\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{mathrsfs} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 13, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/13\hfil Bifurcation from infinity] {Bifurcation from infinity and nodal solutions of quasilinear elliptic differential equations} \author[B.-X. Yang \hfil EJDE-2014/13\hfilneg] {Bian-Xia Yang} % in alphabetical order \address{Bian-Xia Yang \newline School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China} \email{yanglina7765309@163.com} \thanks{Submitted November 29, 2013. Published January 8, 2014.} \subjclass[2000]{35P30,35B32} \keywords{$p$-Laplacian; bifurcation; nodal solutions} \begin{abstract} In this article, we establish a unilateral global bifurcation theorem from infinity for a class of $N$-dimensional p-Laplacian problems. As an application, we study the global behavior of the components of nodal solutions of the problem \begin{gather*} \operatorname{div}(\varphi_p(\nabla u))+\lambda a(x)f(u)=0,\quad x\in B,\\ u=0,\quad x\in\partial B, \end{gather*} where $1
0$ for $s\in \mathbb{R}\setminus\{s_2, 0,s_1\}$. Moreover, we give intervals for the parameter $\lambda$, where the problem has multiple nodal solutions if $\lim_{s\to 0}f(s)/\varphi_p(s)=f_0>0$ and $\lim_{s\to \infty}f(s)/\varphi_p(s)=f_\infty>0$. We use topological methods and nonlinear analysis techniques to prove our main results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In natural sciences, there are various concrete problems involving bifurcation phenomena, for example, Taylor vortices \cite{MSB}, catastrophic shifts in ecosystems \cite{MS} and shimmy oscillations of an aircraft nose landing gear \cite{PBM}. The existence of bifurcation phenomena have called the attention of several mathematicians. Dai et al \cite{DaiML} established a unilateral global bifurcation theorem from infinity for one-dimensional p-Laplacian problem, and studied the global behavior of the components of nodal solutions of nonlinear one-dimensional p-Laplacian eigenvalue problem. Dai and Ma \cite{Dai} established a result from trivial solutions line about the continua of radial solutions for the $N$-dimensional p-Laplacian problem on the unit ball of $\mathbb{R}^N$ with $N\geq 1$ and $1
0$ for
$s\in \mathbb{R}\setminus\{s_2, 0,s_1\}$.
\end{itemize}
We look for radial nodal solution of \eqref{e1.3}, namely for $u=u(r)$ verifying
\begin{equation}\label{e1.4}
\begin{gathered}
\big(r^{N-1}\varphi_p(u')\big)'+\lambda r^{N-1} a(r)f(u)=0,\quad
\text{a.e. } r\in I,\\
u'(0)=u(1)=0,
\end{gathered}
\end{equation}
where $r=|x|$ with $x\in B$.
The rest of this article is arranged as follows.
In Section 2, we establish the unilateral global bifurcation results
from infinity of \eqref{e1.1}.
In Section 3, we study the global behavior of the components of
nodal solutions of problem \eqref{e1.3}.
\section{Unilateral global bifurcation from infinity}
Let $E:=\{u\in C^1(\bar{I})|u'(0)=u(1)=0\}$ with the norm
$\|u\|= \max_{r\in\bar{I}} |u(r)| +\max_{r\in\bar{I}}|u'(r)|$.
Let $S_k^+$ denote the set of functions in $E$ which have
exactly $k-1$ interior nodal zeros in $I$ and are positive near
$r=0$, and set $S_k^-=-S_k^+$ and $S^k=S_k^+\cup S_k^-$. It is clear
that $S_k^+$ and $S_k^-$ are disjoint and open in $E$. We also let
$\phi_k^\nu=\mathbb{R}\times S_k^\nu$ and $\phi_k=\mathbb{R} \times
S_k$
under the product topology, where $\nu\in\{+, -\}$. We
use $\mathscr{S}$ to denote the closure of the set of nontrivial
solutions of \eqref{e1.6} in $\mathbb{R}\times E$. We add the points
$\{(\lambda,\infty)|\lambda \in \mathbb{R}\}$ to space $\mathbb{R}
\times E$.
\begin{lemma}[{\cite[Theorem 1.5.3]{Peral}}] \label{lem2.1}
Assume {\rm (H1)} holds. Then the problem
\begin{equation}\label{e1.5}
\begin{gathered}
\big(r^{N-1}\varphi_p(u')\big)'+\lambda r^{N-1}a(r)\varphi_p(u)=0,\quad
\text{a.e. } r\in I,\\
u'(0)=u(1)=0
\end{gathered}
\end{equation}
has a sequence of simple eigenvalues $\lambda_k$ with $\lambda_k\to\infty$
as $k\to\infty$, and the corresponding eigenfunctions $\varphi_k$ have
exactly $k-1$ simple zeros, and each $\lambda_k(p)$ depends continuously
on $p$.
\end{lemma}
Let $\lambda_k$ denote the $k$-th eigenvalue of problem \eqref{e1.5}.
The main result of this section is the following theorem.
\begin{theorem}\label{thm2.2}
Let assumption \eqref{e1.2} hold. Then there exists a connected component
$\mathcal{D}_k^\nu$ of $\mathscr{S}\cup(\lambda_k\times\{\infty\})$,
containing $\lambda_k\times\{\infty\}$.
Moreover if $\Lambda\subset\mathbb{R}$ is an interval such that
$\Lambda\cap(\cup_{k=1}^\infty\lambda_k)=\lambda_k$ and $ \mathcal{U}$
is a neighborhood of $\lambda_k\times\{\infty\}$ whose projection on
$\mathbb{R}$ lies in $\Lambda$ and whose projection on $E$ is bounded away from
$0$, then either
\begin{itemize}
\item[(1)] $\mathcal{D}_k^\nu - \mathcal{U}$ is bounded in
$\mathbb{R}\times E$ in which case $\mathcal{D}_k^\nu - \mathcal{U}$
meets $\mathscr{R}=\{(\lambda, 0)|\lambda\in \mathbb{R}\}$, or
\item[(2)] $\mathcal{D}_k^\nu - \mathcal{U}$ is unbounded.
\end{itemize}
If (2) occurs and $\mathcal{D}_k^\nu - \mathcal{U}$ has a bounded projection
on $\mathbb{R}$, then $\mathcal{D}_k^\nu - \mathcal{U}$ meets
$\lambda_j\times\{\infty\}$ for some $j\neq k$.
\end{theorem}
\begin{proof}
If $(\lambda,u)\in \mathscr{S}$ with $\|u\|\neq0$, dividing \eqref{e1.6}
by $\|u\|^2$ and setting $w = u/\|u\|^2$ yield
\begin{equation}\label{e2.1}
\begin{gathered}
-\big(r^{N-1}\varphi_p(w')\big)'
=\lambda \big(r^{N-1}a(r)\varphi_p(w)\big)+r^{N-1}
\frac{g(r,u;\lambda)}{\|u\|^{2(p-1)}},\quad\text{a.e. } r\in I,\\
w'(0)=w(1)=0.
\end{gathered}
\end{equation}
Define
$$
f(r,w; \lambda)=\begin{cases}
\|w\|^{2(p-1)}r^{N-1}g(r, w/\|w\|^2;\lambda), &\text{if } w\neq 0,\\
0, &\text{if } w= 0,
\end{cases}
$$
Clearly, \eqref{e2.1} is equivalent to
\begin{equation}\label{e2.2}
\begin{gathered}
-\big(r^{N-1}\varphi_p(w')\big)'
=\lambda \big(r^{N-1}a(r)\varphi_p(w)\big)+f(r,w;\lambda),\quad
\text{a.e. } r\in I,\\
w'(0)=w(1)=0.
\end{gathered}
\end{equation}
It is obvious that $(\lambda,0)$ is always the solution of \eqref{e2.2}.
By simple computation, we can show that assumption \eqref{e1.2} implies
$$
f(r,w;\lambda)= o(|w|^{p-1})
$$
near $w=0$, uniformly for all $ r\in I$ and on bounded $\lambda$ intervals.
Now applying \cite[Theorem 3.2]{Dai} to problem \eqref{e2.2}, we
have the connected component $\mathcal{C}_k^\nu$ of
$\mathscr{S}\cup(\lambda_k\times\{0\})$, containing
$\lambda_k\times\{0\}$ is unbounded and lies in
$\phi_k^\nu\cup(\lambda_k\times\{0\})$. Under the inversion $w \to
w/\|w\|^2=u, \mathcal{C}_k^\nu ŠÍ\to \mathcal{D}_k^\nu$ satisfying
problem \eqref{e1.6}. Clearly, $\mathcal{D}_k^\nu$ satisfies the
conclusions of this theorem.
\end{proof}
By \cite[Lemma 6.4.1]{Lopez} and using the similar argument, we can prove
\cite[Corollary 1.8]{Rabinowitz} with obvious changes. Also we have the following theorem.
\begin{theorem} \label{thm2.3}
There exists a neighborhood $\mathcal{N} \subset \mathcal{U}$ of
$\lambda_k\times\{\infty\}$ such that
$(\lambda, u)\in(\mathcal{D}_k^\nu \cap\mathcal{N})
\setminus\{(\lambda_k\times\{\infty\})\}$ implies
$(\lambda, u)=(\lambda_k + o(1), \alpha\varphi_k + w)$, where
$\varphi_k$ is the eigenfunction corresponding to $\lambda_k$ with
$\|\varphi_k\|= 1, \alpha >0 (\alpha<0)$ and $\|w\|= o(|\alpha|)$ at
$|\alpha|=\infty$.
\end{theorem}
\begin{remark}\label{rmk2.4} \rm
Note that Theorem \ref{thm2.3} implies that
$(\mathcal{D}_k^\nu\cap\mathcal{N})\subset
\left(\phi_k^\nu\cup(\lambda_k\times\{\infty\})\right)$.
However, it need not be the case that
$\mathcal{D}_k^\nu\subset\left(\phi_k^\nu\cup(\lambda_k\times\{\infty\})\right)$
even in the case of $p = 2$ (see the example in \cite{Rabinowitz}).
\end{remark}
\section{Global behavior of the components of nodal solutions}
Let $\xi,\eta\in C(\mathbb{R},\mathbb{R})$ be such that
$$
f(u)=f_0\varphi_p(u)+\xi(u), \quad
f(u) = f_\infty\varphi_p(u)+\eta(u)
$$
with
$$
\lim_{|u|\to 0}\frac{\xi(u)}{\varphi_p(u)}=0,\quad
\lim_{|u|\to\infty}\frac{\eta(u)}{\varphi_p(u)}=0.
$$
Let us consider
\begin{equation}\label{e3.1}
\begin{gathered}
-\big(r^{N-1}\varphi_p(u')\big)'=\lambda r^{N-1}a(r)f_0\varphi_p(u)
+\lambda r^{N-1}a(r)\xi(u),\quad\text{a.e. } r\in I,\\
u'(0)=u(1)=0
\end{gathered}
\end{equation}
as a bifurcation problem from the trivial solution $u\equiv0$, and
\begin{equation}\label{e3.2}
\begin{gathered}
-\big(r^{N-1}\varphi_p(u')\big)'=\lambda r^{N-1}a(r)f_\infty\varphi_p(u)
+\lambda r^{N-1}a(r)\eta(u),\quad\text{a.e. } r\in I,\\
u'(0)=u(1)=0
\end{gathered}
\end{equation}
as a bifurcation problem from infinity.
Applying \cite[Theorem 3.2]{Dai} to \eqref{e3.1}, we have that for
each integer $k\geq1$, there exists a continuum $\mathcal{C}_{k,0}^\nu$,
of solutions of \eqref{e1.4} joining $(\lambda_k/f_0, 0)$ to infinity,
and $(\mathcal{C}_{k,0}^\nu\backslash\{(\lambda_k/f_0, 0)\})\subseteq\phi_k^\nu$.
Applying Theorem \ref{thm2.2} to \eqref{e3.2}, we can show that for
each integer $k\geq1$, there exists a continuum $\mathcal{D}_{k,\infty}^\nu$
of solutions of \eqref{e1.4} meeting $(\lambda_k/f_\infty,\infty)$.
Moreover, Theorem \ref{thm2.3} imply that
$$
(\mathcal{D}_{k,\infty}^\nu\backslash\{(\lambda_k/f_\infty,\infty)\})
\subseteq\phi_k^\nu.
$$
Next, we shall show that these two components are disjoint under the
assumption (H3). Hence the essential role is played
by the fact of whether $f$ possesses zeros in $\mathbb{R}\backslash\{0\}$.
\begin{theorem}\label{thm3.1}
Let {\rm (H1)-(H3)} hold. Then
\begin{itemize}
\item[(i)] for $(\lambda, u)\in(\mathcal{C}_{k,0}^+\cup\mathcal{C}_{k,0}^-)$,
we have that $s_2< u(r)