\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 133, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/133\hfil Existence and multiplicity of solutions] {Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^N$} \author[B. Ge, Q. Zhou \hfil EJDE-2014/133\hfilneg] {Bin Ge, Qingmei Zhou} % in alphabetical order \address{Bin Ge \newline Department of Applied Mathematics, Harbin Engineering University, Harbin 150001, China} \email{gebin04523080261@163.com} \address{Qingmei Zhou \newline Library, Northeast Forestry University, Harbin 150040, China} \email{zhouqingmei2008@163.com} \thanks{Submitted March 4, 2014. Published June 10, 2014.} \subjclass[2000]{35J60, 35J20, 58E30} \keywords{$p(x)$-Laplacian; variational method; radial solution; \hfill\break\indent Ambrosetti-Rabinowitz condition} \begin{abstract} This article concerns the existence and multiplicity of solutions to a class of $p(x)$-Laplacian equations. We introduce a revised Ambrosetti-Rabinowitz condition, and show that the problem has a nontrivial solution and infinitely many solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \newtheorem{claim}[theorem]{Claim} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} The study of various mathematical problems with variable exponent growth condition has received considerable attention in recent years; see e.g. \cite{a1,k1,d3,g1,g2,g3}. For background information, we refer the reader to \cite{r2,z1}. The aim of this paper is to discuss the existence and multiplicity of solutions of the following $p(x)$-Laplacian equation in $\mathbb{R}^N$: \begin{equation} \begin{gathered} -\Delta_{p(x)}u+|u|^{p(x)-2}u= K(x)f(u),\quad\text{in }\mathbb{R}^N, \\ u\in W^{1,p(x)}(\mathbb{R}^N), \end{gathered} \label{eP} \end{equation} where $p(x)=p(|x|)\in C((\mathbb{R}^N)) $ with $2\leq Np^+$ and $M>0$ such that $$ 0<\theta F(t):=\theta\int_0^tf(s)ds\leq f(t)t,\quad \forall |t|\geq M. $$ \end{itemize} This condition is originally due to Ambrosetti and Rabinowitz \cite{a2} in the case $p(x)\equiv 2$, and then was used in \cite{b1,d2,f2,f3} for $p(x)$-Laplacian equations. Actually, condition (F1') is quite natural and important not only to ensure that the Euler-Lagrange functional associated to problem \eqref{eP1} has a mountain pass geometry, but also to guarantee that Palais-Smale sequence of the Euler-Lagrange functional is bounded. But this condition is very restrictive eliminating many nonlinearities. In this paper, we introduce a new condition (F1), below, which is different from the Ambrosetti-Rabinowitz-type condition (F1'). \begin{itemize} \item[(F1)] there exist a constant $M\geq 0$ and a decreasing function $\tau$ in the space $C(\mathbb{R}\setminus(-M,M),\mathbb{R})$, such that $$ 0<(p^++\tau(t) )F(t):=(p^++\tau(t) )\int_0^tf(s)ds\leq f(t)t ,\quad |t|\geq M, $$ where $\tau(t)>0$, $\lim_{|t|\to+\infty}|t|\tau(t)=+\infty$ and $\lim_{|t|\to+\infty}\int_M^{|t|}\frac{\tau(s)}{s}ds=+\infty$. \end{itemize} \begin{remark} \label{rmk1.1}\rm Obviously, when $\inf_{|t|\geq M}\tau(t)>0$, condition (F1) and (F1') are equivalent. However, condition (F1) is weaker than (F1') when $\inf_{|t|\geq M}\tau(t)=0$. For example, let $|t|\geq M=2$, and assume that $F(t)=|t|^{p^+}{\rm ln}|t|$. Then $f(t)=(p^++\tau(t)){\rm sgn}(t)|t|^{p^+-1}{\rm ln}|t|$ satisfies condition (F1) not (F1'), where $\tau(t)=\frac{1}{{\rm lnt}}\in C(\mathbb{R}\setminus(-M,M),\mathbb{R})$. \end{remark} The aim of this paper is twofold. First, we want to handle the case when $p^->N$ and the unbounded area $\mathbb{R}^N$. Although important problems can be treated within this framework, only a few works are available in this direction, see \cite{d1}. The main difficulty in studying problem \eqref{eP} lies in the fact that no compact embedding is available for $W^{1,p(x)}(\mathbb{R}^N)\hookrightarrow L^{\infty}(\mathbb{R}^N)$. However, the subspace of radially symmetric functions of $W^{1,p(x)}(\mathbb{R}^N)$, denoted further by $W_r^{1,p(x)}(\mathbb{R}^N)$, can be embedded compactly into $L^{\infty}(\mathbb{R}^N)$ whenever $N0}{\rm ess}\inf_{|x|\leq d}K(x)>0$. \item[(H2)] $f(t)=o(t^{p^+-1})$ for $t$ near 0. \end{itemize} Now, we are ready to state the main result of this paper. \begin{theorem} \label{thm1.1} Suppose that {\rm (H1), (H2), (F1)} hold. Then problem \eqref{eP} has a nontrivial radially symmetric solution. Furthermore, if $f(t)=f(-t)$, then problem \eqref{eP} has infinitely many pairs of radially symmetric solutions. \end{theorem} In the remainder of this section, we recall some definitions and basic properties of variable spaces $L^{p(x)}(\mathbb{R}^N)$ and $W^{1,p(x)}(\mathbb{R}^N)$. For a deeper treatment on these spaces, we refer to \cite{f4,f5}. Let $p\in L^\infty(\mathbb{R}^N)$, $p^->1$. The variable exponent Lebesgue space $L^{p(x)}(\mathbb{R}^N)$ is defined by $$ L^{p(x)}(\mathbb{R}^N)=\{ u:\mathbb{R}^N\to\mathbb{R}: u\text{ is measurable and } \int_{\mathbb{R}^N}|u|^{p(x)}dx<+\infty\} $$ endowed with the norm $|u|_{p(x)}=\{\lambda>0:\int_{\mathbb{R}^N}|\frac{u}{\lambda}|^{p(x)}dx\leq 1\}$. Then we define the variable exponent Sobolev space \[ W^{1,p(x)}(\mathbb{R}^N)=\{u\in L^{p(x)}(\mathbb{R}^N): |\nabla u|\in L^{p(x)}(\mathbb{R}^N)\} \] with the norm $\|u\|=|u|_{p(x)}+|\nabla u|_{p(x)}$. \begin{proposition}[\cite{f1}] \label{prop1.1} Set $\psi(u)=\int_{\mathbb{R}^N}(|\nabla u(x)|^{p(x)}+|u(x)|^{p(x)})dx$. If $u, u_{k}\in W^{1, p(x)}(\mathbb{R}^N)$, then \begin{itemize} \item[(1)] $\| u\|<1(=1; >1)\Leftrightarrow I(u)<1(=1; >1);$ \item[(2)] If $\| u\|>1$, then $\|u\|^{p^{-}}\leq \psi(u)\leq \|u\|^{p^{+}};$ \item[(3)] If $\|u\|<1$, then $\|u\|^{p^{+}}\leq \psi(u)\leq \|u\|^{p^{-}};$ \item[(4)] $\lim_{k\to +\infty}\|u_{k}\|=0\Leftrightarrow \lim_{k\to +\infty}\psi(u_{k})=0;$ \end{itemize} \end{proposition} \section{Proof of Theorem \ref{thm1.1}} In this section we prove Theorem \ref{thm1.1} when $\inf_{|t|\geq M}\tau(t)=0$. If $\inf_{|t|\geq M}\tau(t)>0$, then conditions (F1') and (F1) are equivalent, and the proof is rather standard. We may assume that $M\geq 1$, and that there is constant $N_0>0$ such that $|\tau(t)|\leq N_0$ for all $t\in\mathbb{R}\backslash(-M,M)$. We introduce the energy function $\varphi$ associated to problem \eqref{eP} defined by $$ \varphi(u)=\int_{\mathbb{R}^N}\frac{1}{p(x)}(|\nabla u(x)|^{p(x)}+|u(x)|^{p(x)})dx-\int_{\mathbb{R}^N}K(x)F(u)dx,\quad u\in W_r^{1, p(x)}(\mathbb{R}^N) $$ Due to the principle of symmetric criticality of Palais (see \cite{w1}), the critical points of $\varphi|_{W_r^{1, p(x)}(\mathbb{R}^N)}$ are critical points of $\varphi$ as well, so radially symmetric, weak solutions of problem \eqref{eP}. \begin{claim} \label{claim2.1} Let $W=\{w\in W_r^{1, p(x)}(\mathbb{R}^N):\|w\|=1\}$. Then, for any $w\in W$, there exist $\delta_w>0$ and $\lambda_w>0$, such that $$ \varphi(\lambda v)<0,\quad \forall v\in W\cap B(w,\delta_w), \forall |\lambda|\geq\lambda_w, $$ where $B(w,\delta_w)=\{v\in W_r^{1,p(x)}(\mathbb{R}^N):\|v-w\|<\delta_w\}$. \end{claim} \begin{proof} Since the embedding $W_r^{1,p(x)}(\mathbb{R}^N)\hookrightarrow L^\infty(\mathbb{R}^N)$ is compact, there is constant $C>0$ such that $|u|_\infty\leq C\|u\|$. Thus, for all $w\in W$ and a.e. $x\in\mathbb{R}^N$, we have $|w(x)|\leq C$. By the definition of $\tau(t)$, we deduce that there exists $t_\lambda\in\{t\in\mathbb{R}:M\leq|t|\leq|\lambda|C\}$ such that $\tau(t_\lambda)=\min_{M\leq|t|\leq|\lambda|C}\tau(t)$. Then $|\lambda|\geq\frac{t_\lambda}{C}$ and $\lim_{|\lambda|\to+\infty}|t_\lambda|\to+\infty$. From condition (F1), we conclude that $ F(t)\geq C_1|t|^{p^+}H(|t|)$ for all $|t|\geq M$, where $H(t)=\exp(\int_M^{|t|}\frac{\tau(s)}{s}ds)$. Hence, using $\lim_{|t|\to+\infty}\int_M^{|t|}\frac{\tau(s)}{s}ds=+\infty$, it follows that $H(|t|)$ increases when $|t|$ increases, and $\lim_{|t|\to+\infty}H(|t|)=+\infty$. Fix $w\in W$. By $\|w\|=1$, we deduce that $\mu(\{x\in\mathbb{R}^N:w(x)\neq 0\})>0$, and that there exists a $\overline{t}_w>M$ such that $\mu(\{x\in\mathbb{R}^N:|\overline{t}_w w(x)|\geq M\})>0$, where $\mu$ is the Lebesgue measure. Set $\Omega_1:=\{x\in\mathbb{R}^N:|\overline{t}_w w(x)|\geq M\}$ and $\Omega_2:=\mathbb{R}^N\backslash\Omega_1$. Then $\mu(\Omega_1)>0$. Therefore, for any $x\in\Omega_1$, we have that $|w(x)|\geq\frac{M}{\overline{t}_w}$. Now take $\delta_w=\frac{M}{2C\overline{t}_w}$. Then, for any $v\in W\cap B(w,\delta_w)$, $|v-w|_\infty\leq C\|v-w\|<\frac{M}{2\overline{t}_w}$. Hence, for all $x\in\Omega_1$, we deduce that $|v(x)|\geq \frac{M}{2\overline{t}_w}$ and $|\lambda v(x)|\geq M$ for any $x\in \Omega_1$ and $\lambda\in\mathbb{R}$ with $|\lambda|\geq2\overline{t}_w$. Thus, for $|\lambda|\geq2\overline{t}_w$, by the above estimates and $H(|t|)$ increases when $|t|$ increases, we have \begin{equation} \label{2.1} \begin{aligned} \int_{\Omega_1}K(x)F(\lambda v(x))dx &\geq C_1|\lambda|^{p^+}\int_{\Omega_1}K(x)|v(x)|^{p^+}H(|\lambda v(x)|)dx\\ &\geq C_1|\lambda|^{p^+}(\frac{M}{2\overline{t}_w})^{p^+} H(|\lambda|\frac{M}{2\overline{t}_w})\int_{\Omega_1}K(x)dx. \end{aligned} \end{equation} On the other hand, by continuity, we deduce that there exists a $C_2>0$ such that $F(t)\geq -C_2$ when $|t|\leq M$. Note that $F(t)>0$ if $|t|\geq M$. Hence, \begin{equation} \label{2.2} \begin{aligned} \int_{\Omega_2}K(x)F(\lambda v(x))dx &=\int_{\Omega_2\cup\{x\in\mathbb{R}^N:|\lambda v(x)|\geq M\}}K(x)F(\lambda v(x))dx\\ &\quad +\int_{\Omega_2\cup\{x\in\mathbb{R}^N:|\lambda v(x)| \leq M\}}K(x)F(\lambda v(x))dx\\ &\geq \int_{\Omega_2\cup\{x\in\mathbb{R}^N:|\lambda v(x)|\leq M\}}K(x)F(\lambda v(x))dx\\ &\geq -C_2|K|_1. \end{aligned} \end{equation} Hence, for $v\in W\cap B(w,\delta_w)$ and $|\lambda|>1$, from \eqref{2.1} and \eqref{2.2}, we have \begin{align*} \varphi(\lambda v) &=\int_{\mathbb{R}^N}\frac{|\lambda|^{p(x)}}{p(x)}(|\nabla v|^{p(x)}+|v|^{p(x)})dx -\int_{\mathbb{R}^N}K(x)F(\lambda v(x))dx\\ &\leq |\lambda|^{p^+}-C_1|\lambda|^{p^+}(\frac{M}{2\overline{t}_w})^{p^+} H(|\lambda|\frac{M}{2\overline{t}_w})\int_{\Omega_1}K(x)dx +C_2|K|_1\\ &=|\lambda|^{p^+}\Big[1-C_1(\frac{M}{2\overline{t}_w})^{p^+} H(|\lambda|\frac{M}{2\overline{t}_w})\int_{\Omega_1}K(x)dx\Big]+C_2|K|_1\\ &\to-\infty, \end{align*} as $|\lambda|\to+\infty$, because $\lim_{|t|\to+\infty}H(|t|) =+\infty$. \end{proof} \begin{claim} \label{claim2.2} There exist $\nu>0$ and $\rho>0$ such that $\inf_{\|u\|=\nu}\varphi(u)\geq\rho>0$. \end{claim} \begin{proof} Note that $|u|_\infty\to 0$ if $\|u\|\to 0$. Then, by hypothesis (H2), we have \[ \int_{\mathbb{R}^N}K(x)F(u)dx=|K|_1o(|u|_\infty^{p^+})=|K|_1o(\|u\|^{p^+}), \] which implies \begin{align*} \varphi(u)&= \int_{\mathbb{R}^N}\frac{1}{p(x)}(|\nabla u|^{p(x)}+|u|^{p(x)})dx-\int_{\mathbb{R}^N}K(x)F(u)dx\\ & \geq \frac{1}{p^+}\|u\|^{p^+}-|K|_1o(\|u\|^{p^+}). \end{align*} Therefore, there exist $1>\nu>0$ and $\rho>0$ such that $\inf_{\|u\|=\nu}\varphi(u)\geq\rho>0$. \end{proof} \begin{claim} \label{claim2.3} The functional $\varphi$ satisfies the (PS) condition. \end{claim} \begin{proof} Let $\{u_n\}\subset W_r^{1,p(x)}(\mathbb{R}^N)$ be a (PS) sequence of the functional $\varphi$; that is, $|\varphi(u_n)|\leq c$ and $ |\langle \varphi'(u_n),h\rangle | \leq \varepsilon_n \|h\|$ with $\varepsilon_n\to 0$, for all $h\in W_r^{1,p(x)}(\mathbb{R}^N)$. We will prove that the sequence $\{u_n\}$ is bounded in $ W_r^{1,p(x)}(\mathbb{R}^N)$. Indeed, if $\{u_n\}$ is unbounded in $ W_r^{1,p(x)}(\mathbb{R}^N)$, we may assume that $\|u_n\|\to\infty$ as $n\to\infty$. Let $u_n=\lambda_nw_n$, where $\lambda_n\in\mathbb{R}$, $w_n\in W$. It follows that $|\lambda_n|\to\infty$. Let $\Omega_1^n:=\{x\in\mathbb{R}^N:|\lambda_n w_n(x)|\geq M\}$ and $\Omega_2^n:=\mathbb{R}^N\backslash\Omega_1^n$. Then \begin{align*} -\varepsilon_n |\lambda_n|&= -\varepsilon_n \|u_n\|\\ &\leq \langle \varphi'(u_n),u_n\rangle \\ &= \int_{\mathbb{R}^N}\left(|\nabla u_n|^{p(x)}+|u_n|^{p(x)}\right)dx -\int_{\mathbb{R}^N}K(x)f(u_n)u_ndx\\ &\leq \int_{\mathbb{R}^N}|\lambda_n|^{p(x)}\left(|\nabla w_n|^{p(x)} +|w_n|^{p(x)}\right)dx-\int_{\Omega_1^n}K(x)f(\lambda_nw_n)\lambda_nw_ndx\\ &\quad -\int_{\Omega_2^n}K(x)f(\lambda_nw_n)\lambda_nw_ndx, \end{align*} which implies that \begin{align*} \int_{\Omega_1^n}K(x)f(\lambda_nw_n)\lambda_nw_n\,dx &\leq \int_{\mathbb{R}^N}|\lambda_n|^{p(x)}\left(|\nabla w_n|^{p(x)}+|w_n|^{p(x)}\right)dx \\ &\quad +\varepsilon_n |\lambda_n|-\int_{\Omega_2^n}K(x)f(\lambda_nw_n)\lambda_nw_ndx. \end{align*} Note that $0<(p^++\tau(t_{\lambda_n}))F(\lambda_nw_n)\leq f(\lambda_nw_n)\lambda_nw_n$ in $\Omega_1^n$. So, \[ \int_{\Omega_1^n}K(x)F(\lambda_nw_n)dx \leq\frac{1}{p^++\tau(t_{\lambda_n})}\int_{\Omega_1^n}K(x) f(\lambda_nw_n)\lambda_nw_ndx. \] Then it follows that \begin{align*} \varphi(u_n) &= \varphi(\lambda_nw_n)\\&= \int_{\mathbb{R}^N}\frac{|\lambda_n|^{p(x)}}{p(x)}(|\nabla w_n|^{p(x)}+|w_n|^{p(x)})dx-\int_{\mathbb{R}^N}K(x)F(\lambda_n w_n)dx\\ &= \int_{\mathbb{R}^N}\frac{|\lambda_n|^{p(x)}}{p(x)} \left(|\nabla w_n|^{p(x)}+|w_n|^{p(x)}\right)dx -\int_{\Omega_1^n}K(x)F(\lambda_n w_n)dx\\ &\quad -\int_{\Omega_2^n}K(x)F(\lambda_n w_n)dx\\ &\geq \frac{1}{p^+}\int_{\mathbb{R}^N} |\lambda_n|^{p(x)} \left(|\nabla w_n|^{p(x)}+|w_n|^{p(x)}\right)dx\\ &\quad -\frac{1}{p^++\tau(t_{\lambda_n})}\int_{\Omega_1^n}K(x) f(\lambda_nw_n)\lambda_nw_ndx -\int_{\Omega_2^n}K(x)F(\lambda_n w_n)dx\\ &\geq \frac{1}{p^+}\int_{\mathbb{R}^N} |\lambda_n|^{p(x)} \left(|\nabla w_n|^{p(x)}+|w_n|^{p(x)}\right)dx\\ &\quad -\frac{1}{p^+ +\tau(t_{\lambda_n})} \Big[\int_{\mathbb{R}^N}|\lambda_n|^{p(x)} \left(|\nabla w_n|^{p(x)}+|w_n|^{p(x)}\right)dx +\varepsilon_n |\lambda_n|\Big]\\ &\quad +\frac{1}{p^++\tau(t_{\lambda_n})}\int_{\Omega_2^n}K(x) f(\lambda_nw_n)\lambda_nw_ndx-\int_{\Omega_2^n}K(x)F(\lambda_n w_n)dx\\ &= \frac{\tau(t_{\lambda_n})}{p^+(p^++\tau(t_{\lambda_n}))} \int_{\mathbb{R}^N} |\lambda_n|^{p(x)} \left(|\nabla w_n|^{p(x)}+|w_n|^{p(x)} \right)dx\\ &\quad -\frac{1}{p^++\tau(t_{\lambda_n})}\varepsilon_n |\lambda_n|+T(\lambda_nw_n)\\ &\geq \frac{\tau(t_{\lambda_n})}{p^+(p^++N_0)}|\lambda_n|^{p^-} -\frac{1}{p^+}\varepsilon_n |\lambda_n|+T(\lambda_nw_n)\\ &= |\lambda_n|\Big[ \frac{|\lambda_n|^{p^--1}\tau(t_{\lambda_n})}{p^+(p^++N_0)} -\frac{\varepsilon_n}{p^+}\Big]+T(\lambda_nw_n)\\ &\geq |\lambda_n|\Big[ \frac{|\lambda_n|^{p^--1}\tau(t_{\lambda_n})}{p^+(p^++N_0)} -\frac{\varepsilon_n}{p^+}\Big]-C_2, \end{align*} where $$ T(\lambda_nw_n)=\frac{1}{p^++\tau(t_{\lambda_n})} \int_{\Omega_2^n}K(x)f(\lambda_nw_n)\lambda_nw_n\,dx -\int_{\Omega_2^n}K(x)F(\lambda_n w_n)\,dx $$ is bounded from below. We know that $|\lambda_n|\to+\infty$, and so $|t_{\lambda_n}|\to+\infty$, as $n\to+\infty$. It follows from (F1) and $p^->N\geq 2$ that $$ \lim_{n\to+\infty}|\lambda_n|^{p^--1}\tau(t_{\lambda_n}) \geq\lim_{n\to+\infty}\frac{|t_{\lambda_n}|\tau(t_{\lambda_n})}{M}=+\infty. $$ This means that $\lim_{n\to+\infty}\varphi(u_n)\to+\infty$. This is a contradiction. So, the sequence $\{u_n\}$ is bounded in $W_r^{1,p(x)}(\mathbb{R}^N)$. Note that the embedding $W_r^{1,p(x)}(\mathbb{R}^N)\hookrightarrow L^\infty(\mathbb{R}^N)$ is compact, there exists a $u\in W_r^{1,p(x)}(\mathbb{R}^N)$ such that passing to subsequence, still denoted by $\{u_n\}$, it converges strongly to $u$ in $L^\infty(\mathbb{R}^N)$, and in the same way as the proof of \cite[Proposition 3.1]{k2} we can conclude that $u_n$ converges strongly also in $W_r^{1,p(x)}(\mathbb{R}^N)$. Thus, $\varphi$ satisfies the (PS) condition. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.1}] Due to Claims \ref{claim2.1}, \ref{claim2.2} and \ref{claim2.3}, we know that $\varphi$ satisfies the conditions of the classical mountain pass theorem due to Ambrosetti and Rabinowitz \cite{a2}. Hence, we obtain a nontrivial critical point, which gives rise to a nontrivial radially symmetric solution to problem \eqref{eP}. Furthermore, if $f(t)=f(-t)$, then $\varphi$ is even. We will use the following $\mathbb{Z}_2$ version of the mountain pass theorem in \cite{r1}. \end{proof} \begin{theorem} \label{thm2.1} Let $E$ be an infinite-dimensional Banach space, and $\varphi\in C(E,\mathbb{R})$ be even, satisfying the (PS) condition, and having $\varphi(0)=0$. Assume that $E=V\oplus X$, where $V$ is finite dimensional. Suppose that the following hold. \begin{itemize} \item[(a)] there are constants $\nu, \rho>0$ such that $\inf_{\partial B_\nu\cup X}\varphi\geq\rho$. \item[(b)] for each finite-dimensional subspace $\overline{E}\subset E$, there is an $\sigma=\sigma(\overline{E})$ such that $\varphi\leq 0$ on $\overline{E}\backslash B_{\sigma}$. \end{itemize} Then $\varphi$ possesses an unbounded sequence of critical values. \end{theorem} From Claims \ref{claim2.1} and \ref{claim2.2}, $\varphi$ satisfies (a) and the (PS) condition. For any finite-dimensional subspace $\overline{E}\subset E$, $S\cap \overline{E}=\{w\in \overline{E}:\|w\|=1\}$ is compact. By Claim \ref{claim2.1} and the finite covering theorem, it is easy to verify that $\varphi$ satisfies condition (b). Hence, by the $\mathbb{Z}_2$ version of the mountain pass theorem, $\varphi$ has a sequence of critical points $\{u_n\}_{n=1}^{\infty}$. That is, problem \eqref{eP} has infinitely many pairs of radially symmetric solutions. \subsection*{Acknowledgments} This research was supported by the National Natural Science Foundation of China (No. 11126286, No. 11201095), the Fundamental Research Funds for the Central Universities (No. 2014), China Postdoctoral Science Foundation funded project (No. 20110491032), and China Postdoctoral Science (Special) Foundation (No. 2012T50325). \begin{thebibliography}{00} \bibitem{a1} E. Acerbi, G. Mingione; \emph{Regularity results for a class of functionals with nonstandard growth}, Arch. Rational Mech. Anal. 156 (2001) 121--140. \bibitem{a2} A. Ambrosetti, P. H. Rabinowitz; \emph{Dual variational methods in critical point theory and applications}, J. Funct. Anal. 14 (1973) 349--381. \bibitem{b1} M. M. Boureanu, F. Preda; \emph{Infinitely many solutions for elliptic problems with variable exponent and nonlinear boundary conditions}, Nonlinear Differ. Equ. Appl. 19 (2012) 235--251. \bibitem{d1} G. W. Dai; \emph{Infinitely many solutions for a $p(x)$-Laplacian equation in $\mathbb{R}^N$}, Nonlinear Anal. 71 (2009) 1133--1139. \bibitem{d2} S. G. Deng, Q. Wang; \emph{Nonexistence, existence and multiplicity of positive solutions to the $p(x)$-Laplacian nonlinear Neumann boundary value problem}, Nonlinear Anal. 73 (2010) 2170--2183. \bibitem{d3} L. Diening; \emph{Riesz potential and Sobolev embeddings on generalized Lebesque and Sobolev Spaces $L^{p(\cdot)}$ and $W^{k,p(\cdot)}$}, Math. Nachr. 268 (2004) 31--43. \bibitem{f1} X. L. Fan, X. Y. Han; \emph{Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^N$}, Nonlinear Anal. 59 (2004) 173--188. \bibitem{f2} X. L. Fan, Q. H. Zhang; \emph{Existence of solutions for $p(x)$-Laplacian Dirichlet problem}, Nonlinear Anal. 52 (2003) 1843--1852. \bibitem{f3} X. L. Fan; \emph{$p(x)$-Laplacian equations in $\mathbb{R}^N$ with periodic data and nonperiodic perturbations}, J. Math. Anal. Appl. 341 (2008) 103--119. \bibitem{f4} X. L. Fan, J. S. Shen, D. Zhao; \emph{Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$}, J. Math. Anal. Appl. 262 (2001) 749--760. \bibitem{f5} X. L. Fan, D. Zhao; \emph{On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$}, J. Math. Anal. Appl. 263 (2001) 424--446. \bibitem{f6} Y. Q. Fu, X. Zhang; \emph{A multiplicity results for $p(x)$-Laplacian problem in $\mathbb{R}^N$}, Nonlinear Anal. 70 (2009) 2261--2269. \bibitem{g1} B. Ge, X. P. Xue; \emph{Multiple solutions for inequality Dirichlet problems by the $p(x)$-Laplacian}, Nonlinear Anal: R.W.A. 11 (2010) 3198--3210. \bibitem{g2} B. Ge, X. P. Xue, Q. M. Zhou; \emph{Existence of at least five solutions for a differential inclusion problem involving the $p(x)$-Laplacian}, Nonlinear Anal: R. W. A. 12 (2011) 2304--2318. \bibitem{g3} B. Ge, Q. M. Zhou, X. P. Xue; \emph{Infinitely many solutions for a differential inclusion problem in $\mathbb{R}^N$ involving $p(x)$-Laplacian and oscillatory terms}, Z. Angew. Math. Phys. 63 (2012) 691--711. \bibitem{k1} O. Kovacik, J. Rakosnik; \emph{On spaces $L^{p(x)}(\Omega)$ and $W^{k,p(x)}(\Omega)$}, Czechoslovak Math. J. 41 (1991) 592--618. \bibitem{k2} A. Krist\'{a}ly, C. Varga; \emph{On a class of quasilinear eigenvalue problems in $\mathbb{R}^N$}. Math. Nachr. 278(15) (2005) 1756--1765. \bibitem{r1} P. H. Rabinowitz; \emph{Minimax Methods in Ctitical Point Theory with Applications to Differential Equations}, in CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986. \bibitem{r2} M. Ruzicka; \emph{Electrorheological Fluids: Modeling and Mathematical Theory}, Springer-Verlag, Berlin, 2000. \bibitem{w1} M. Willem; \emph{Minimax Theorems}, Birkh\u{a}user, Boston, 1996. \bibitem{z1} V. V. Zhikov; \emph{Averaging of functionals of the calculus of variations and elasticity theory}, Math. USSR. Izv. 9 (1987) 33--66. \end{thebibliography} \end{document}