\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{mathrsfs} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 13, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/13\hfil Bifurcation from infinity] {Bifurcation from infinity and nodal solutions of quasilinear elliptic differential equations} \author[B.-X. Yang \hfil EJDE-2014/13\hfilneg] {Bian-Xia Yang} % in alphabetical order \address{Bian-Xia Yang \newline School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China} \email{yanglina7765309@163.com} \thanks{Submitted November 29, 2013. Published January 8, 2014.} \subjclass[2000]{35P30,35B32} \keywords{$p$-Laplacian; bifurcation; nodal solutions} \begin{abstract} In this article, we establish a unilateral global bifurcation theorem from infinity for a class of $N$-dimensional p-Laplacian problems. As an application, we study the global behavior of the components of nodal solutions of the problem \begin{gather*} \operatorname{div}(\varphi_p(\nabla u))+\lambda a(x)f(u)=0,\quad x\in B,\\ u=0,\quad x\in\partial B, \end{gather*} where $10$ for $s\in \mathbb{R}\setminus\{s_2, 0,s_1\}$. Moreover, we give intervals for the parameter $\lambda$, where the problem has multiple nodal solutions if $\lim_{s\to 0}f(s)/\varphi_p(s)=f_0>0$ and $\lim_{s\to \infty}f(s)/\varphi_p(s)=f_\infty>0$. We use topological methods and nonlinear analysis techniques to prove our main results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In natural sciences, there are various concrete problems involving bifurcation phenomena, for example, Taylor vortices \cite{MSB}, catastrophic shifts in ecosystems \cite{MS} and shimmy oscillations of an aircraft nose landing gear \cite{PBM}. The existence of bifurcation phenomena have called the attention of several mathematicians. Dai et al \cite{DaiML} established a unilateral global bifurcation theorem from infinity for one-dimensional p-Laplacian problem, and studied the global behavior of the components of nodal solutions of nonlinear one-dimensional p-Laplacian eigenvalue problem. Dai and Ma \cite{Dai} established a result from trivial solutions line about the continua of radial solutions for the $N$-dimensional p-Laplacian problem on the unit ball of $\mathbb{R}^N$ with $N\geq 1$ and $10$ for $s\in \mathbb{R}\setminus\{s_2, 0,s_1\}$. \end{itemize} We look for radial nodal solution of \eqref{e1.3}, namely for $u=u(r)$ verifying \begin{equation}\label{e1.4} \begin{gathered} \big(r^{N-1}\varphi_p(u')\big)'+\lambda r^{N-1} a(r)f(u)=0,\quad \text{a.e. } r\in I,\\ u'(0)=u(1)=0, \end{gathered} \end{equation} where $r=|x|$ with $x\in B$. The rest of this article is arranged as follows. In Section 2, we establish the unilateral global bifurcation results from infinity of \eqref{e1.1}. In Section 3, we study the global behavior of the components of nodal solutions of problem \eqref{e1.3}. \section{Unilateral global bifurcation from infinity} Let $E:=\{u\in C^1(\bar{I})|u'(0)=u(1)=0\}$ with the norm $\|u\|= \max_{r\in\bar{I}} |u(r)| +\max_{r\in\bar{I}}|u'(r)|$. Let $S_k^+$ denote the set of functions in $E$ which have exactly $k-1$ interior nodal zeros in $I$ and are positive near $r=0$, and set $S_k^-=-S_k^+$ and $S^k=S_k^+\cup S_k^-$. It is clear that $S_k^+$ and $S_k^-$ are disjoint and open in $E$. We also let $\phi_k^\nu=\mathbb{R}\times S_k^\nu$ and $\phi_k=\mathbb{R} \times S_k$ under the product topology, where $\nu\in\{+, -\}$. We use $\mathscr{S}$ to denote the closure of the set of nontrivial solutions of \eqref{e1.6} in $\mathbb{R}\times E$. We add the points $\{(\lambda,\infty)|\lambda \in \mathbb{R}\}$ to space $\mathbb{R} \times E$. \begin{lemma}[{\cite[Theorem 1.5.3]{Peral}}] \label{lem2.1} Assume {\rm (H1)} holds. Then the problem \begin{equation}\label{e1.5} \begin{gathered} \big(r^{N-1}\varphi_p(u')\big)'+\lambda r^{N-1}a(r)\varphi_p(u)=0,\quad \text{a.e. } r\in I,\\ u'(0)=u(1)=0 \end{gathered} \end{equation} has a sequence of simple eigenvalues $\lambda_k$ with $\lambda_k\to\infty$ as $k\to\infty$, and the corresponding eigenfunctions $\varphi_k$ have exactly $k-1$ simple zeros, and each $\lambda_k(p)$ depends continuously on $p$. \end{lemma} Let $\lambda_k$ denote the $k$-th eigenvalue of problem \eqref{e1.5}. The main result of this section is the following theorem. \begin{theorem}\label{thm2.2} Let assumption \eqref{e1.2} hold. Then there exists a connected component $\mathcal{D}_k^\nu$ of $\mathscr{S}\cup(\lambda_k\times\{\infty\})$, containing $\lambda_k\times\{\infty\}$. Moreover if $\Lambda\subset\mathbb{R}$ is an interval such that $\Lambda\cap(\cup_{k=1}^\infty\lambda_k)=\lambda_k$ and $ \mathcal{U}$ is a neighborhood of $\lambda_k\times\{\infty\}$ whose projection on $\mathbb{R}$ lies in $\Lambda$ and whose projection on $E$ is bounded away from $0$, then either \begin{itemize} \item[(1)] $\mathcal{D}_k^\nu - \mathcal{U}$ is bounded in $\mathbb{R}\times E$ in which case $\mathcal{D}_k^\nu - \mathcal{U}$ meets $\mathscr{R}=\{(\lambda, 0)|\lambda\in \mathbb{R}\}$, or \item[(2)] $\mathcal{D}_k^\nu - \mathcal{U}$ is unbounded. \end{itemize} If (2) occurs and $\mathcal{D}_k^\nu - \mathcal{U}$ has a bounded projection on $\mathbb{R}$, then $\mathcal{D}_k^\nu - \mathcal{U}$ meets $\lambda_j\times\{\infty\}$ for some $j\neq k$. \end{theorem} \begin{proof} If $(\lambda,u)\in \mathscr{S}$ with $\|u\|\neq0$, dividing \eqref{e1.6} by $\|u\|^2$ and setting $w = u/\|u\|^2$ yield \begin{equation}\label{e2.1} \begin{gathered} -\big(r^{N-1}\varphi_p(w')\big)' =\lambda \big(r^{N-1}a(r)\varphi_p(w)\big)+r^{N-1} \frac{g(r,u;\lambda)}{\|u\|^{2(p-1)}},\quad\text{a.e. } r\in I,\\ w'(0)=w(1)=0. \end{gathered} \end{equation} Define $$ f(r,w; \lambda)=\begin{cases} \|w\|^{2(p-1)}r^{N-1}g(r, w/\|w\|^2;\lambda), &\text{if } w\neq 0,\\ 0, &\text{if } w= 0, \end{cases} $$ Clearly, \eqref{e2.1} is equivalent to \begin{equation}\label{e2.2} \begin{gathered} -\big(r^{N-1}\varphi_p(w')\big)' =\lambda \big(r^{N-1}a(r)\varphi_p(w)\big)+f(r,w;\lambda),\quad \text{a.e. } r\in I,\\ w'(0)=w(1)=0. \end{gathered} \end{equation} It is obvious that $(\lambda,0)$ is always the solution of \eqref{e2.2}. By simple computation, we can show that assumption \eqref{e1.2} implies $$ f(r,w;\lambda)= o(|w|^{p-1}) $$ near $w=0$, uniformly for all $ r\in I$ and on bounded $\lambda$ intervals. Now applying \cite[Theorem 3.2]{Dai} to problem \eqref{e2.2}, we have the connected component $\mathcal{C}_k^\nu$ of $\mathscr{S}\cup(\lambda_k\times\{0\})$, containing $\lambda_k\times\{0\}$ is unbounded and lies in $\phi_k^\nu\cup(\lambda_k\times\{0\})$. Under the inversion $w \to w/\|w\|^2=u, \mathcal{C}_k^\nu ŠÍ\to \mathcal{D}_k^\nu$ satisfying problem \eqref{e1.6}. Clearly, $\mathcal{D}_k^\nu$ satisfies the conclusions of this theorem. \end{proof} By \cite[Lemma 6.4.1]{Lopez} and using the similar argument, we can prove \cite[Corollary 1.8]{Rabinowitz} with obvious changes. Also we have the following theorem. \begin{theorem} \label{thm2.3} There exists a neighborhood $\mathcal{N} \subset \mathcal{U}$ of $\lambda_k\times\{\infty\}$ such that $(\lambda, u)\in(\mathcal{D}_k^\nu \cap\mathcal{N}) \setminus\{(\lambda_k\times\{\infty\})\}$ implies $(\lambda, u)=(\lambda_k + o(1), \alpha\varphi_k + w)$, where $\varphi_k$ is the eigenfunction corresponding to $\lambda_k$ with $\|\varphi_k\|= 1, \alpha >0 (\alpha<0)$ and $\|w\|= o(|\alpha|)$ at $|\alpha|=\infty$. \end{theorem} \begin{remark}\label{rmk2.4} \rm Note that Theorem \ref{thm2.3} implies that $(\mathcal{D}_k^\nu\cap\mathcal{N})\subset \left(\phi_k^\nu\cup(\lambda_k\times\{\infty\})\right)$. However, it need not be the case that $\mathcal{D}_k^\nu\subset\left(\phi_k^\nu\cup(\lambda_k\times\{\infty\})\right)$ even in the case of $p = 2$ (see the example in \cite{Rabinowitz}). \end{remark} \section{Global behavior of the components of nodal solutions} Let $\xi,\eta\in C(\mathbb{R},\mathbb{R})$ be such that $$ f(u)=f_0\varphi_p(u)+\xi(u), \quad f(u) = f_\infty\varphi_p(u)+\eta(u) $$ with $$ \lim_{|u|\to 0}\frac{\xi(u)}{\varphi_p(u)}=0,\quad \lim_{|u|\to\infty}\frac{\eta(u)}{\varphi_p(u)}=0. $$ Let us consider \begin{equation}\label{e3.1} \begin{gathered} -\big(r^{N-1}\varphi_p(u')\big)'=\lambda r^{N-1}a(r)f_0\varphi_p(u) +\lambda r^{N-1}a(r)\xi(u),\quad\text{a.e. } r\in I,\\ u'(0)=u(1)=0 \end{gathered} \end{equation} as a bifurcation problem from the trivial solution $u\equiv0$, and \begin{equation}\label{e3.2} \begin{gathered} -\big(r^{N-1}\varphi_p(u')\big)'=\lambda r^{N-1}a(r)f_\infty\varphi_p(u) +\lambda r^{N-1}a(r)\eta(u),\quad\text{a.e. } r\in I,\\ u'(0)=u(1)=0 \end{gathered} \end{equation} as a bifurcation problem from infinity. Applying \cite[Theorem 3.2]{Dai} to \eqref{e3.1}, we have that for each integer $k\geq1$, there exists a continuum $\mathcal{C}_{k,0}^\nu$, of solutions of \eqref{e1.4} joining $(\lambda_k/f_0, 0)$ to infinity, and $(\mathcal{C}_{k,0}^\nu\backslash\{(\lambda_k/f_0, 0)\})\subseteq\phi_k^\nu$. Applying Theorem \ref{thm2.2} to \eqref{e3.2}, we can show that for each integer $k\geq1$, there exists a continuum $\mathcal{D}_{k,\infty}^\nu$ of solutions of \eqref{e1.4} meeting $(\lambda_k/f_\infty,\infty)$. Moreover, Theorem \ref{thm2.3} imply that $$ (\mathcal{D}_{k,\infty}^\nu\backslash\{(\lambda_k/f_\infty,\infty)\}) \subseteq\phi_k^\nu. $$ Next, we shall show that these two components are disjoint under the assumption (H3). Hence the essential role is played by the fact of whether $f$ possesses zeros in $\mathbb{R}\backslash\{0\}$. \begin{theorem}\label{thm3.1} Let {\rm (H1)-(H3)} hold. Then \begin{itemize} \item[(i)] for $(\lambda, u)\in(\mathcal{C}_{k,0}^+\cup\mathcal{C}_{k,0}^-)$, we have that $s_2< u(r)s_1$ or $\min_{r\in\bar{I}}u(r)m\varphi_p(s_1-s_0) $$ for any $m > 0$. It follows that $m < f (s_0)/\varphi_p(s_1-s_0)$. This contradicts the arbitrariness of $m$. Now, let us consider the problem \begin{gather*} -(r^{N-1}\varphi_p((s_1-u)'))'+\lambda r^{N-1}m a(r)\varphi_p(s_1-u) \\ =\lambda r^{N-1}m a(r)\varphi_p(s_1-u)-\lambda r^{N-1}a(r)f(u), \quad r\in (\tau_j,\tau_{j+1}),\\ s_1-u(\tau_j)>0,\quad s_1-u(\tau_{j+1})>0. \end{gather*} It is obvious that $f(s) \leq m\varphi_p(s_1-s)$ for any $s\in [0, s_1]$ implies \begin{gather*} -(r^{N-1}\varphi_p((s_1-u)'))'+\lambda r^{N-1} m a(r)\varphi_p(s_1-u)\geq 0,\quad r\in (\tau_j,\tau_{j+1}),\\ s_1-u(\tau_j)>0,\quad s_1-u(\tau_{j+1})>0. \end{gather*} The strong maximum principle of \cite{Montenego} implies that $s_1 > u(r)$ in $[\tau_j, \tau_{j+1}]$. This is a contradiction. \end{proof} \begin{remark}\label{rmk3.2} \rm If $N=1$, then Theorems \ref{thm2.2}, \ref{thm2.3} and \ref{thm3.1} correspond to the main results in \cite{DaiML}. In \cite{AJI}, they needed $f\in C^1(\mathbb{R}^+, \mathbb{R})$, while in this article, we need just $f\in C(\mathbb{R}, \mathbb{R})$. Furthermore, they studied the existence of branches of positive solutions, while we have the existence of branches of sign-changing solutions. So we have extended the results in \cite{AJI,DaiML}. \end{remark} \begin{thebibliography}{00} \bibitem{AP} A. Ambrosetti, P. Hess; \emph{Positive solutions of asymptotically linear elliptic eigenvalue problems}, J. Math. Anal. Appl. 73 (2) (1980) 411-422. \bibitem{AJI} A. Ambrosetti, J. G. Azorero, I. Peral; \emph{Multiplicity results for some nonlinear elliptic equations}, J. Funct. Anal. 137 (1996) 219-242. \bibitem{MSB} M. S. Berger; \emph{Nonlinearity and Functional Analysis}, Academic Press, 1977. \bibitem{DaiML} G. W. Dai, R. Y. Ma, Y. Q. Lu; \emph{Bifurcation from infinity and nodal solutions of quasilinear problems without the signum condition}, J. Math. Anal. Appl. 397 (2013) 119-123. \bibitem{Dai} G. W. Dai, R. Y. Ma; \emph{Unilateral global bifurcation and nodal solutions for the p-Laplacian with sign-changing weight}, arXiv: 1203.3262vl [math. AP] 15 Mar 2012. \bibitem{Lopez} J. L\'{o}pez-G\'{o}mez; \emph{Spectral Theory and Nonlinear Functional Analysis}, Chapman and Hall/CRC, Boca Raton, 2001. \bibitem{Montenego} M. Montenego; \emph{Strong maximum principles for super-solutions of quasilinear elliptic equations}, Nonlinear Anal. 37 (1999) 431-448. \bibitem{Peral} I. Peral; \emph{Multiplicity of solutions for the p-Laplacian}, ICTP SMR 990/1,1997. \bibitem{Rabinowitz} P. H. Rabinowitz; \emph{On bifurcation from infinity}, J. Funct. Anal. 14 (1973) 462-475. \bibitem{MS} M. Scheffer, S. Carpenter, J. A. Foley, C. Folke, B. Walker; \emph{Catastrophic shifts in ecosystems}, Nature 413 (2001) 591-596. \bibitem{PBM} P. Tnota, B. Krauskopf, M. Lowenberg; \emph{Multi-parameter bifurcation study of shimmy oscillations in a dual-wheel aircraft nose landing gear}, Bristol Centre for Applied Nonlinear Mathematics, Preprint. \end{thebibliography} \end{document}