\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 123, pp. 1--19.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/123\hfil Two-component Camassa-Holm system] {Cauchy problem for a generalized weakly dissipative periodic two-component \\ Camassa-Holm system} \author[W. Chen, L. Tian, X. Deng \hfil EJDE-2014/123\hfilneg] {Wenxia Chen, Lixin Tian, Xiaoyan Deng} % in alphabetical order \address{Wenxia Chen \newline Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China} \email{swp@ujs.edu.cn} \address{Lixin Tian \newline Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China} \address{Xiaoyan Deng \newline Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China} \thanks{Submitted September 27, 2013. Published May 14, 2014.} \subjclass[2000]{35B44, 35B30, 35G25} \keywords{Wave-breaking; weakly dissipative; blow-up rate; \hfill\break\indent periodic two-component Camassa-Holm equation; global solution} \begin{abstract} In this article, we study a generalized weakly dissipative periodic two-component Camassa-Holm system. We show that this system can exhibit the wave-breaking phenomenon and determine the exact blow-up rate of strong solution to the system. In addition, we establish a sufficient condition for having a global solution. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} In recent years, the Camassa-Holm equation \cite{c1}, \begin{equation} \label{e1.1} u_t-u_{txx}+3uu_x=2u_xu_{xx}+uu_{xxx}, \quad t > 0, x \in\mathbb{R} \end{equation} which models the propagation of shallow water waves has attracted considerable attention from a large number of researchers, and two remarkable properties of \eqref{e1.1} were found. The first one is that the equation possesses the solutions in the form of peaked solitons or `peakons' \cite{c1,c5}. The peakon $u(t,x) = ce^{ - | {x - ct}|}$, $c \neq 0$ is smooth except at its crest and the tallest among all waves of the fixed energy. It is a feature observed for the traveling waves of largest amplitude which solves the governing equations for water waves \cite{c6,c7,t2,z1}. The other remarkable property is that the equation has breaking waves \cite{c1,c8}; that is, the solution remains bounded while its slope becomes unbounded in finite time. After wave breaking the solutions can be continued uniquely as either global conservative \cite{b1} or global dissipative solutions \cite{b2}. The Camassa-Holm equation also admits many integrable multicomponent generalizations. The most popular one is \begin{equation} \label{e1.2} \begin{gathered} m_t - Au_x + um_x + 2u_x m + \rho \rho _x = 0 \\ \rho _t + (\rho u)_x = 0 \\ m = u - u_{xx} \end{gathered} \end{equation} Notice that the C-H equation can be obtained via the obvious reduction $\rho \equiv 0$ and $A = 0$. System \eqref{e1.2} was derived in \cite{s1}, where $\rho (t,x)$ is related to the free surface elevation from the equilibrium (or scalar density), and $A \ge 0$ characterizes a linear underlying shear flow. Recently, Constantin-Ivanov \cite{c9} and Ivanov \cite{i1} established a rigorous justification of the derivation of system \eqref{e1.2}. Mathematical properties of the system have been also studied further in many works, for example \cite{a1,c3,c4,e1,f1,g4,h2,p1,t1}. Chen, Liu and Zhang \cite{c3} established a reciprocal transformation between the two-component Camassa-Holm system and the first negative flow of the AKNS hierarchy. Escher, Lechtenfeld, and Yin \cite{e1} investigated local well-posedness for the two-component Camassa-Holm system with initial data $(u_0 ,\rho _0 - 1) \in H^s\times H^{s - 1}$ with $s \ge 2$ by applying Kato's theory \cite{k1} and provided some precise blow-up scenarios for strong solutions to the system. The local well-posedness is improved by Gui and Liu \cite{g5} to the Besov Spaces (especially in the Sobolev space $H^s\times H^{s - 1}$ with $s > 3/2)$, and they showed that the finite time blow-up is determined by either the slope of the first component $u$ or the slope of the second component $\rho$ \cite{c5,e1}. The blow-up criterion is made more precise in \cite{l1} where Liu and Zhang showed that the wave breaking in finite time only depends on the slope of $u$. This blow-up criterion is improved to the lowest Sobolev spaces $H^s\times H^{s - 1}$ with $s > 3/2$ \cite{g4}. In general, it is difficult to avoid energy dissipation mechanisms in a real world. We are interested in the effect of the weakly dissipative term on the two-component Camassa-Holm equation. Wu, Escher and Yin have investigated the blow-up phenomena, the blow-up rate of the strong solutions of the weakly dissipative CH equation \cite{w2} and DP equation \cite{w1}. Inspired by the above results, in this paper, we investigate the following generalized weakly dissipative two-component Camassa-Holm system \begin{equation} \label{e1.3} \begin{gathered} u_t - u_{txx} - Au_x + 3uu_x - \sigma (2u_x u_{xx} + uu_{xxx} ) + \lambda (u - u_{xx} ) + \rho \rho _x = 0, \\ t > 0,\; x \in\mathbb{R},\\ \rho _t + (\rho u)_x = 0, \quad t > 0,\; x \in\mathbb{R}, \\ u(0,x) = u_0 (x), \rho (0,x) = \rho _0 (x), \quad x \in\mathbb{R},\\ u(t,x) = u(t,x+1),\rho(t,x) = \rho(t,x+1), \quad t\geq0,\; x \in\mathbb{R}, \end{gathered} \end{equation} or equivalently, \begin{equation} \label{e1.4} \begin{gathered} m_t - Au_x + \sigma (um_x + 2u_x m) + 3(1 - \sigma )uu_x + \lambda m + \rho \rho _x = 0, \\ \rho _t + (\rho u)_x = 0, \\ m = u - u_{xx}, \\ \end{gathered} \end{equation} where $\lambda m = \lambda (I-\partial_{xx})u$ is the weakly dissipative term, $\lambda \ge 0$ and $A$ are constants, and $\sigma $ is a new free parameter. When $A = 0$, $\lambda =0$ and $\rho = 1$, Guan and Yin have obtained a new result of the existence of the strong solution and some new blow-up results \cite{g1}. Meanwhile, they have proved the global existence of the weak solution about the two-component CH equation \cite{g2}. Henry investigates the infinite propagation speed of the solution for a two-component CH equation \cite{h1}. Similar to \cite{c9,e1}, we can use the method of Besov spaces together with the transport equation theory to show that system \eqref{e1.4} is locally well-posedness in $H^s\times H^{s - 1}$ with $s > 3/2$. The two equations for $u$ and $\rho $ are of a transport structure $\partial _t f + v\partial _x f = g$. It is well known that most of the available estimates require $v$ to have some level of regularity. Roughly speaking, the regularity of the initial data is expected to be preserved as soon as $v$ belongs to $L^1(0,T;Lip)$. More specially, $u$ and $\rho $ are ``transported'' along directions of $\sigma u$ and $u$ respectively. Then, the solution can be estimated in a Gronwall way involving $\| {u_x } \|_{L^\infty } $. Hence, one can use these estimates to derive a criterion which says if $\int_0^T {\| {u_x (\tau )}\|_{L^\infty } d\tau } < \infty $, then solutions can be extended further in time. Compared with the result in \cite{c2}, we find that the equation \eqref{e1.4} has the same blow-up rate when the blow-up occurs. This fact shows that the blow-up rate of equation \eqref{e1.4} is not affected by the weakly dissipative term. But the occurrence of blow-up of equation \eqref{e1.4} is affected by the dissipative parameter $\lambda$. The basic elementary framework is as follows. Section 2 gives the local well-posedness of system \eqref{e1.4} and a wave-breaking criterion, which implies that the wave breaking only depends on the slope of $u$, not the slope of $\rho$. Section 3 improves the blow-up criterion with a more precise conditions. Section 4 determine the exact blow-up rate of strong solutions of system \eqref{e1.4}. Finally, section 5 provides a sufficient condition for global solutions. \subsection*{Notation} Throughout this paper, we identity periodic function spaces over the unit $S$ in $\mathbb{R}^2$, i.e. $S=R/Z$. \section{Formation of singularities for $\sigma \neq 0$} We consider the following generalized weakly dissipative two - component Camassa - Holm system: \begin{equation} \label{e2.1} \begin{gathered} u_t - u_{txx} - Au_x + 3uu_x - \sigma (2u_x u_{xx} + uu_{xxx} ) + \lambda (u - u_{xx} ) + \rho \rho _x = 0, \\ t > 0,\;x \in\mathbb{R},\\ \rho _t + (\rho u)_x = 0, \quad t > 0,\; x \in\mathbb{R},\\ u(0,x) = u_0 (x), \quad \rho (0,x) = \rho _0 (x),\\ u(t,x) = u(t,x+1),\quad \rho(t,x) = \rho(t,x+1), \end{gathered} \end{equation} where $\lambda \ge 0$ and $A$ are constants, and $\sigma$ is a new free parameter. System \eqref{e2.1} can be written in the ``transport'' form \begin{equation} \label{e2.2} \begin{gathered} u_t + \sigma uu_x = - \partial _x G \ast ( -Au + \frac{3 - \sigma}{2}u^2 + \frac{\sigma}{2}u_x^2 + \frac{1}{2}\rho^2) - \lambda u \quad t > 0,\; x \in\mathbb{R}\\ \rho _t + (\rho u)_x = 0 \quad t > 0,\; x \in\mathbb{R} \\ u(0,x) = u_0 (x), \rho (0,x) = \rho _0 (x),\quad x \in\mathbb{R}\\ u(t,x) = u(t,x+1),\rho(t,x) = \rho(t,x+1),\quad t\geq 0,\; x \in\mathbb{R} \end{gathered} \end{equation} where $G(x): = \frac{\cosh(x-[x]-\frac{1}{2})}{2\sinh(1/2)}$, $x \in S$, and $(1-\partial _x^2)^{-1} f=G \ast f$ for all $f \in L^2 (S)$. Applying the transport equation theory combined with the method of Besov spaces, one may follow the similar argument as in \cite{g5} to obtain the following local well-posedness result for the system \eqref{e2.1}. The proof is very similar to that of \cite[Theorem 1.1]{g5} and is omitted. \begin{theorem} \label{thm2.1} Assume $( u_0, \rho_0-1) \in H^s(S) \times H^{s-1}(S)$ with $s > 3/2$, then there exist a maximal time $T = T (\|(u_0, \rho_0-1)\|_{H^s \times H^{s-1}}) >0$ and a unique solution $( u, \rho -1)$ of equation \eqref{e2.1} in $C([0,T); H^s \times H^{s-1}) \cap C^1([0,T); H^{s-1} \times H^{s-2})$ with initial data $( u_0, \rho_0)$. Moreover, the solution depends continuously on the initial data, and $T$ is independent of $s$. \end{theorem} \begin{lemma}[\cite{p1}] \label{lem2.1} Let $0 < s < 1$. Suppose that $f_0 \in H^s$, $g \in L^1([0,T];H^s)$, $v, v_x \in L^1([0,T];L^\infty)$, and that $f \in L^\infty([0,T];H^s) \cap C([0,T); S')$ solves the one-dimensional linear transport equation \begin{gather*} \partial _t f + v\partial _x f = g\\ f(0,x) = f_0(x) \\ \end{gather*} then $f \in C( [0,T];H^s)$. More precisely, there exists a constant $C$ depending only on $s$ such that \begin{equation*} \|f(t)\|_{H^s} \leq \|f_0\|_{H^s} + C\Big(\int_0^t{\|g(\tau)\|_{H^s} d\tau} + \int_0^t{\|f(\tau)\|_{H^s} V'(\tau) d\tau}\Big), \end{equation*} then \begin{equation*} \|f(t)\|_{H^s} \leq e^{CV(t)}(\|f_0\|_{H^s} + C\int_0^t{\|g(\tau)\|_{H^s} d\tau}), \end{equation*} where $V(t) = \int_0^t{(\|v(\tau)\|_{L^\infty} + \|v_x(\tau)\|_{L^\infty})}d\tau$. \end{lemma} We may use \cite[Lemma 2.1]{g4} to handle the regularity propagation of solutions to \eqref{e2.1}. In addition, Lemma \ref{lem2.1} was proved using the Littlewood-Paley analysis for the transport equation and Moser-type estimates. Using this result and performing the same argument as in \cite{g4}, we can obtain the following blow-up criterion. \begin{theorem} \label{thm2.2} Let $\sigma \neq 0$, $( u, \rho)$ be the solution of \eqref{e2.1} with initial data $( u_0, \rho_0-1) \in H^s(S) \times H^{s-1}(S)$ with $s > 3/2$, and $T$ be the maximal time of existence. Then \begin{equation} \label{e2.3} T < \infty \Rightarrow \int_0^t{\|u_x(\tau)\|_{L^\infty} d\tau} = \infty. \end{equation} \end{theorem} Regarding the finite time blow-up, we consider the trajectory equation of the system \eqref{e2.1}, \begin{equation} \label{e2.4} \begin{gathered} \frac{dq(t,x)}{dt} = u(t,q(t,x)), \quad t \in [0,T) \\ q(0,x) = x, \quad x \in S , \end{gathered} \end{equation} where $u \in C^1([0,T);H^{s - 1})$ is the first component of the solution $(u,\rho )$ to \eqref{e2.1} with initial data $(u_0 ,\rho _0 ) \in H^s(S)\times H^{s - 1}(S)$ with $s > 3/2$, and $T >0$ is the maximal time of the existence. Applying Theorem \ref{thm2.1}, we know that $q(t, \cdot ):S \to S$ is the diffeomorphism for every $t\in [0,T)$, and \begin{equation} \label{e2.5} q_x(t,x) = \exp \Big(\int_0^t{u_x(\tau,q(\tau,x))d\tau}\Big) >0, \quad \forall(t,x) \in [0,T)\times S. \end{equation} Hence, the $L^\infty$-norm of any function $v(t,\cdot)\in L^\infty, t \in [0,T)$ is preserved under the diffeomorphism $q(t,\cdot)$ with $t \in [0,T)$; that is, $\|v(t,\cdot)\|_{L^\infty} = \|v(t,q(t,\cdot))\|_{L^\infty}$. \begin{lemma}[\cite{c8}] \label{lem2.2} Let $T > 0$ and $v \in C^1([0,T);H^1(R))$, then for every $t \in [0,T)$, there exists at least one point $\xi (t) \in\mathbb{R}$ with $m(t): = \inf_{x \in\mathbb{R}} [ {v_x (t,x)} ] = v_x (t,\xi (t))$. The function $m(t)$ is absolutely continuous on $(0,T)$ with \[ \frac {dm(t)}{dt} = v_{tx}(t,\xi(t)) \quad \text{a.e. on } (0,T). \] \end{lemma} \begin{lemma} \label{lem2.3} Assume $(u_0 ,\rho _0 - 1) \in H^s(S)\times H^{s - 1}(S)$ with $s > 3/2$, and $(u,\rho )$ is the solution of system \eqref{e2.1}, then $\| {(u,\rho - 1)} \|_{H^1\times L^2}^2 \le \| {(u_0 ,\rho _0 - 1)} \|_{H^1\times L^2}^2 $. \end{lemma} \begin{proof} Multiplying the first equation in \eqref{e2.1} by $u$ and using integration by parts gives \[ \frac{d}{dt}\int_S {(u^2 + u_x ^2)dx} + 2\lambda \int_S {(u^2 + u_x ^2)dx} + 2\int_S {u\rho \rho _x dx} = 0 \] Rewriting the second equation in \eqref{e2.1} in the form $(\rho - 1)_t + \rho _x u + \rho u_x = 0$, and multiplying by $(\rho - 1)$ and using integration by parts, we have \[ \frac{d}{dt}\int_S {(\rho - 1)^2dx} + 2\int_S {u\rho \rho _x dx} - 2\int_S {u\rho _x dx} + 2\int_S {u_x \rho ^2dx} - 2\int_S {u_x \rho dx} = 0. \] Combining the above equalities, we have \begin{gather*} \frac{d}{dt}\int_S {(u^2 + u_x ^2 + (\rho - 1)^2)dx} + 2\lambda \int_S {(u^2 + u_x ^2)dx} = 0,\\ \frac{d}{dt}\int_S {( {u^2 + u_x ^2 + (\rho - 1)^2 + 2\lambda \int_0^t {(u^2 + u_x ^2)d\tau } } )dx} = 0. \end{gather*} So we have \begin{align*} &\int_S {( {u^2 + u_x ^2 + (\rho - 1)^2 + 2\lambda \int_0^t {(u^2 + u_x ^2)d\tau } } )dx} \\ &= \int_S {(u_0 ^2 + u_{0x} ^2 + (\rho _0 - 1)^2)dx} = \| {(u_0 ,\rho _0 - 1)} \|_{H^1\times L^2}^2. \end{align*} Since $2\lambda \int_0^t {(u^2 + u_x ^2) d\tau } \ge 0$, we obtain \[ \| {(u,\rho - 1)} \|_{H^1\times L^2}^2 = \int_S {(u^2 + u_x ^2 + (\rho - 1)^2)dx} \le \| {(u_0 ,\rho _0 - 1)} \|_{H^1\times L^2}^2 . \] The proof is complete. \end{proof} \begin{lemma}[\cite{y1}] \label{lem2.4} (1) For all $f \in H^1(S)$, we have \begin{equation*} \max_{x\in [0,1]} f^2(x) \leq \frac{e+1}{2(e-1)}\| f \|_1^2, \end{equation*} where $\frac{ e+1}{ 2(e-1)}$ is the best constant. (2) For all $f \in H^3(S)$, we have \begin{equation*} \max_{x\in [0,1]} f^2(x) \leq c \| {f} \|_1^2, \end{equation*} where the possible best constant $c \in (1,\frac{13}{12} ]$, and the best constant is $\frac{ e+1}{2(e-1)}$. \end{lemma} \begin{lemma} \label{lem2.5} If $ f \in H^3(S)$, then \begin{equation*} \max_{x\in [0,1]} f_x^2(x) \leq \frac{1}{12} \| {f} \|_{H^2(S)}^2. \end{equation*} \end{lemma} \begin{proof} From \cite[Theorem 2.1]{y1}, the Fourier expansion of $f(x)$ can be written as \begin{equation*} f(x) = \frac{a_0}{2} + \sum _{n=1}^\infty a_n \cos(2\pi nx). \end{equation*} Then \begin{equation*} f_x(x) = - \sum _{n=1}^\infty (2n \pi a_n \sin(2\pi nx)). \end{equation*} Using that $\sum _{n=1}^\infty 1/ n^2=\pi^2/6$, we have \begin{align*} \max_{x\in S}f_x^2(x) &\leq \Big(\sum _{n=1}^\infty | 2n \pi a_n |\Big)^2\\ &=\Big(\sum _{n=1}^\infty (2n \pi)^2| a_n | \frac{1}{2n \pi}\Big)^2\\ &\leq \sum _{n=1}^\infty((2n \pi)^2| a_n |)^2\sum _{n=1}^\infty (\frac{1}{2n \pi})^2 \\ &\leq\frac{1}{24}\sum _{n=1}^\infty(16n^4\pi^4a_n^2)\\ &=\frac{1}{12}\sum _{n=1}^\infty(8n^4\pi^4a_n^2)\\ &=\frac{1}{12}\int_S{f_{xx}^2 dx} \leq \frac{1}{12} \| {f} \|_{H^2(S)}^2. \end{align*} The proof is complete. \end{proof} Applying the above lemmas and the method of characteristics, we may carry out the estimates along the characteristics $q(t,x)$ which captures $\sup _{x \in S} u_x (t,x)$ and $\inf_{x \in S} u_x (t,x)$. \begin{lemma} \label{lem2.6} Let $\sigma \ne 0$ and $(u,\rho )$ be the solution of \eqref{e2.1} with initial data $(u_0 ,\rho _0 - 1) \in H^s(S)\times H^{s - 1}(S)$, $s> 3/2$, and $T$ be the maximal time of existence. (1) When $\sigma > 0$, we have \begin{equation} \label{eq9} \sup _{x \in S} u_x (t,x) \le \| {u_{0x} } \|_{L^\infty } + \sqrt {\frac{\lambda ^2}{\sigma ^2} + \frac{\| {\rho _0 } \|_{L^\infty }^2 + C_1^2 }{\sigma}}; \end{equation} (2) When $\sigma < 0$, we have \begin{equation} \label{e2.7} \inf _{x \in S} u_x (t,x) \ge - \| {u_{0x} } \|_{L^\infty } - \sqrt {\frac{\lambda ^2}{\sigma ^2} - \frac{C_2^2 }{\sigma }}; \end{equation} where the constants are defined as follows: \begin{gather} \label{e2.8} C_1 = \sqrt {\frac{5(e+1)}{2(e-1)}+(\frac{1+A^2}{2}+\frac{(e+1) | 3-\sigma |}{e-1})\| {(u_0 ,\rho _0 - 1)} \|_{H^1\times L^2}^2},\\ \label{e2.9} C_2 = = \sqrt {\frac{5(e+1)}{2(e-1)}+(\frac{A^2}{2} +\frac{(5-\sigma)e+3-\sigma}{2(e-1)})\| {(u_0 ,\rho _0 - 1)} \|_{H^1\times L^2}^2}. \end{gather} \end{lemma} \begin{proof} The local well-posedness theorem and a density argument imply that it suffices to prove the desired estimates for $s \ge 3$. Thus, we take $s = 3$ in the proof. Here we may assume that $u_0 \ne 0$. Otherwise, the results become trivial. Differentiating the first equation in \eqref{e2.2} with respect to $x$ and using the identity $ - \partial _x^2 G * f = f - G * f$, we have \begin{equation} \label{e2.10} u_{tx} + \sigma uu_{xx} + \frac{\sigma }{2}u_x^2 = \frac{1}{2}\rho ^2 + \frac{3 - \sigma }{2}u^2 + A\partial _x^2 G * u - G * (\frac{\sigma }{2}u_x^2 + \frac{3 - \sigma }{2}u^2 + \frac{1}{2}\rho ^2) - \lambda u_x. \end{equation} (1) When $\sigma > 0$, using Lemma \ref{lem2.2} and the fact that \[ \sup _{x \in S} [v_x (t,x)] = - \inf _{x \in S} [ - v_x (t,x)], \] we can consider $\bar {m}(t)$ and $\eta (t)$ as \begin{equation} \label{e2.11} \bar {m}(t): = u_x (t,\eta (t)) = \sup _{x \in S} (u_x (t,x)), \quad t \in [0,T). \end{equation} This gives \begin{equation} \label{e2.12} u_{xx} (t,\eta (t)) = 0 \quad \text{a.e. on } t \in [0,T) \end{equation} Take the trajectory $q(t,x)$ defined in \eqref{e2.4}. We know that $q(t, \cdot ):S \to S$ is a diffeomorphism for every $t \in [0,T)$,then there exists $x_1 (t) \in S$ such that \begin{equation} \label{e2.13} q(t,x_1 (t)) = \eta (t),\quad t \in [0,T). \end{equation} Let \begin{equation} \label{e2.14} \bar {\zeta }(t) = \rho (t,q(t,x_1 )), \quad t \in [0,T). \end{equation} Then along the trajectory $q(t,x_1 (t))$, equation \eqref{e2.10} and the second equation of \eqref{e2.1} become \begin{equation} \label{e2.15} \begin{gathered} \bar{m}'(t) = - \frac{\sigma }{2}\bar {m}^2(t) - \lambda \bar {m}(t) + \frac{1}{2}\bar {\zeta }^2(t) + f(t,q(t,x_1 )) \\ \bar{\zeta }'(t) = - \bar {\zeta }(t)\bar {m}(t), \end{gathered} \end{equation} where \begin{equation} \label{e2.16} f = \frac{3 - \sigma }{2}u^2 + A\partial _x^2 G * u - G * \Big(\frac{\sigma }{2}u_x^2 + \frac{3 - \sigma }{2}u^2 + \frac{1}{2}\rho ^2\Big). \end{equation} Since $\partial _x^2 G * u = \partial _x G * \partial _x u$, we have \begin{align*} f &= \frac{3 - \sigma }{2}u^2 + A\partial _x G * \partial _x u - G * (\frac{\sigma }{2}u_x^2 + \frac{3 - \sigma }{2}u^2) - \frac{1}{2}G * 1 - G * (\rho - 1) \\ &\quad - \frac{1}{2}G * (\rho - 1)^2 \\ &\leq \frac{3 - \sigma }{2}u^2 + A\partial _x G * \partial _x u - G * ( \frac{3 - \sigma }{2}u^2) - \frac{1}{2}G * 1 - G * (\rho - 1) \\ &\le \frac{| 3 - \sigma | }{2}u^2 + A| {\partial _x G * \partial _x u} | + | {G * (\frac{3 - \sigma }{2}u^2)} | + \frac{1}{2}| G * 1 | + | {G * (\rho - 1)} |. \end{align*} Based on the following formulas: \begin{gather*} \frac{| 3 - \sigma | }{2}u^2 \leq \frac{| 3 - \sigma | }{2} \cdot \frac{e+1}{2(e-1)}\| {u} \|_{H^1}^2, \\ A| {\partial _x G * \partial _x u} | \le A\| {G_x } \|_{L^2} \| {u_x } \|_{L^2} \leq \frac{e+1}{2(e-1)}+\frac{1}{4}A^2\| {u_x }\|_{L^2}^2, \\ | {G * (\frac{\sigma }{2}u_x^2}) | \le \| {G_x } \|_{L^\infty} \| {\frac{\sigma }{2}u_x^2} \|_{L^1} \leq \frac{e+1}{2(e-1)}\cdot\frac{\sigma}{2}\| {u_x }\|_{L^2}^2, \\ | {G * (\frac{3-\sigma }{2}u^2}) | \le \| {G_x } \|_{L^\infty} \| {\frac{3-\sigma }{2}u^2} \|_{L^1} \leq \frac{e+1}{2(e-1)}\cdot\frac{| 3-\sigma |}{2}\| {u}\|_{L^2}^2, \\ \frac{1}{2}| {G * 1} | \leq \frac{1}{2}\| {G } \|_{L^\infty} \leq \frac{e+1}{4(e-1)}, \\ | {G * (\rho - 1)} | \le \| G \|_{L^2} \| {\rho - 1} \|_{L^2} \leq \frac{e+1}{2(e-1)}+\frac{1}{4}\| {\rho - 1} \|_{L^2}^2, \\ \frac{1}{2}| {G * (\rho - 1)^2} | \le \frac{1}{2}\| G \|_{L^\infty} \| {(\rho - 1)^2} \|_{L^1} \leq \frac{e+1}{4(e-1)}\| {\rho - 1} \|_{L^2}^2, \end{gather*} from the above inequalities and Lemma \ref{lem2.3} we obtain an upper bound of $f$, \begin{equation} \label{e2.17} \begin{aligned} f &\le \frac{5(e+1)}{4(e-1)}+\frac{1}{4}\| {\rho - 1} \|_{L^2}^2+(\frac{A^2}{4}+\frac{(e+1)| 3-\sigma |}{2(e-1)})\| {u} \|_{H^1}^2 \\ &\le \frac{5(e+1)}{4(e-1)}+(\frac{A^2+1}{4}+\frac{(e+1)| 3-\sigma |}{2(e-1)})\| {(u_0 ,\rho _0 - 1)} \|_{H^1\times L^2}^2 \\ &= \frac{1}{2}C_1^2. \end{aligned} \end{equation} Similarly, we obtain a lower bound of $f$, \begin{equation} \label{e2.18} \begin{aligned} - f &\le \frac{\sigma - 3}{2}u^2 + A| {\partial _x G * \partial _x u} | + | {G * (\frac{\sigma }{2}u_x^2 + \frac{3 - \sigma }{2}u^2)} | + \frac{1}{2}| {G * 1} | \\ &\quad + | {G *(\rho - 1)} | + \frac{1}{2}G * (\rho - 1)^2 \\ & \le \frac{5(e+1)}{4(e-1)}+\frac{e}{2(e-1)}\| {\rho- 1} \|_{L^2}^2 +(\frac{A^2}{4}+\frac{(e+1)(| \sigma | +2 | 3-\sigma|)}{4(e-1)})\| {u} \|_{H^1}^2 \\ &\le \frac{5(e+1)}{4(e-1)}+(\frac{A^2}{4}+\frac{2e+(e+1)(| \sigma | +2 | 3-\sigma|)}{4(e-1)}) \| {(u_0 ,\rho _0 - 1)} \|_{H^1\times L^2}^2. \end{aligned} \end{equation} Combining \eqref{e2.17} and \eqref{e2.18}, we obtain \begin{equation} \label{e2.19} | f | \le \frac{5(e+1)}{4(e-1)}+(\frac{A^2}{4} +\frac{2e+(e+1)(| \sigma | +2 | 3-\sigma|)}{4(e-1)}) \| {(u_0 ,\rho _0 - 1)} \|_{H^1\times L^2}^2. \end{equation} Since $s \ge 3$, it follows that $u \in C_0^1 (S)$ and \begin{equation} \label{e2.20} \inf _{x \in S} u_x (t,x) \le 0_{,} \quad \sup _{x \in S} u_x (t,x) \ge 0, \quad t \in [0,T). \end{equation} Hence, we obtain \begin{equation} \label{e2.21} \bar {m}(t) > 0 \quad \text{for } t \in [0,T). \end{equation} From the second equation in \eqref{e2.15}, we have \begin{gather} \label{e2.22} \bar {\zeta }(t) = \bar {\zeta }(0)e^{ - \int_0^t {\bar {m}(\tau )d\tau }},\\ | {\rho (t,q(t,x_1 ))} | = | {\bar {\zeta }(t)} | \le | {\bar {\zeta }(0)} | \le \| {\rho _0 } \|_{L^\infty }. \nonumber \end{gather} For any given $x \in S$, we define \[ P_1 (t) = \bar {m}(t) - \| {u_{0x} } \|_{L^\infty } - \sqrt {\frac{\lambda ^2}{\sigma ^2} + \frac{\| {\rho _0 } \|_{L^\infty }^2 + C_1^2 }{\sigma }}. \] Notice that $P_1 (t)$ is a $C^1$-function in $[0,T)$ and satisfies \[ P_1 (0) = \bar {m}(0) - \| {u_{0x} } \|_{L^\infty } - \sqrt {\frac{\lambda ^2}{\sigma ^2} + \frac{\| {\rho _0 } \|_{L^\infty }^2 + C_1^2 }{\sigma }} \le \bar {m}(0) - \| {u_{0x} } \|_{L^\infty } \le 0. \] Next, we claim that \begin{equation} \label{e2.23} P_1 (t) \le 0 \quad \text{for } t \in [0,T). \end{equation} If not, then suppose that there is a $t_0 \in [0,T)$ such that $P_1 (t_0 ) > 0$. Define $t_1 = \max \{t < t_0 :P_1 (t) = 0\}$, then $P_1 (t_1 ) = 0$, $P_1 ' (t_1 ) \ge 0$. That is, \[ \bar {m}(t_1 ) = \| {u_{0x} } \|_{L^\infty } + \sqrt {\frac{\lambda ^2}{\sigma ^2} + \frac{\| {\rho _0 } \|_{L^\infty }^2 + C_1^2 }{\sigma }} , \quad {\bar{m}}'(t_1 ) = {P}'_1 (t_1 ) \ge 0. \] On the other hand, we have \begin{align*} {\bar {m}}'(t_1 ) &= - \frac{\sigma }{2}\bar {m}^2(t_1 ) - \lambda \bar {m}(t_1 ) + \frac{1}{2}\bar {\zeta }^2(t_1 ) + f(t_1 ,q(t_1,x_1 ))\\ & \le - \frac{\sigma }{2}\Big(\| {u_{0x} } \|_{L^\infty } + \sqrt {\frac{\lambda ^2}{\sigma ^2} + \frac{\| {\rho _0 } \|_{L^\infty }^2 + C_1^2 }{\sigma }} + \frac{\lambda }{\sigma }\Big)^2 \\ &\quad + \frac{\lambda ^2}{2\sigma } + \frac{1}{2}\| {\rho _0} \|_{L^\infty }^2 + \frac{1}{2}C_{_1 }^2 < 0. \end{align*} This yields a contraction. Thus, $P_1 (t) \le 0$ for $t \in [0,T)$. Since $x$ is chosen arbitrarily, we obtain \eqref{eq9}). (2) When $\sigma < 0$ , we have a finer estimate \begin{equation} \label{e2.24} \begin{aligned} - f &\le -A(\partial _x G * \partial _x u) +G * \frac{3 - \sigma }{2}u^2 + \frac{1}{2}(G * 1) + G * (\rho - 1) + \frac{1}{2}G * (\rho - 1)^2 \\ &\le A| \partial _x G * \partial _x u | + | G * \frac{3 - \sigma }{2}u^2 | + \frac{1}{2}| G * 1 | + | G * (\rho - 1) | + \frac{1}{2}| G * (\rho - 1)^2| \\ &\le \frac{5(e+1)}{4(e-1)}+(\frac{A^2}{4}+\frac{(5-\sigma)e+3-\sigma}{4(e-1)}) \| {(u_0 ,\rho _0 - 1)} \|_{H^1\times L^2}^2=\frac{1}{2}C_2^2. \end{aligned} \end{equation} We consider the functions $m(t)$ and $\xi (t)$ in Lemma \ref{lem2.2}, \begin{equation} \label{e2.25} m(t): = \inf _{x \in S} [ {u_x (t,x)} ], \quad t \in [0,T) \end{equation} Then $u_{xx} (t,\xi (t)) = 0$ a.e. on $t \in [0,T)$. Choose $x_2 (t) \in S$, such that $q(t,x_2 (t)) = \xi (t)$, $t \in [0,T)$. Let $\zeta (t) = \rho (t,q(t,x_2 )), t \in [0,T)$. Along the trajectory $q(t,x_2 )$, equation \eqref{e2.10} and the second equation of \eqref{e2.1} become \begin{gather*} {m}'(t) = - \frac{\sigma }{2}m^2(t) - \lambda m(t) + \frac{1}{2}\zeta ^2(t) + f(t,q(t,x_2 )) \\ {\zeta }'(t) = - \zeta (t)m(t). \end{gather*} Let $P_2 (t) = m(t) + \| {u_{0x} }\|_{L^\infty } + \sqrt {\frac{\lambda ^2}{\sigma ^2} -\frac{C_2^2 }{\sigma }}, \quad \forall x \in\mathbb{R}$. Then $P_2 (t)$ is a $C^1$-function in $[0,T)$ and satisfies \[ P_2 (0) = m(0) + \| {u_{0x} } \|_{L^\infty } + \sqrt {\frac{\lambda ^2}{\sigma ^2} - \frac{C_2^2 }{\sigma }} \ge m(0) + \| {u_{0x} } \|_{L^\infty } \ge 0. \] Now we claim that \begin{equation} \label{e2.26} P_2 (t) \ge 0\quad \text{for } t \in [0,T). \end{equation} Assume that there is a $\bar {t}_0 \in [0,T)$ such that $P_2 (\bar {t}_0 ) < 0$. Define $t_2 = \max \{t < \bar {t}_0 :P_2 (t) = 0\}$, then $P_2 (t_2 ) = 0$, $P_2 ' (t_2 ) \le 0$. That is, \[ m(t_2 ) = - \| {u_{0x} } \|_{L^\infty } - \sqrt {\frac{\lambda ^2}{\sigma ^2} - \frac{C_2^2 }{\sigma }}, \quad {m}'(t_2 ) = {P}'_2 (t_2 ) \le 0. \] In addition, we have \begin{align*} {m}'(t_2 ) &= - \frac{\sigma }{2}m^2(t_2 ) - \lambda m(t_2 ) + \frac{1}{2}\zeta ^2(t_2 ) + f(t_2 ,q(t_2 ,x_2 ))\\ & \ge - \frac{\sigma }{2}( { - \| {u_{0x} } \|_{L^\infty } - \sqrt {\frac{\lambda ^2}{\sigma ^2} - \frac{C_2^2 }{\sigma }} + \frac{\lambda }{\sigma }} )^2 + \frac{\lambda ^2}{2\sigma } - \frac{1}{2}C_2^2 > 0. \end{align*} This is a contradiction. Then we have $P_2 (t) \ge 0$ for $t \in [0,T)$, since $x$ is chosen arbitrarily. \end{proof} Now, we present the following estimates for $\| \rho \|_{L^\infty (S)} $, if $\sigma u_x $ is bounded from below. \begin{lemma}[\cite{c2}] \label{lem2.7} Let $\sigma \ne 0$ and $(u,\rho )$ be the solution of \eqref{e2.1} with initial data $(u_0 ,\rho_0 - 1) \in H^s(S)\times H^{s - 1}(S),s > 3/2$, and $T$ be the maximal time of the existence. If there is a $M \ge 0$ such that $\inf _{(t,x) \in [0,T)\times S} \sigma u_x \ge - M$, Then we have following two statements. (1) If $\sigma > 0$, then $\| {\rho (t, \cdot )} \|_{L^\infty (S)} \le \| {\rho _0 } \|_{L^\infty (S)} e^{Mt / \sigma }$. (2) If $\sigma < 0$, then $\| {\rho (t, \cdot )} \|_{L^\infty (S)}\le \| {\rho _0 } \|_{L^\infty (S)} e^{Nt}$, \noindent where $N = \| {u_{0x} } \|_{L^\infty } + (C_2 / \sqrt { - \sigma } )$ and $C_2 $ is given in \eqref{e2.24}. \end{lemma} \begin{proof} The proof of Lemma \ref{lem2.7} is similar to that of \cite[Proposition 3.8]{c2}, so we omit it here. \end{proof} From the above results, we can get the necessary and sufficient conditions for the blow-up of solutions. \begin{theorem}[Wave-breaking criterion for $\sigma \ne 0$] \label{thm2.3} Let $\sigma \ne 0$ and $(u,\rho )$ be the solution of \eqref{e2.1} with initial data $(u_0 ,\rho _0 - 1) \in H^s(S)\times H^{s - 1}(S)$, $s >3/2$, and $T$ be the maximal time of existence. Then the solution blows up in finite time if and only if \begin{equation} \label{e2.27} \lim _{t \to T^-} \inf _{x \in S} \sigma u_x(t,x) = -\infty. \end{equation} \end{theorem} \begin{proof} Assume that $T < \infty $ and \eqref{e2.27} is not valid, then there is some positive number $M > 0$, such that $\sigma u_x (t,x) \ge - M$, $\forall (t,x) \in [0,T)\times S$. From the above lemmas, we have $| {u_x (t,x)} | \le C$, where $C = C(A,M,\sigma ,\lambda ,\| {(u_0 ,\rho _0 - 1)} \|_{H^s\times H^{s - 1}} )$. Thus, Theorem \ref{thm2.2} implies that the maximal existence time $T = \infty $, which contradicts the assumption $T < \infty $. On the other hand, the Sobolev embedding theorem $H^s \hookrightarrow L^\infty $ with $s > 1/2$ implies that if \eqref{e2.27} holds, the corresponding solution blows up in finite time. The proof is complete. \end{proof} \section{Blow-up scenarios} \begin{theorem} \label{thm3.1} Let $\sigma > 0$ and $(u,\rho )$ be the solution of \eqref{e2.1} with initial data $(u_0 ,\rho _0 - 1) \in H^s(S)\times H^{s - 1}(S),s> 3/2$, and $T$ be the maximal time of existence. Assume that there is some $x_0 \in S$ such that $\rho _0 (x_0 ) = 0_{,} u_{0x} (x_0 ) = \inf _{x \in S} u_{0x} (x)$ and \begin{equation} \label{e3.1} \begin{aligned} &\| {(u_0 ,\rho _0 - 1)} \|_{H^1\times L^2}^2 \\ &< \Big(\frac{8e-10}{18(e-1)} - \frac{\lambda ^2}{2\sigma }\Big)\frac{4(e-1)} {(18A^2+19)e-(18A^2+17)+(2 | 3-\sigma | + \sigma)(e+1)}, \end{aligned} \end{equation} then the corresponding solution to system \eqref{e2.1} blows up in finite time in the following sense: there exists a $T$ such that \begin{equation} \label{e3.2} \begin{aligned} 0 < T &\le \frac{2}{\sigma - \lambda } + \Big(72\sigma(e-1)(1+| u_{0x}(x_0)|)\Big)\\ &\quad \div\Big(\sigma(32e-40-324e-324A^2e+324A^2+306) -36\lambda^2(e-1)\\ &\quad +(2 | 3-\sigma | + \sigma)(e-1)\| {(u_0 ,\rho _0 - 1)} \|_{H^1\times L^2}^2 \Big) \end{aligned} \end{equation} and that $\liminf_{t \to T^-}(\inf_{x \in S}u_x(t,x)) = -\infty$. \end{theorem} \begin{proof} Here we also consider $s \geq 3$. We still consider along the trajectory $q (t,x_2)$ defined as before. In this way, we can write the transport equation of $\rho $ in \eqref{e2.1} along the trajectory of $q (t,x_2)$ as \begin{equation} \label{e3.3} \frac {d\rho (t,\xi(t))}{dt} = -\rho (t,\xi(t))u_x (t,\xi(t)) . \end{equation} By the assumption, we have \[ m(0) = u_x (0,\xi (0)) = \inf _{x \in S} u_{0x} (x)= u_{0x} (x_0 ). \] Choose $\xi (0) = x_0 $ and then $\rho_0 (\xi (0)) = \rho _0 (x_0 ) = 0$. Then by \eqref{e3.3}, we derive \begin{equation} \label{e3.4} \rho (t,\xi (t)) = 0, \quad \forall t \in [0,T). \end{equation} Evaluating the result at $x = \xi (t)$ and combining \eqref{e3.4} with $u_{xx} (t,\xi (t)) = 0$, we have \begin{equation} \label{e3.5} \begin{aligned} {m}'(t) &= - \frac{\sigma }{2}m^2(t) - \lambda m(t) + \frac{3 - \sigma }{2}u^2(t,\xi (t)) + A(G_x * u_x )(t,\xi (t))\\ &\quad - G * (\frac{\sigma }{2}u_x^2 + \frac{3 - \sigma }{2}u^2 + \frac{1}{2}\rho ^2)(t,\xi (t))\\ &= - \frac{\sigma }{2}m^2(t) - \lambda m(t) + f(t,q(t,x_2 )) \\ &= - \frac{\sigma }{2}( {m(t) + \frac{\lambda }{\sigma }} )^2 + \frac{\lambda ^2}{2\sigma } + f(t,q(t,x_2 )). \end{aligned} \end{equation} We modify the estimates: \begin{gather*} A| {G_x * u_x } | \le A\| {G_x } \|_{L^2}\| {u_x } \|_{L^2} \le \frac{1}{18}\cdot \frac{ e+1}{ 2(e-1)} + \frac{9}{2}A^2\| {u_x } \|_{L^2}^2, \\ | G*(\rho -1) | \leq \| {G} \|_{L^2}\| {\rho -1} \|_{L^2} \leq \frac{1}{18}\cdot \frac{ e+1}{ 2(e-1)} + \frac{9}{2}\| {\rho -1 }\|_{L^2}^2. \end{gather*} Similarly, we obtain the upper bound of $f$ as \begin{align*} f &\le \frac{10-8e}{18(e-1)} + \frac{ (18A^2+19)e -(18A^2+17) +(2 | 3-\sigma | + \sigma)(e+1)}{ 4(e-1)}\\ &\quad\times \| {(u_0 ,\rho _0 - 1)} \|_{H^1\times L^2}^2 : = - C_3. \end{align*} By assumption \eqref{e3.1}, we obtain $\frac{\lambda ^2}{2\sigma } - C_3 < 0$ and \begin{equation} \label{e3.6} {m}'(t) \le - \frac{\sigma }{2}\big( {m(t) + \frac{\lambda }{\sigma }} \big)^2 + \frac{\lambda ^2}{2\sigma } - C_3 \le \frac{\lambda ^2}{2\sigma } - C_3 < 0, \quad t \in [0,T). \end{equation} So $m(t)$ is strictly decreasing in $[0,T)$. If the solution $(u,\rho )$ of \eqref{e2.1} exists globally in time, that is, $T =\infty $, we will show that it leads to a contradiction. Let $t_1 = \frac{ 2\sigma (1 +| {u_{0x} (x_0 )} |)}{ 2\sigma C_3 - \lambda ^2}$. Integrating \eqref{e3.6} over $[0,t_1 ]$ gives \begin{equation} \label{e3.7} m(t_1 ) = m(0) + \int_0^{t_1 } {{m}'(t)dt} \le | {u_{0x} (x_0 )} | + (\frac{\lambda ^2}{2\sigma } - C_3 )t_1 = - 1. \end{equation} For $t \in [t_1 ,T)$, we have $m(t) \le m(t_1 )\le - 1$. From \eqref{e3.6}, we have \begin{equation} \label{e3.8} {m}'(t) \le - \frac{\sigma }{2}\big( {m(t) + \frac{\lambda }{\sigma }}\big)^2. \end{equation} Integrating over $[t_1 ,T)$, by \eqref{e3.7}, yields \begin{gather*} -\frac{1}{m(t) + \frac{\lambda }{\sigma }} + \frac{1}{\frac{\lambda }{\sigma } - 1} \le - \frac{1}{m(t) + \frac{\lambda }{\sigma }} + \frac{1}{m(t_1 ) + \frac{\lambda }{\sigma }} \le - \frac{\sigma }{2}(t - t_1 ), \quad t \in [t_1 ,T), \\ m(t) \le \frac{1}{\frac{\sigma }{2}(t - t_1 ) + \frac{\sigma }{\lambda - \sigma }} - \frac{\lambda }{\sigma } \to - \infty, \quad \text{as } t \to t_1 + \frac{2}{\sigma - \lambda }. \end{gather*} So, $T \le t_1 + \frac{2}{\sigma - \lambda}$, which is a contradiction to $T = \infty$. Consequently, the proofis complete. \end{proof} \begin{theorem} \label{thm3.2} Let $\sigma \ne 0$ and $(u,\rho )$ be the solution of \eqref{e2.1} with initial data $(u_0 ,\rho _0 - 1) \in H^s(S)\times H^{s - 1}(S)$, $s> 3/2$, and $T$ be the maximal time of the existence. (1) When $\sigma > 0$, assume that there is an $x_0 \in S$ such that $\rho _0 (x_0 ) = 0$, $u_{0x} (x_0 ) = \inf _{x \in S} u_{0x} (x)$ and $u_{0x} (x_0 ) < - \sqrt {\frac{\lambda ^2}{\sigma ^2} + \frac{C_1^2 }{\sigma }} - \frac{\lambda }{\sigma }$, where $C_1 $ is defined in \eqref{e2.8}. Then the corresponding solution to system \eqref{e2.1} blows up in finite time in the following sense: there exists a $T_1 $ such that \[ 0 < T_1 \le - \frac{2(\lambda + \sigma u_{0x} (x_0))} {(\lambda + \sigma u_{0x} (x_0 ))^2 - (\lambda ^2 + \sigma C_1^2 )}, \] and \[ \liminf_{t \to T_1^ - } \{\inf _{x \in S} u_x (t,x)\} = - \infty. \] (2) When $\sigma < 0$, assume that there is some $x_0 \in S$ such that $u_{0x} (x_0 ) > \sqrt {\frac{\lambda^2}{\sigma ^2} - \frac{ C_2^2}{\sigma }} - \frac{\lambda}{\sigma }$, where $C_2 $ is defined in \eqref{e2.9}. Then the corresponding solution to system \eqref{e2.1} blows up in finite time in the following sense: there exists a $T_2 $ such that \[ 0 < T_2 \le - \frac{2(\lambda + \sigma u_{0x} (x_0 ))}{(\lambda + \sigma u_{0x} (x_0 ))^2 - (\lambda ^2 - \sigma C_2^2 )}, \] and \[ \liminf_{t \to T_2^ - } \{\sup _{x \in S} u_x (t,x)\} = \infty. \] \end{theorem} \begin{proof} (1) When $\sigma > 0$, using the upper bound of $f$ in \eqref{e2.17} and \eqref{e3.4}, we have \[ {m}'(t) \le - \frac{\sigma }{2}\Big(m(t) + \frac{\lambda }{\sigma }\Big)^2 + \frac{\lambda ^2}{2\sigma } + \frac{1}{2}C_1^2 , \quad t \in [0,T). \] By the assumption $m(0) = u_{0x} (x_0 ) < - \sqrt {\frac{\lambda ^2}{\sigma ^2} + \frac{C_1^2 }{\sigma }} - \frac{\lambda }{\sigma }$, we have that ${m}'(0) < 0$ and $m(t)$ is strictly decreasing over $[0,T)$. Set $$ \delta = \frac{1}{2} - \frac{1}{\sigma (u_{0x} (x_0 ) + \frac{\lambda }{\sigma })^2}\Big(\frac{\lambda ^2}{2\sigma } + \frac{1}{2}C_1^2 \Big) \in (0,\frac{1}{2}). $$ Since $m(t) < m(0) = u_{0x} (x_0 ) < - \frac{\lambda }{\sigma }$, it holds \[ {m}'(t) \le - \frac{\sigma }{2}\Big( {m(t) + \frac{\lambda }{\sigma }} \Big)^2 + \frac{\lambda ^2}{2\sigma } + \frac{1}{2}C_1^2 \le - \delta \sigma \Big(m(t) + \frac{\lambda }{\sigma }\Big)^2. \] By a similar argument as in the proof of Theorem \ref{thm3.1}, we obtain \[ m(t) \le \frac{\lambda + \sigma u_{0x} (x_0 )}{\sigma + (\delta \sigma ^2u_{0x} (x_0 ) + \lambda \delta \sigma )t} - \frac{\lambda }{\sigma } \to - \infty \quad\text{as }t \to - \frac{1}{\lambda \delta + \delta \sigma u_{0x} (x_0 )}. \] Thus, we have $0 < T_1 \le -\frac{1}{\lambda \delta + \delta \sigma u_{0x} (x_0)}$. (2) when $\sigma < 0$, we consider the functions $\bar {m}(t)$ and $\eta (t)$ as defined in \eqref{e2.11} and take the trajectory $q(t,x_1 )$ with $x_1 $ defined in \eqref{e2.13}, then \begin{equation} \label{e3.9} \begin{aligned} {\bar {m}}'(t) &= - \frac{\sigma }{2}\bar {m}^2(t) - \lambda \bar {m}(t) + \frac{1}{2}\rho ^2(t,\eta (t)) + f(t,q(t,x_1 ))\\ & \ge - \frac{\sigma }{2}\Big(\bar {m}(t) + \frac{\lambda }{\sigma }\Big)^2 + \frac{\lambda ^2}{2\sigma } + f(t,q(t,x_1 )). \end{aligned} \end{equation} From the lower bound of $f$ in \eqref{e2.24}, we obtain $$ {\bar {m}}'(t) \ge - \frac{\sigma }{2}\Big(\bar {m}(t) + \frac{\lambda }{\sigma }\Big)^2 + \frac{\lambda ^2}{2\sigma } - \frac{1}{2}C_2^2, \quad t \in [0,T). $$ By the assumption $\bar {m}(0) \ge u_{0x} (x_0 ) > \sqrt {\frac{\lambda ^2}{\sigma ^2} - \frac{C_2^2 }{\sigma }} - \frac{\lambda }{\sigma }$, we have that $\bar {m}'(0) > 0$ and $\bar {m}(t)$ is strictly increasing over $[0,T)$. Set $$ \theta = \frac{(\sigma u_{0x} (x_0 ) + \lambda )^2 - (\lambda ^2 - \sigma C_2^2 )}{2(\sigma u_{0x} (x_0 ) + \lambda )^2} \in (0,\frac{1}{2}). $$ Since $\bar {m}(t) > \bar {m}(0) \ge u_{0x} (x_0 ) > - \frac{\lambda }{\sigma }$, we obtain \[ {\bar {m}}'(t) \ge - \frac{\sigma }{2}\Big(\bar {m}(t) + \frac{\lambda }{\sigma }\Big)^2 + \frac{\lambda ^2}{2\sigma } - \frac{1}{2}C_2^2 \ge - \theta \sigma \Big(\bar {m}(t) + \frac{\lambda }{\sigma }\Big)^2. \] Similarly, we obtain \[ \bar {m}(t) \ge \frac{\lambda + \sigma u_{0x} (x_0 )}{\sigma + (\theta \sigma ^2u_{0x} (x_0 ) + \lambda \theta \sigma )t} - \frac{\lambda }{\sigma } \to \infty \quad \text{as } t \to - \frac{1}{\lambda \theta + \theta \sigma u_{0x} (x_0 )}. \] Therefore, $0 < T_2 \le - \frac{1}{\lambda \theta + \theta \sigma u_{0x} (x_0 )}$. The proof is complete. \end{proof} \noindent\textbf{Remark.} If $\sigma = 3$ and $A = 0$, then all solutions of system \eqref{e2.1} with initial data $(u_0 ,\rho _0 - 1) \in H^s(S)\times H^{s - 1}(S)$ with $s > 3/2$ satisfying $u_0 \ne 0$ and $\rho _0 (x_0 ) = 0$ for some $x_0 \in S$, blow up in finite time. \section{Blow-up rate} \begin{theorem} \label{thm4.1} Let $\sigma \ne 0$. If $T < \infty $ is the blow-up time of the solution $(u,\rho )$ to \eqref{e2.1} with initial data $(u_0 ,\rho _0 - 1) \in H^s(S)\times H^{s - 1}(S)$, $s > 3/2$ satisfying the assumptions of Theorem \ref{thm3.2}. Then \begin{gather} \label{e4.1} \mathop {\lim}_{t \to T^-}\{\inf _{x \in S}u_x(t,x)(T-t)\} = -\frac{2}{\sigma}, \quad \sigma > 0,\\ \label{e4.2} \lim_{t \to T^-}\{\mathop{\sup}_{x \in S}u_x(t,x)(T-t)\} = -\frac{2}{\sigma}, \quad \sigma < 0. \end{gather} \end{theorem} \begin{proof} We assume that $s=3$ to prove the theorem. (1) when $\sigma > 0$, from \eqref{e3.5} we have \begin{equation} \label{e4.3} m'(t) = - \frac{\sigma }{2}\Big(m(t) + \frac{\lambda }{\sigma }\Big)^2 + \frac{\lambda ^2}{2\sigma } + f(t,q(t,x)). \end{equation} From \eqref{e2.19}, note that \begin{equation} \label{e4.4} M = \frac{5(e+1)}{4(e-1)}+(\frac{A^2}{4} +\frac{2e+(e+1)(| \sigma | +2 | 3-\sigma|)}{4(e-1)}) \| {(u_0 ,\rho _0 - 1)} \|_{H^1\times L^2}^2, \end{equation} Then \begin{equation} \label{e4.5} - \frac{\sigma }{2}( {m(t) + \frac{\lambda }{\sigma }} )^2 - \frac{\lambda ^2}{2\sigma } - M \le {m}'(t) \le - \frac{\sigma }{2}( {m(t) + \frac{\lambda }{\sigma }} )^2 + \frac{\lambda ^2}{2\sigma } + M. \end{equation} Choose $\varepsilon \in (0,\frac{\sigma }{2})$, since $\lim _{t \to T^-}\big(m(t)+\frac{\lambda}{\sigma}\big) = -\infty$, there is some $t_0 \in (0,T)$, such that $m(t_0)+\frac{\lambda}{\sigma} < 0$ and $\big(m(t_0)+\frac{\lambda}{\sigma}\big)^2 > \frac{1}{\varepsilon}\big(\frac{\lambda^2}{2\sigma}+M\big)$. Since $m$ is locally Lipschitz, it follows that $m$ is absolutely continuous. We deduce that $m$ is decreasing on $[t_0,T)$ and \begin{equation} \label{e4.6} \Big(m(t)+\frac{\lambda}{\sigma}\Big)^2 > \frac{1}{\varepsilon}\Big(\frac{\lambda^2}{2\sigma}+M\Big), \quad t \in [t_0,T). \end{equation} Combining \eqref{e4.5} with \eqref{e4.6}, we have \begin{equation} \label{e4.7} \frac{\sigma}{2} - \varepsilon \leq \frac{d}{dt}\Big(\frac{1}{m(t)+\frac{\lambda}{\sigma}}\Big) \leq \frac{\sigma}{2} + \varepsilon, \quad t \in [t_0,T). \end{equation} Integrating over $(t,T)$ with $t \in [t_0,T)$ and noticing that $\lim _{t \to T^-}\big(m(t)+\frac{\lambda}{\sigma}\big) = -\infty$, we obtain \[ (\frac{\sigma}{2} - \varepsilon)(T - t) \leq -\frac{1}{m(t)+\frac{\lambda}{\sigma}} \leq (\frac{\sigma}{2} + \varepsilon)(T - t). \] Since $\varepsilon \in (0,\frac{\sigma}{2})$ is arbitrary, in view of the definition of $m(t)$, we have \[ \lim _{t \to T^-}\{m(t)(T-t)+\frac{\lambda}{\sigma}(T-t)\} = -\frac{2}{\sigma}; \] that is, $\lim _{t \to T^-}\{\mathop{inf}_{x \in S}u_x(t,x)(T-t)\} = -\frac{2}{\sigma}$. (2) When $\sigma < 0$, we consider the functions $\bar{m}(t)$ and $\eta(t)$ as defined in \eqref{e2.11}. From \eqref{e3.9} and \eqref{e4.4}, we have $\bar{m}' (t) \geq -\frac{\sigma}{2}\Big(\bar {m}(t)+\frac{\lambda}{\sigma}\Big)^2 + \frac{\lambda^2}{2\sigma}-M$. Because $\bar{m} (t) \to \infty$ as $t \to T^-$, there is a $t_1 \in (0,T)$, such that $\bar{m}(t_1) > \sqrt{\frac{\lambda^2}{\sigma^2}-\frac{2M}{\sigma}}-\frac{\lambda}{\sigma} > 0$. Thus, we have that $\bar{m}' (t) > 0$ and $\bar{m}(t)$ is strictly increasing on $[t_1,T)$, and \begin{equation} \label{e4.8} \bar{m}(t) > \bar{m}(t_1) > 0. \end{equation} By the transport equation for $\rho$, we have \begin{equation*} \frac{d\rho (t,\eta (t))}{dt} = - \bar{m}(t)\rho (t,\eta (t)). \end{equation*} Then \begin{equation} \label{e4.9} \rho (t,\eta (t)) = \rho (t_1 ,\eta (t_1 )) e^{ - \int_{t_1}^t \bar{m}(\tau)d\tau}, \quad t \in [t_1 ,T). \end{equation} Combining \eqref{e4.8} with \eqref{e4.9} yields \begin{equation} \label{e4.10} \rho ^2(t,\eta (t)) \le \rho ^2(t_1 ,\eta (t_1 )), \quad t \in [t_1 ,T) \end{equation} From \eqref{e3.9} and \eqref{e4.10}, we have \begin{equation} \label{e4.11} \begin{aligned} & - \frac{\sigma }{2}\Big(\bar m + \frac{\lambda }{\sigma }\Big)^2 + \frac{\lambda ^2}{2\sigma } - \frac{1}{2}\rho ^2(t_1 ,\eta (t_1 )) - M \\ & \le \bar m ' \le - \frac{\sigma }{2}\Big(\bar m + \frac{\lambda }{\sigma }\Big)^2 - \frac{\lambda ^2}{2\sigma } + \frac{1}{2}\rho ^2(t_1 ,\eta (t_1 )) + M. \end{aligned} \end{equation} Choose $\varepsilon \in (0, - \frac{\sigma}{2})$, and pick a $t_2 \in [t_1 ,T)$, such that \begin{equation} \label{e4.12} \Big(\bar m (t_2 ) + \frac{\lambda }{\sigma }\Big)^2 > \frac{1}{\varepsilon }\Big(\frac{1}{2}\rho ^2(t_1 ,\eta (t_1 )) + M - \frac{\lambda ^2}{2\sigma }\Big). \end{equation} From \eqref{e4.11} and \eqref{e4.12}, we have \begin{equation} \label{e4.13} \frac{\sigma }{2} - \varepsilon \le \frac{d}{dt}\Big(\frac{1}{\bar m (t) + \frac{\lambda }{\sigma }}\Big) \le \frac{\sigma }{2} + \varepsilon, \quad t \in [t_2 ,T). \end{equation} Integrating \eqref{e4.13} over $[t,T)$ with $t \in [t_2 ,T)$ and $\lim_{t \to T^-}\bar{m}(t) = \infty$ gives \[ (\frac{\sigma }{2} - \varepsilon )(T - t) \le - \frac{1}{\bar m (t) + \frac{\lambda }{\sigma }} \le (\frac{\sigma }{2} + \varepsilon )(T- t). \] Since $\varepsilon \in (0, - \frac{\sigma }{2})$ is arbitrary, in view of the definition of $\bar m (t)$, we have \[ \lim_{t \to T^-}\{\sup_{x \in S}u_x(t,x)(T-t)\} =-\frac{2}{\sigma}. \] This completes the proof of Theorem \ref{thm4.1}. \end{proof} \section{Existence of a global solution} In this section, we provide a sufficient condition for the global solution of system \eqref{e2.1} in the case when $0<\sigma<2$. \begin{lemma} \label{lem5.1} Let $0<\sigma<2$ and $(u,\rho )$ be the solution of \eqref{e2.1} with initial data $(u_0 ,\rho _0 - 1) \in H^s(S)\times H^{s - 1}(S)$, $s> 3/2$, and $T$ be the maximal time of existence. Assume that $\inf_{x \in S}\rho_0(x)>0$. (1) When $0<\sigma\leq1$, it holds \begin{gather*} | \inf _{x \in S}u_x(t,x) | \leq \frac{ 1}{ \inf _{x \in S}\rho_0(x)}C_4e^{C_3t}, \\ | \sup _{x \in S}u_x(t,x) | \leq \frac{ 1}{ \inf _{x \in S}\rho_0^{\frac{\sigma}{2-\sigma}}(x)} C_4^{\frac{1}{2-\sigma}}e^{\frac{C_3t}{2-\sigma}}. \end{gather*} (2) When $1<\sigma<2$, it holds \begin{gather*} | \inf _{x \in S}u_x(t,x) | \leq \frac{ 1}{ \inf _{x \in S}\rho_0^{\frac{\sigma}{2-\sigma}}(x)} C_4^{\frac{1}{2-\sigma}}e^{\frac{C_3t}{2-\sigma}}, \\ | \sup _{x \in S}u_x(t,x) | \leq \frac{ 1}{ \inf _{x \in S}\rho_0(x)} C_4e^{C_3t}, \end{gather*} where constants $C_3$ and $C_4$ are defined as follows: \begin{gather*} C_3 = 1+ \frac{5(e+1)}{4(e-1)}+(\frac{A^2}{4}+\frac{2e+(e+1)(| \sigma | +2 | 3-\sigma|)}{4(e-1)}) \| {(u_0 ,\rho _0 - 1)} \|_{H^1\times L^2}^2, \\ C_4 = 1+ \| {u_{0x}} \|_{L^\infty}^2+\| {\rho _0} \|_{L^\infty}^2. \end{gather*} \end{lemma} \begin{proof} A density argument indicates that it suffices to prove the desired results for $ s \geq 3 $. Since $s \ge 3$, we have $u \in C_0^1 (S)$ and \begin{equation*} \inf _{x \in S} u_x (t,x) < 0 , \quad \sup _{x \in S} u_x (t,x) > 0, \quad t \in [0,T). \end{equation*} (1) First we will derive the estimate for $| \inf _{x \in S}u_x(t,x) |$. Define $m(t)$ and $\xi(t)$ as in \eqref{e2.25}, and consider along the characteristics $q(t,x_2(t))$. Then \begin{equation} \label{e5.1} m(t) \leq 0 \quad \text{for } t \in [0,T). \end{equation} Let $\zeta(t)=\rho(t,\xi(t))$ and evaluating \eqref{e2.10} and the second equation of system \eqref{e2.1} at $(t,\xi(t))$, we have \begin{equation} \label{e5.2} \begin{gathered} {m}'(t) = - \frac{\sigma }{2}m^2(t) - \lambda m(t) + \frac{1}{2}\zeta ^2(t) + f(t,q(t,x_2 )) \\ {\zeta }'(t) = - \zeta (t)m(t), \\ \end{gathered} \end{equation} where $f$ is defined in \eqref{e2.16}. The second equation above implies that $\zeta(t)$ and $\zeta(0)$ are of the same sign. Next we construct a Lyapunov function for our system as in \cite{c10}. Since here we have a free parameter $\sigma$, we could not find a uniform Lyapunov function. Instead, we split the case $0 < \sigma \leq 1$ and the case $1 < \sigma < 2$. From the assumption of the theorem, we know that $\zeta(0)=\rho(0,\xi(0))>0$. When $0 < \sigma \leq 1$, we define the Lyapunov function \[ \omega_1(t)=\zeta(0)\zeta(t)+\frac{ \zeta(0)}{ \zeta(t)}(1+m^2(t)), \] which is always positive for $t \in [0,T)$. Differentiating $\omega_1(t)$ and using \eqref{e5.2} gives \begin{equation} \label{e5.3} \begin{aligned} \omega'_1(t) &=\zeta(0)\zeta'(t)-\frac{ \zeta(0)}{ \zeta^2(t)}(1+m^2(t)) \zeta'(t)+\frac{ 2\zeta(0)}{ \zeta(t)}m(t)m'(t) \\ &=-\zeta(0)\zeta(t)m(t)-\frac{ \zeta(0)}{ \zeta^2(t)}(1+m^2(t))(-\zeta(t)m(t))\\ &\quad +\frac{ 2\zeta(0)}{ \zeta(t)}m(t)(-\frac{\sigma}{2}m^2(t)-\lambda m(t) +\frac{1}{2}\zeta^2(t)+f) \\ &=(1-\sigma)\frac{ \zeta(0)}{ \zeta(t)}m^3(t) +\frac{ \zeta(0)}{ \zeta(t)}m(t) -\frac{ 2\lambda\zeta(0)}{ \zeta(t)}m^2(t) +\frac{ 2\zeta(0)}{ \zeta(t)}m(t)f \\ &\leq \frac{ \zeta(0)}{ \zeta(t)}m(t) +\frac{ 2\zeta(0)}{ \zeta(t)}m(t)f\\ &\leq \frac{ \zeta(0)}{ \zeta(t)}(1+m^2(t)) (1+| f |)\leq C_3\omega_1(t), \end{aligned} \end{equation} where \[ C_3 = 1+ \frac{5(e+1)}{4(e-1)} +(\frac{ A^2}{4}+\frac{2e+(e+1)(| \sigma | +2 | 3-\sigma|)}{ 4(e-1)}) \| {(u_0 ,\rho _0 - 1)} \|_{H^1\times L^2}^2. \] This gives \begin{equation} \label{e5.4} \begin{aligned} \omega_1(t) &\leq \omega_1(0)e^{C_3t}=(\zeta^2(0)+1+m^2(0))e^{C_3t}\\ &\leq (1+\| {u_{0x}} \|_{L^\infty}^2+\| {\rho_{0}} \|_{L^\infty}^2)e^{C_3t} =: C_4e^{C_3t}, \end{aligned} \end{equation} where $C_4=1+\| {u_{0x}} \|_{L^\infty}^2+\| {\rho_{0}} \|_{L^\infty}^2$. Recalling that $\zeta(t)$ and $\zeta(0)$ are of the same sign, the definition of $\omega_1(t)$ implies $\zeta(t)\zeta(0)\leq \omega_1(t)$ and $| \zeta(0)| | m(t) |\leq \omega_1(t)$. By \eqref{e5.4}, we obtain \[ | \inf _{x \in S}u_x(t,x) | = | m(t) | \leq \frac{ \omega_1(t)}{{| \zeta(0)|}} \leq\frac{ 1}{ \inf _{x \in S}\rho_0(x)} C_4e^{C_3t}, \quad \text{for } t\in [0,T). \] When $1<\sigma<2$, we define the Lyapunov function \begin{equation} \label{e5.5} \omega_2(t)=\zeta^\sigma(0)\frac{ \zeta^2(t)+1+m^2(t)}{ \zeta^\sigma(t)}. \end{equation} Then \begin{equation} \label{e5.6} \begin{aligned} \omega'_2(t)&=\frac{ 2\zeta^\sigma(0)}{ \zeta^\sigma(t)}m(t) (\frac{ \sigma-1}{ 2}\zeta^2(t)-\lambda m(t)+f+\frac{ \sigma}{ 2}) \\ &\leq \frac{ \zeta^\sigma(0)}{ \zeta^\sigma(t)} (1+m^2(t))(| f | +\frac{\sigma}{2}) \leq \frac{ \zeta^\sigma(0)}{ \zeta^\sigma(t)} (1+m^2(t))(| f | +1) \leq C_3\omega_2(t). \end{aligned} \end{equation} Thus, we obtain \begin{align*} \omega_2(t)&\leq\omega_2(0)e^{C_3t}=(\zeta^2(0)+1+m^2(0))e^{C_3t}\\ &\leq (1+\| {u_{0x}} \|_{L^\infty}^2+\| {\rho_{0}} \|_{L^\infty}^2)e^{C_3t} = C_4e^{C_3t}. \end{align*} Applying Young's inequality $ab\leq \frac{ a^p}{ p}+\frac{ b^q}{ q}$ to \eqref{e5.5} with $p=\frac{2}{\sigma}$ and $q=\frac{2}{2-\sigma}$ yields \begin{align*} \frac{\omega_2(t)}{\zeta^\sigma(0)} &=\Big(\zeta^{\frac{\sigma(2-\sigma)}{2}}\Big)^{\frac{2}{\sigma}} +\Big(\frac{(1+m^2)^{\frac{2-\sigma}{2}}}{\zeta^{\frac{\sigma(2-\sigma)}{2}}}\Big)^ {\frac{2}{2-\sigma}}\\ &\geq \frac{\sigma}{2}\Big(\zeta^{\frac{\sigma(2-\sigma)}{2}}\Big)^{\frac{2}{\sigma}} +\frac{2-\sigma}{2} \Big(\frac{(1+m^2)^{\frac{2-\sigma}{2}}}{\zeta^{\frac{\sigma(2-\sigma)}{2}}}\Big) ^{\frac{2}{2-\sigma}} \\ &\geq (1+m^2)^{\frac{2-\sigma}{2}} \geq {| m(t) |}^{2-\sigma}. \end{align*} So we have \[ | \inf _{x \in S}u_x(t,x) | \leq \Big(\frac{\omega_2(t)}{\zeta^\sigma(0)}\Big)^{\frac{1}{2-\sigma}} \leq \frac{ 1}{ \inf _{x \in S}\rho_0^{\frac{\sigma}{2-\sigma}}(x)} C_4^{\frac{1}{2-\sigma}}e^{\frac{ C_3t}{2-\sigma}}. \] (2) Now, we estimate $| \sup _{x \in S}u_x(t,x) |$. Consider $\bar m(t),\eta(t),q(t,x_1)$ as in \eqref{e2.11} and \eqref{e2.13}, and \begin{equation} \label{e5.7} \begin{gathered} {\bar m}'(t) = - \frac{\sigma }{2}\bar m^2(t) - \lambda \bar m(t) + \frac{1}{2}\bar\zeta ^2(t) + f(t,q(t,x_1 )) \\ {\bar\zeta }'(t) = - \bar\zeta (t)\bar m(t) \end{gathered} \end{equation} for $t\in [0,T)$, where $\bar\zeta(t)=\rho(t,\eta(t))$. We know that \begin{equation} \label{e5.8} \bar m(t)\geq 0 \quad \text{for } t\in [0,T). \end{equation} When $0<\sigma\leq 1$, we define the Lyapunov function \begin{equation} \label{e5.9} \bar\omega_1(t)=\bar\zeta^\sigma(0)\frac{ \bar\zeta^2(t)+1 +\bar m^2(t)}{ \bar\zeta^\sigma(t)}. \end{equation} Then from \eqref{e5.6} and \eqref{e5.8}, we have $\bar\omega'_1(t) \leq C_3\bar\omega_1(t)$, then $\bar\omega_1(t) \leq C_4e^{C_3t}$. Hence, by a similar argument as before, we obtain \[ \frac{\bar\omega_1(t)}{\bar\zeta^\sigma(0)}\geq {| \bar m(t) |}^{2-\sigma} . \] Then \[ | \sup _{x \in S}u_x(t,x) | \leq (\frac{\bar\omega_1(t)}{\bar\zeta^\sigma(0)})^{\frac{ 1}{ 2-\sigma}} \leq\frac{ 1}{ \inf _{x \in S}\rho_0^{\frac{\sigma}{2-\sigma}}(x)} C_4^{\frac{1}{2-\sigma}}e^{\frac{C_3t}{2-\sigma}}, \quad t \in [0,T). \] When $1<\sigma<2$, consider the Lyapunov function \begin{equation} \label{e5.10} \bar\omega_2(t)=\bar\zeta(0)\bar\zeta(t) +\frac{ \bar\zeta(0)}{ \bar\zeta(t)}(1+\bar m^2(t)). \end{equation} From \eqref{e5.3} and \eqref{e5.8}, we have $\bar\omega'_2(t) \leq C_3\bar\omega_2(t)$ and $\bar\omega_2(t) \leq C_4e^{C_3t}$. Therefore, \[ | \sup _{x \in S}u_x(t,x) | =| \bar m(t) | \leq \frac{\bar\omega_2(t)}{ \bar\zeta(0)} \leq \frac{ 1}{ \inf _{x \in S}\rho_0(x)} C_4e^{C_3t}, \quad t \in [0,T). \] The proof is complete. \end{proof} \begin{theorem} \label{thm5.1} Let $0<\sigma <2$ and $(u,\rho )$ be the solution of \eqref{e2.1} with initial data $(u_0 ,\rho _0 - 1) \in H^s(S)\times H^{s - 1}(S)$, $s> 3/2$, and $T$ be the maximal time of existence. If $\inf _{x \in S}\rho_0(x)>0$, then $T=+\infty$ and the solution $(u,\rho )$ is global. \end{theorem} \begin{proof} Assume on the contrary that $T<+\infty$ and the solution blows up in finite time. It then follows from Theorem \ref{thm2.2}, that \begin{equation} \label{e5.11} \int_0^T{\|u_x(t)\|_{L^\infty} dt} = \infty. \end{equation} However, from the assumptions of the theorem and Lemma \ref{lem5.1}, we have $| u_x(t,x) | < \infty$ for all $(t,x)\in [0,T)\times S$. This is a contradiction to \eqref{e5.11}. So $T=+\infty$, and it means that the solution $(u,\rho)$ is global. \end{proof} \subsection*{Acknowledgements} We like to thank the anonymous referees for their valuable comments and suggestions. This work was supported by the National Natural Science Foundation of China [11101190, 11171135, 11201186], and Natural Science Foundation of Jiangsu Province [BK2012282], China Postdoctoral Science Foundation funded project (Nos: 2012M511199, 2013T60499) and Jiangsu University foundation grant [11JDG117]. \begin{thebibliography}{00} \bibitem{a1} H. Aratyn, J. F. Gomes, A. H. Zimerman; \emph{On a negative flow of the AKNS hierarchy and its relation to a two-component Camassa-Holm equation}, Symmetry Integr. Geom. 2,70 (2006), 12. \bibitem{b1} A. Bressan, A. Constantin; \emph{Global conservative solutions of the Camassa-Holm equation}, Arch. Ration. Mech. Anal. 183 (2007), 215--239. \bibitem{b2} A. Bressan, A. Constantin; \emph{Global dissipative solutions of the Camassa--Holm equation}, Anal. Appl. 5 (2007), 1--27. \bibitem{c1} R. Camassa, D. Holm; \emph{An integrable shallow water equation with peaked solitons}, Phys. Rev. Lett. 71 (1993), 1661-1664. \bibitem{c2} R. M. Chen, Y. Liu; \emph{Wave breaking and global existence for a Generalized two-component Camassa-Holm system}, Int. Math. Res. Notices 6 (2011), 1381-1416. \bibitem{c3} M. Chen, S. Liu, Y. Zhang; \emph{A 2-component generalization of the Camassa-Holm equation and its solutions}. Lett. Math. Phys. 75 (2006), 1-15. \bibitem{c4} W. Chen, L. Tian, X. Deng, J. Zhang; \emph{Wave-breaking for a generalized weakly dissipative two-component Camassa-Holm system}, J. Math. Anal. Appl. 400 (2013), 406-417. \bibitem{c5} A. Constantin, D. Lannes; \emph{The hydrodynamical relevance of the Camassa--Holm and Degasperis-Procesi equations}, Arch. Rantion. Mech. Anal. 192 (2009), 165--186. \bibitem{c6} A. Constantin; \emph{The trajectories of particles in Stokes waves}, Invent. Math. 166 (2006), 523--535. \bibitem{c7} A. Constantin, J. Escher; \emph{Particle trajectories in solitary water waves}, Bull. Amer. Math. Soc. 44 (2007), 423--431. \bibitem{c8} A. Constantin, J. Escher; \emph{Wave breaking for nonlinear nonlocal shallow water equations}, Acta. Math. 181(1998), 229--243. \bibitem{c9} A. Constantin, R. Ivanov; \emph{On the integrable two-component Camassa-Holm shallow water system}, Phys. Lett. A 372 (2008), 7129-7132. \bibitem{c10} A. Constantin, R. S. Johnson; \emph{Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis}, Fluid Dyn. Res. 40 (2008), 175-211. \bibitem{e1} J. Escher, O. Lechtenfeld, Z. Yin; \emph{Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation}, Discrete Cont. Dyn.-A 19 (2007), 493-513. \bibitem{f1} Y. Fu, Y. Liu, C. Qu; \emph{On the blow-up structure for the generalized periodic Camassa-Holm and Degasperis-Procesi equations}, J. Funct. Anal, 267 (2012), 3125-3158. \bibitem{g1} C. Guan, Z. Yin; \emph{Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system}, J. Differ. Equations 248 (2010), 2003-2014. \bibitem{g2} C. Guan, Z. Yin; \emph{Global weak solutions for two-component Camassa-Holm shallow water system}, J. Funct. Anal. 260 (2011), 1132-1154. \bibitem{g3} G. Gui, Y. Liu, P. Olver, C. Qu; \emph{Wave-breaking and peakons for a modified Camassa-Holm equation}, Commun. Math. Phys. 319 (2013), 731-759. \bibitem{g4} G. Gui, Y. Liu; \emph{On the global existence and wave-breaking criteria for the two-component Camassa-Holm system}, J. Funct. Anal. 258 (2010), 4251-4278. \bibitem{g5} G. Gui, Y. Liu; \emph{On the Cauchy problem for the two-component Camassa-Holm system}, Math. Z. 268 (2011), 45-66. \bibitem{h1} D. J. Henry; \emph{Infinite propagation speed for a two-component Camassa-Holm equation}, Discrete Cont. Dyn-B 12 (2009), 597-606. \bibitem{h2} D. Holm, R.Ivanov; \emph{Two-component CH system: Inverse Scattering, Peakons and Geometry}, Inverse Probl. 27 (2011), 045013. \bibitem{i1} R. Ivanov; \emph{Two-component integrables systems modeling shallow water waves: the constant vorticity case}, Wave Motion 46(2009), 389-396. \bibitem{k1} T. Kato; \emph{Quasi-linear equations of evolution,with applications to partial differential equations}, Spect. Theor. Differ. Equations 448 (1975), 25-70. \bibitem{l1} Y. Liu, P. Zhang; \emph{Stability of solitary waves and wave-breaking phenomena for the two-component Camassa-Holm system}, Int. Math. Res. Notices 11 (2010), 1981-2021. \bibitem{p1} Z. Popowwicz, A 2-component or N=2 supersymmetric Camassa-Holm equation, Phys. Lett. A 354 (2006), 110-114. \bibitem{s1} A. Shabat, L. Martinez Alonso; \emph{On the prolongation of a Hierarchy of Hydrofynamic Chains}, New trends in integrability and partial solvability, Springer Netherlands, (2004) 263-280. \bibitem{t1} W. Tan, Z. Yin; \emph{Global conservative solutions of a modified two-component Camassa-Holm shallow water system}, J. Differ. Equations 251 (2011), 3558-3582. \bibitem{t2} L. Tian, P. Zhang, L. Xia; \emph{Global existence for the higher-order Camassa-Holm shallow water equation}, Nonlinear. Anal-Theor. 74 (2011), 2468-2474. \bibitem{w1} S. Wu, J. Escher, Z. Yin; \emph{Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation}, Discrete Cont. Dyn-B 12 (2009), 633-645. \bibitem{w2} S. Wu, Z. Yin; \emph{Blow-up, blow-up rate and decay of the weakly dissipative Camassa-Holm equation}, J. Math. Phys. 47 (2006), 1-12. \bibitem{y1} Z. Yin; \emph{On the blow-up of solutions of the periodic Camassa-Holm equation}, Dyn. Cont. Discrete Impuls. Syst. Ser. A Math. Anal. 12 (2005), 375-381. \bibitem{z1} J. Zhou, L. Tian; \emph{Blow-up of solution of an initial boundary value problem for a generalized Camassa--Holm equation}, Phys. Lett. A 372 (2008), 3659-3666. \end{thebibliography} \end{document}