d_0$ such that \[ E(r,d,\lambda) \geq \lambda F(d_0) +\frac 2{(\widehat{R}-R)^2}d_0^2,\quad \forall r\in [r_1,\widehat{R}],\quad \forall d\geq d_1. \] However, \[ E'(r) =-\frac{N-1}ru'(r) ^2\leq 0,\quad \forall r\in[R,\widehat{R}], \] hence \[ E(r^{*})\geq E(r),\quad \forall r\in[ r^{*},\widehat{R}], \] thus \[ \frac {u'(r)^2}2\geq \frac{2d_0^2}{(\widehat{R}-R) ^2},\quad \forall r\in[r^{*},\widehat{R}] ,\;\forall d\geq d_1, \] and by \eqref{eq14}, we deduce \[ u'(r)\leq -\frac{2d_0}{\widehat{R}-R} \;,\quad \forall r\in [ r^{*},\widehat{R}] ,\;\forall d\geq d_1. \] The mean value theorem implies that there exists a $c\in( r^{*},r^{*}+\frac{\widehat{R}-R}2)$ such that \[ u\Big(r^{*}+\frac{\widehat{R}-R}2\Big)-u(r^{*})=\frac{\widehat{R}-R}2u'(c). \] Hence $$ u\Big(r^{*}+\frac{\widehat{R}-R}2\Big)\leq 0. $$ Which is a contradiction (because $u'(r^{*}+\frac{\widehat{R}-R}2)<0$). \end{proof} \begin{proof}[Proof of theorem \ref{thm2.1}] Let $d_0>0$. By Lemmas \ref{lem2.5} and \ref{lem2.7}, there exists $\lambda _{*}>0$ such that, if $\lambda \in (0,\lambda _{*})$ then \begin{itemize} \item[(i)] $u(r,d_0,\lambda )>0$ for all $r\in (R,\widehat{R}]$ \item[(ii)] $u'(r,d,\lambda )^2+u(r,d,\lambda)^2>0$ for all $r\in [R,\widehat{R}]$ and all $d\geq d_0$, \item[(iii)] there exist $d_1>d_0$ and $r\in (R,\widehat{R}] $ such that $u(r,d_1,\lambda )<0$. \end{itemize} Define $\Gamma =\{ d\geq d_0\;\mid u(r,\overline{d},\lambda)>0,\;\forall r\in ( R,\widehat{R}),\;\forall \overline{d}\in [d_0,d]\}$. By (i), $d_0\in \Gamma $ then $\Gamma $ is nonempty. In addition, by (iii) $\Gamma $ is bounded from above by $d_1$. Take $d^{*}=\sup \Gamma $. it is clear that $$ u(r,d^{*},\lambda )\geq 0,\quad \forall r\in [R,\widehat{R}]. $$ Since $d^{*}0,\quad \forall r\in (R,\widehat{R}). \label{eq15} \end{equation} $u(.,d^{*},\lambda )$ will be a solution searching, if we prove $u (\widehat{R},d^{*},\lambda )=0$. Assume that $u(\widehat{R},d^{*},\lambda)>0$. Then by \eqref{eq15} and the fact that $u'(R,d^{*},\lambda)=d^{*}>0$, we have that $$ u(r,d,\lambda )>0,\quad \forall r\in (R,\widehat{R}],\forall d\in [d^{*},d^{*}+\delta ], $$ where $\delta$ is sufficiently small. Hence $d^{*}+\delta \in \Gamma $,\;which is a contradiction. Therefore, $u(\widehat{R},d^{*},\lambda )=0$. \end{proof} \begin{thebibliography}{00} \bibitem{a1} D. Arcoya, A. Zertiti; \emph{Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in annulus}, Rendiconti di Mathematica, serie VII, Volume 14, Roma (1994), 625-646. \bibitem{c1} A. Castro, R. Shivaji; \emph{Nonnegative solutions for a class of nonpositone problems}, Proc. Roy. Soc. Edin., 108(A)(1988), pp. 291-302. \bibitem{c2} M. Chhetri, P. Girg; \emph{Existence and and nonexistence of positive solutions for a class of superlinear semipositone systems}, Nonlinear Analysis, 71 (2009), 4984-4996. \bibitem{c3} D. G. Costa, H. Tehrani, J. Yang; \emph{On a variational approach to existence and multiplicity results for semi positone problems}, Electron. J. Diff. Equ., Vol. (2006), No. 11, 1-10. \bibitem{h1} Said Hakimi, Abderrahim Zertiti; \emph{Radial positive solutions for a nonpositone problem in a ball}, Eletronic Journal of Differential Equations, Vol. 2009(2009), No. 44, pp. 1-6. \bibitem{h2} Said Hakimi, Abderrahim Zertiti; \emph{Nonexistence of Radial positive solutions for a nonpositone problem}, Eletronic Journal of Differential Equations, Vol. 2011(2011), No. 26, pp. 1-7. \bibitem{h3} Hartman; \emph{Ordinary Differential equations}, Baltimore, 1973. \bibitem{g1} B. Gidas, W. M. Ni, L. Nirenberg; \emph{Symmetry and related properties via the maximum principle}, Commun. Maths Phys., 68 (1979), 209-243. \end{thebibliography} \end{document}