\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 146, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/146\hfil Sturm-Picone type theorems] {Sturm-Picone type theorems for second-order nonlinear differential equations} \author[A. Tiryaki\hfil EJDE-2014/146\hfilneg] {Aydin Tiryaki} % in alphabetical order \address{Aydin Tiryaki \newline Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Izmir University, 35350 Uckuyular, Izmir, Turkey} \email{aydin.tiryaki@izmir.edu.tr} \thanks{Submitted March 5, 2014. Published June 20, 2014.} \subjclass[2000]{34C10, 34C15} \keywords{Comparison theorem; Sturm-Picone theorem; half-linear; \hfill\break\indent second order differential equations; singular equation; variational lemma} \begin{abstract} The aim of this article is to give Sturm-Picone type theorems for the pair of second-order nonlinear differential equations \begin{gather*} (p_1(t)|x'|^{\alpha-1}x')'+q_1(t)f_1(x)=0 \\ (p_2(t)|y'|^{\alpha-1}y')'+q_2(t)f_2(y)=0,\quad t_10$, $p_2(t)>0$ on $[t_1, t_2]$. In this celebrated paper, Sturm \cite{Sturm} proved the following remarkable result. \begin{theorem}[Sturm's Comparison Theorem] \label{thm1.1} Suppose $p_1(t)=p_2(t)$ and $q_1(t)>q_2(t)$, $\forall t \in (t_1, t_2)$. If there exists a nontrivial real solution $y$ of \eqref{1.2} such that $y(t_1)=0=y(t_2)$, then every real solution of \eqref{1.1} has at least one zero in $(t_1, t_2)$. \end{theorem} In 1909, Picone \cite{Picone} modified Sturm's theorem as follows. \begin{theorem}[Sturm-Picone Theorem] \label{thm1.2} Suppose that $p_2(t)\geq p_1(t)$ and $q_1(t)\geq q_2(t)$, for all $t \in (t_1, t_2)$. If there exists a nontrivial real solution $y$ of \eqref{1.2} such that $y(t_1)=0=y(t_2)$, then every real solution of \eqref{1.1} unless a constant multiple of $y$ has at least one zero in $(t_1, t_2)$ \end{theorem} Note that Theorem \ref{thm1.2} is a special case of Leighton's theorem \cite{Leighton}. For a detailed study and earlier developments of this subject, we refer the reader to the books \cite{Kreith, Swanson}. Sturm-Picone theorem is extended in several directions, see \cite{Ahmad} and \cite{Ahmad2} for linear systems, \cite{Muller} for nonselfadjoint differential equations, \cite{TyagiR} for implicit differential equations, \cite{Dosly, JarosandKusano, Li} for half-linear equations, \cite{Allegretto2} for degenerate elliptic equations, \cite{Zhang} for linear equations on time scales. There is also a good amount of interest in the qualitative theory of partial differential equations to determine whether the given equation is oscillatory or not and Sturm-Picone theorem, also plays an important role in this direction. For earlier developments, we refer to \cite{Picone, Sturm, Swanson}, and for recent developments we refer to Yoshida's book \cite{Yoshida}. Sturm comparison theorem for the half-linear elliptic equation and Picone type identities have been studied in, for example, \cite{Allegretto, Allegretto2, Dosly, Fisnarova, JarosKusanoYoshida, JarosKusanoYoshida2, Tadie, Yoshida2}. When some or all of $p_1$, $q_1$, $p_2$, $q_2$ are not continuous at $t_1$ or $t_2$ or at $t_1$ and $t_2$ both, where the possibility that the interval is unbounded is not excluded, then \eqref{1.1}, \eqref{1.2} are called singular differential equations. Analog of Theorems \ref{thm1.1}, \ref{thm1.2} and other related theorems for singular differential equations have been obtained earlier (see \cite{Swanson}). Recently, in \cite{Aharonov}, Sturm's theorem for a pair of singular linear differential equations was proved assuming that the solution of minorant equation is principal at both end points of the interval. Very recently, Tyagi \cite{Tyagi} studied a pair of second order nonlinear differential equations \begin{gather} (p_1(t)x')'+q_1(t)f_1(x)=0, \label{1.3}\\ (p_2(t)y')'+q_2(t)f_2(y)=0,\quad t_1 0$, $\alpha_0>0$ such that $\alpha_{0}|x|^{\alpha-1}\leq f_1'(x)\neq 0$ and $\alpha_1|x|^{\alpha-1}x \geq f_1(x)\neq 0$, for all $0 \neq x \in\mathbb{R}$, and $f_1(0)=0$, $f'_1(0)\geq 0$. \item[(H2)] Let $f_2 \in C(R,R)$ and there exist $\alpha_2$, $\alpha_3 \in (0,\infty)$ such that $\alpha_{3}|y|^{\alpha+1}\leq f_2(y)y\leq\alpha_2|y|^{\alpha+1}$, for all $0\neq y \in\mathbb{R}$. \end{itemize} \begin{remark} \label{rmk2.1}\rm Assumption (H1) motivates us to take the nonlinearities of the form $$ f_1(x)=|x|^{\alpha-1}x\big(1\mp\text{ a nonlinear part}\big) $$ where nonlinear part is decaying at $\infty$. \end{remark} \begin{remark} \label{rmk2.2} \rm Assumption (H2) simply says that $\frac{f_2(y)}{|y|^{\alpha-1}y}$ is bounded, for all $0\neq y\in\mathbb{R}$. \end{remark} We begin with a lemma and the definition of some concepts, needed in this article. \begin{lemma}[\cite{Hardy, JarosKusanoYoshida}] \label{lem2.1} \rm Define $\varphi (u):=|u|^{\alpha-1}u$, $\alpha>0$. If $x$, $y\in\mathbb{R}$ then $$ x\varphi(x)+ \alpha y \varphi(y)-(\alpha+1)x\varphi(y) \geq 0 $$ where equality holds if and only if $x=y$. \end{lemma} Let $U$ be the set of all real valued functions $u \in C^{1}[t_1, t_2]$, such that $u(t_1)=u(t_2)=0$, where $t_1$ and $t_2$ are consecutive zeros of $u$. Also define the functionals $j$ and $J: U\to R$ by \begin{equation} \label{2.3} \begin{gathered} j(u)=\int_{t_1}^{t_2} \{p_1(t)|u'(t)|^{\alpha+1}-C_1q_1(t)|u(t)|^{\alpha+1} \}dt \\ J(u)=\int_{t_1}^{t_2} \{p_2(t)|u'(t)|^{\alpha+1}-(\alpha_2q_2^{+}(t) -\alpha_{3}q_2^{-}(t))|u(t)|^{\alpha+1}\}dt \end{gathered} \end{equation} where $ C_1=(\frac{\alpha_0}{\alpha_1{\alpha}})^{\alpha}\alpha_1$, $q_2^{+}=\max\{q_2,0\}$ and $q_2^{-}=\max\{-q_2,0\}$. The variation $V(u)$ is defined as \begin{equation} V(u)=J(u)-j(u). \label{2.4} \end{equation} \begin{theorem}[Leighton's variational type lemma] \label{thm2.1} Suppose that there exists a \\ function $u \in U$, not identically zero in any open subinterval of $(t_1,t_2)$ such that $j(u)\leq 0$. If $x$ is a nontrivial solution of \eqref{2.1} such that {\rm (H1)} holds, then $x$ has a zero in $(t_1,t_2)$ except possibly when $|u|^{\alpha}=|Kf_1(x)|$ for some nonzero constant $K$. \end{theorem} \begin{proof} Assume on the contrary that the statement is false. Let $x(t)\neq 0$ for every $t \in (t_1,t_2)$. We observe that the following equality is valid on $(t_1,t_2)$: %\label{2.5} \begin{align*} & (\frac{\alpha u(t) \varphi(u(t))}{f_1(x(t))}p_1(t)\varphi (x'(t)))'\\ &=\frac{\alpha u(t) \varphi(u(t))}{f_1(x(t))}(-q_1(t)f_1(x(t)))+p_1(t)\varphi(x'(t))(\frac{\alpha u(t) \varphi(u(t))}{f_1(x(t))})'\\ &= -\alpha q_1(t)u(t)\varphi(u(t))+p_1(t)\varphi(x'(t)) \Big[{\frac{\alpha(\alpha+1)u'(t)\varphi(u(t))}{f_1(x(t))}}\\ &\quad -\frac{\alpha u(t)\varphi(u(t))x'(t)f'_1(x(t))}{f_1^{2}(x(t))}\Big] \\ &= -\alpha q_1(t)u(t)\varphi(u(t))-p_1(t)\frac{|f_1(x(t))|^{\alpha-1}} {(f'_1(x(t)))^{\alpha}} \Big\{\alpha^{\alpha+1} u'(t)\varphi(u'(t))\\ &\quad -\alpha(\alpha+1)\varphi\Big(\frac{u(t)x'(t)f'_1(x(t))}{f_1(x(t))}\Big){u'(t)} \\ &\quad +\alpha{\frac{u(t)x'(t)f'_1(x(t))}{f_1(x(t))}}\varphi \Big(\frac{u(t)x'(t)f'_1(x(t))}{f_1(x(t))}\Big) -\alpha^{\alpha+1} u'(t)\varphi(u'(t))\Big\}. \end{align*} Using Lemma \ref{lem2.1} with $ x=\alpha u' (t)$ and $ y=\frac{u(t)x'(t)f'_1(x(t))}{f_1(x(t))}$ and hypothesis (H1), we obtain \begin{align*} % 2.6 &\big(\frac{\alpha u(t) \varphi(u(t))}{f_1(x(t))}p_1(t)\varphi (x'(t))\big)'\\ &\leq -\alpha q_1(t)|u(t)|^{\alpha+1}+\alpha^{\alpha+1} p_1(t){ \frac{(\alpha_1)^{\alpha-1}}{\alpha_{0}^\alpha}}|u'(t)|^{\alpha+1}\\ &\quad-p_1(t)\frac{|f_1(x(t))|^{\alpha-1}}{(f'_1(x(t)))^{\alpha}} \Big[|\alpha u'(t)|^{\alpha+1}+\alpha |\frac{u(t)x'(t)f'_1(x(t))} {f_1(x(t))}|^{\alpha+1} \\ &\quad -(\alpha+1)\alpha u'(t)\varphi (\frac{u(t)x'(t)f'_1(x(t))}{f_1(x(t))})\Big]. \end{align*} This implies \begin{equation} \label{2.6} \begin{aligned} &p_1(t)|u'(t)|^{\alpha+1}-C_1q_1(t)|u(t)|^{\alpha+1}\\ &\geq C_1\Big( \frac{u(t)\varphi(u(t))}{f_1(x(t))} p_1(t)\varphi (x'(t))\Big)'\\ &\quad+\frac{C_1}{\alpha}p_1(t)\frac{|f_1(x(t))|^{\alpha-1}}{(f'_1(x(t)))^{\alpha}} \Big\{|\alpha u'(t)|^{\alpha+1}+\alpha |\frac{u(t)x'(t)f'_1(x(t))}{f_1(x(t))}|^{\alpha+1} \\ &\quad-\alpha(\alpha+1)u'(t)\varphi\Big( \frac{u(t)x'(t)f'_1(x(t))}{f_1(x(t))} \Big) \Big\}. \end{aligned} \end{equation} Integrating over $(t_1,t_2)$, it follows that \begin{equation} \label{2.7} \begin{aligned} &\int_{t_1}^{t_2}(p_1(t)|u'(t)|^{\alpha+1}-C_1q_1(t)|u(t)|^{\alpha+1})dt\\ &\geq C_1(\frac{|u(t)|^{\alpha+1} p_1(t) \varphi(x'(t))}{f_1(x(t))}) \mid_{t_1}^{t_2}+\frac{C_1}{\alpha}\int_{t_1}^{t_2}p_1(t) \frac{|f_1(x(t))|^{\alpha-1}}{(f'_1(x(t)))^{\alpha}} \Big\{ |\alpha u'(t)|^{\alpha+1}\\ &\quad+\alpha |\frac{u(t)x'(t)f'_1(x(t))}{f_1(x(t))}|^{\alpha+1} -\alpha(\alpha+1)u'(t)\varphi(\frac{u(t)x'(t)f'_1(x(t))}{f_1(x(t))}) \Big\}dt. \end{aligned} \end{equation} Now, there are three cases for the behavior of $x(t)$ at $t_1$ and $t_2$. \smallskip \noindent \textbf{Case 1.} If both $x(t_1)\neq 0$ and $x(t_2)\neq 0$, then it follows from \eqref{2.7} and $u \in U$ that $j(u)\geq 0$ and from Lemma \ref{lem2.1} \begin{align*} &\int_{t_1}^{t_2}p_1(t)\frac{|f_1(x(t))|^{\alpha-1}}{(f'_1(x(t)))^{\alpha}} \{|\alpha u'(t)|^{\alpha+1}+\alpha |\frac{u(t)x'(t)f'_1(x(t))}{f_1(x(t))}|^{\alpha+1}\\ &-\alpha(\alpha+1)u'(t)\varphi\Big( \frac{u(t)x'(t)f'_1(x(t))}{f_1(x(t))}\Big) \}dt=0 \end{align*} if and only if $$ \alpha u'(t)-\frac{u(t)x'(t)f'_1(x(t))}{f_1(x(t))}\equiv 0. $$ This implies $$ |u(t)|^\alpha=|Kf_1(x(t))|,\quad \forall t \in (t_1,t_2) $$ and for some constant $K$. Since $t_1$ and $t_2$ are consecutive zeros of $u$, this implies that $u(t)\neq 0$ for all $t \in (t_1,t_2)$. So $K$ is a non-zero constant. Using this fact, we obtain $j(u)>0$, which leads a contradiction. This contradiction shows that $x$ vanishes at least once in $(t_1,t_2)$. \smallskip \noindent \textbf{Case 2.} If both $x(t_1)= 0$ and $x(t_2)=0$, then $x'(t_1)\neq 0$ and $x'(t_2)\neq 0$. It follows from the fact that zeros of a nontrivial solution of \eqref{2.1} are simple, which can be proved as follows. Indeed we prove only the case $x(t_1)= 0$. Assume on the contrary that $x'(t_1)= 0$. We take $x(t)>0$ on $(t_1, t_2)$ in the case $x(t)<0$ on $(t_1, t_2)$ is similar and hence omitted. It follows from \eqref{2.1} that $$ x'(t)=\varphi^{-1}\{-\frac{1}{p_1(t)}\int_{t_1}^{t}q_1(s)f_1(x(s))ds\}, $$ where $\varphi^{-1} (s)= |s|^{{\frac{1}{\alpha}}-1}s$ is the inverse function of $\varphi$. Since $x(t_1)= 0$ and $p_1 \in C^{1}([t_1,t_2],(0, \infty))$, \begin{align*} x(t)&=\int_{t_1}^{t}\varphi^{-1}\Big(-\frac{1}{p_1(\xi)} \int_{a}^{\xi}q_1(s)f_1(x(s))ds\Big)d\xi \\ &\leq (t-t_1)\varphi^{-1}\Big(M \int_{t_1}^{t}|q_1(s)||f_1(x(s))|ds\Big) \end{align*} for $t_1\leq t \leq t_2$, where $$ M=\max \big\{\frac{1}{p_1(t)}: t_1\leq t \leq t_2 \big\} $$ Hence $$ \varphi(x(t))\leq (t-t_1)^{\alpha} M \int_{t_1}^{t}|q_1(s)|f_1(x(s))|ds \quad \text{for }t_1\leq t \leq t_2 . $$ Using (H1), it follows from the Gronwall inequality that $\varphi(x(t)) =0$ for each $t\in [t_1, t_2]$. This implies that $x(t)=0$ on $(t_1,t_2)$, which contradicts the hypothesis $x(t)>0$ on $(t_1,t_2)$. Then if $x(t_1)=0$, by L'Hospital's Rule, considering (H1), assuming $x'(t_1)>0$, $$ \lim_{t\to t_1^{+}} \varphi \big(\frac{u(t)}{x(t)}\big) =\varphi \big(\lim_{t\to t_1^{+}} {\frac{u'(t)}{x'(t)}}\big)<\infty $$ and \begin{align*} \lim_{t\to t_1^{+}} \frac{u(t)}{\alpha_1}\varphi \big(\frac{u(t)}{x(t)} \big)p_1(t)\varphi(x'(t)) &\leq\lim_{t\to t_1^{+}} \frac{u(t)\varphi (u(t)) p_1(t) \varphi(x'(t))}{f_1(x(t))}\\ &\leq \lim_{t\to t_1^{+}} \frac{\alpha}{\alpha_{0}}u(t) \varphi \big(\frac{u(t)}{x(t)} \big)p_1(t)\varphi(x'(t)) , \end{align*} we have $$ \lim_{t\to t_1^{+}} \frac{u(t)\varphi (u(t)) p_1(t)\varphi(x'(t))}{f_1(x(t))}=0. $$ Similarly, $$ \lim_{t\to t_2^{-}} \frac{u(t)\varphi (u(t)) p_1(t)\varphi(x'(t)) }{f_1(x(t))}=0, $$ if $x(t_2)=0$. Therefore, we obtain from \eqref{2.7} that $j(u)\geq 0$ and hence we obtain a contradiction $j(u)> 0$ unless $|f_1(x)|$ is a constant multiple of $|u|^{\alpha}$. \smallskip \noindent\textbf{Case 3.} If $x(t_1)= 0$ and $x(t_2)\neq 0$ or $x(t_1)\neq 0$, $x(t_2)= 0$, then as in the proof of Case 1, it is obvious that $j(u)>0$ which leads a contradiction and hence $x$ vanishes at least once in $(t_1,t_2)$. This completes the proof. \end{proof} From Theorem \ref{thm2.1} we have the following result which is an extension of Leighton's Theorem for \eqref{2.1} and \eqref{2.2}. \begin{theorem} \label{thm2.2} Let {\rm (H1), (H2)} hold. If there exists a nontrivial real solution $y$ of $L_{y}=0$ in $(t_1,t_2)$ such that $y(t_1)=y(t_2)=0$ and $V(y)\geq 0$, then every nontrivial solution $x$ of $\ell x=0$ has one of the following properties: \begin{itemize} \item[(i)] $x$ has a zero in $(t_1,t_2)$ or, \item[(ii)] $|f_1(x)|$ is a nonzero constant multiple of $|y|^{\alpha}$. \end{itemize} \end{theorem} \begin{proof} Since $y(t_1)=0=y(t_2)$ and $Ly(t)=0$, by applying Green's identity, we have \begin{gather*} y(t)\Big(p_2(t)|y'(t)|^{\alpha-1}y'(t)\Big)'+q_2(t)f_2(y(t))y(t)=0,\\ \begin{aligned} \Big(p_2(t)y(t)|y'(t)|^{\alpha-1}y'(t)\Big)' &=y(t)\Big(p_2(t)|y'(t)|^{\alpha-1}y'(t)\Big)'+|y'(t)|^{\alpha+1}p_2(t)\\ &=-q_2(t)f_2(y(t))y(t)+|y'(t)|^{\alpha+1}p_2(t). \end{aligned} \end{gather*} Integrating both side from $t_1$ and $t_2$, we obtain \begin{equation} \int_{t_1}^{t_2} \Big(q_2(t)f_2(y(t))y(t)-p_2(t)|y'(t)|^{\alpha+1}\Big)dt=0. \label{2.9} \end{equation} In view of (H2), one can see that \begin{equation} \int_{t_1}^{t_2} \{ (q_2(t)f_2(y(t))y(t) -\Big(\alpha_2q_2^{+}(t)-\alpha_{3}q_2^{-}(t)\Big)|y(t)|^{\alpha+1}\}dt \leq 0 \label{2.10} \end{equation} By \eqref{2.9} and \eqref{2.10}, we have $J(y)\leq 0$. Since $V(y)\geq 0$ this implies that $$ j(y)\leq J(y) \leq 0 $$ and hence by an application of Theorem \ref{thm2.1} every nontrivial solution $x$ of $\ell x=0$ has at least one zero in $(t_1,t_2)$ except possibly when $|f_1(x(t))|$ is a nonzero constant multiple of $|y(t)|^{\alpha}$. This completes the proof. \end{proof} \begin{remark} \label{rmk2.3}\rm If the condition $V(y)\geq 0$ is strengthened to $V(y)>0$, conclusion (ii) of Theorem \ref{thm2.2} does not hold. \end{remark} From Theorem \ref{thm2.2} we immediately have the following Corollary which is an extension of Sturm-Picone Comparison Theorem for the equations \eqref{2.1} and \eqref{2.2}. \begin{corollary} \label{coro2.1} Let {\rm (H1)} and {\rm (H2)} hold. Suppose there exists a nontrivial solution $y$ of $Ly=0$ in $ (t_1, t_2)$ such that $y(t_1)=0=y(t_2)$ if $p_2(t)\geq p_1(t)$ and $$ C_1q_1(t)-\Big( \alpha_2q_2(t)-(\alpha_{3}-\alpha_2)q_2^{-}(t)\Big)\geq 0 $$ for every $t \in (t_1,t_2)$, then every nontrivial solution $x$ of $\ell x=0$ has at least one zero in $(t_1,t_2)$ unless $|f_1(x)|$ is a nonconstant multiple of $|y|^{\alpha}$. \end{corollary} From Theorem \ref{thm2.1}, Theorem \ref{thm2.2} and Corollary \ref{coro2.1} we easily obtain the following results which are straight forward extensions of the variational Lemma, Leighton's theorem and the celebrated Sturm-Picone theorem from \cite{Kreith, Leighton, Sturm, Swanson} valid for linear second order equations to the case of half-linear equations. \begin{corollary} \label{coro2.2} Let $f_1(x)=|x|^{\alpha-1}x$ in \eqref{2.1} if $$ \int_{t_1}^{t_2} \{p_1(t)|u'(t)|^{\alpha+1}-q_1(t)|u(t)|^{\alpha+1} \}dt \leq 0, $$ where $u \in U$, not identically zero in any open subinterval of $(t_1, t_2)$, then every nontrivial solution $x$ of \eqref{2.1} has a zero in $(t_1, t_2)$ except possibly when $u=Kx$ for some nonzero constant $K$. \end{corollary} \begin{corollary} \label{coro2.3} Let us consider equations \eqref{2.1} and \eqref{2.2} with $f_1(u)=|u|^{\alpha-1}u=f_2(u)$. Suppose there exists a nontrivial solution $y$ of $Ly=0$ in $(t_1, t_2)$ such that $y(t_1)=0=y(t_2)$. If $$ \int_{t_1}^{t_2} \{ (p_2(t)-p_1(t))|y'(t)|^{\alpha+1} + (q_1(t)-q_2(t))|y(t)|^{\alpha+1}\}dt\geq 0, $$ then every nontrivial solution $x$ of $\ell x=0$ has at least one zero in $(t_1,t_2)$ except possibly it is a constant multiple of $y$. \end{corollary} \begin{corollary} \label{coro2.4} Consider the equations \eqref{2.1} and \eqref{2.2} with $f_1(u)=|u|^{\alpha-1}u=f_2(u)$. Let $p_2(t)\geq p_1(t)$ and $q_1(t)\geq q_2(t)$ for every $t \in (t_1,t_2)$. If there exists a nontrivial solution $y$ of $Ly=0$ in $(t_1,t_2)$ such that $y(t_1)=0=y(t_2)$, then any nontrivial solution $x$ of $\ell x=0$ either has a zero in $(t_1,t_2)$ or it is a nonzero constant multiple of $y$. \end{corollary} Note that the Corollaries \ref{coro2.2}--\ref{coro2.4} were also obtained by Jaros and Kusano \cite{JarosandKusano}. But their proofs depend on the Picone-type and Wirtinger-type inequalities. Corollary \ref{coro2.3} was also obtained by Li and Yeh \cite{Li} using different way. \section{Singular Sturm-Picone theorem for nonlinear equations} In this section, we consider the second-order nonlinear singular equations \begin{gather} \ell_{s}x:=\Big(p_1(t)|x'|^{\alpha-1}x'\Big)'+q_1(t)f_1(x)=0 \label{3.1}\\ L_{s}y:=\Big(p_2(t)|y'|^{\alpha-1}y'\Big)'+q_2(t)f_2(y)=0 \quad t_10$ which leads to a contradiction. This contradiction shows that $x$ vanishes at least once in $(t_1,t_2)$. This completes the proof. \end{proof} As in Section 2, from Theorem \ref{thm3.1} plays an important role to establish the following result which is an extension of Leighton's theorem for equations \eqref{3.1} and \eqref{3.2} for the singular case. \begin{theorem} \label{thm3.2} Suppose that there exists a nontrivial real solution $y \in D$ of $L_{s}y=0$ in $(t_1, t_2)$. Let $x$ be any nontrivial solution of $\ell_{s}x=0$. Let also (H1) and (H2). If $A_{t_1t_2}[y,x]\geq 0$, $$ \lim_{t\to t_1^{+}}p_2(t)y(t)|y'(t)|^{\alpha-1}y'(t)\geq 0,\quad \lim_{t\to t_2^{-}}p_2(t)y(t)|y'(t)|^{\alpha-1}y'(t)\leq 0 $$ and $V_{s}(y)> 0$, then $x$ has at least one zero in $(t_1, t_2)$. If the condition $V(y)>0$ is weakened to $V_{s}(y)\geq 0$ the same conclusion holds unless $|f_1(x)|$ is a nonzero constant multiple of $|y|^{\alpha}$. \end{theorem} From Theorem \ref{thm3.2}, we have the following corollary which is the extension of Sturm-Picone comparison theorem for equations \eqref{3.1} and \eqref{3.2}. \begin{corollary} \label{coro3.1} Suppose that there exists a nontrivial real solution $y \in D$ of $L_{s}y=0$ in $(t_1, t_2)$. Let $x$ be any nontrivial solution of $\ell_{s}x=0$. Let also (H1) and (H2). If $A_{t_1t_2}[y,x]\geq 0$, $ p_2(t)\geq p_1(t)$, \begin{gather*} \lim_{t\to t_1^{+}}p_2(t)y(t)|y'(t)|^{\alpha-1}y'(t)\geq 0 , \quad \lim_{t\to t_2^{-}}p_2(t)y(t)|y'(t)|^{\alpha-1}y'(t)\leq 0, \\ C_1q_1(t)-(\alpha_2q_2(t)-(\alpha_{3}-\alpha_2)q_2^{-}(t))\geq 0\quad \forall t \in (t_1, t_2), \end{gather*} then $x$ has at least one zero in $(t_1, t_2)$ unless $|f_1(x)|$ is a nonzero constant multiple $|y|^{\alpha}$. \end{corollary} Finally the results in Theorems \ref{thm3.1}--\ref{thm3.2} and Corollary \ref{coro3.1} which are nonlinear extensions of the variational lemma, Leighton's theorem and Sturm-Picone theorem respectively, can also be given for the singular half-linear case as in the following: \begin{corollary} \label{coro3.2} Let $f_1(x)=|x|^{\alpha-1}x$ in \eqref{3.1}. Suppose that there exists a function $u \in D_{j_{s}}$, not identically zero in any open subinterval of $(t_1,t_2)$ such that $j_{s}(u)\leq 0$. If $x$ is a nontrivial solution of \eqref{3.1} such that $A_{t_1t_2}[u,x]\geq 0$, then $x$ has a zero in $(t_1, t_2)$ except possibly when $u=Kx$ for some nonzero constant $K$. \end{corollary} \begin{corollary} \label{coro3.3} Let us consider equations \eqref{3.1} and \eqref{3.2} with $f_1(u)=|u|^{\alpha-1}u=f_2(u)$. Suppose that there exists a nontrivial real solution of $y \in D$ of $L_{s}y=0$. Let $x$ be any nontrivial solution of $\ell_{s}x=0$. If $V_{s}(y)\geq 0$, $ A_{t_1t_2}[y,x]\geq 0$ and $$ \lim_{t\to t_1^{+}}p_2(t)y(t)|y'(t)|^{\alpha-1}y'(t)\geq 0 ,\quad \lim_{t\to t_2^{-}}p_2(t)y(t)|y'(t)|^{\alpha-1}y'(t)\leq 0 , $$ then $x$ has at least one zero in $(t_1, t_2)$ unless $x$ is a nonzero constant multiple of $y$. \end{corollary} \begin{corollary} \label{coro3.4} Consider the equations \eqref{3.1} and \eqref{3.2} with $f_1(u)=|u|^{\alpha-1}u=f_2(u)$. Suppose that there exists a nontrivial real solution $y \in D$ of $L_{s}y=0$. Let $x$ be any nontrivial solution of $\ell_{s}(x)=0$. If $A_{t_1t_2}[y,x]\geq 0$, $p_2(t)\geq p_1(t)$, $q_1(t)\geq q_2(t)$ for all $t \in (t_1,t_2)$, and $$ \lim_{t\to t_1^{+}}p_2(t)y(t)|y'(t)|^{\alpha-1}y'(t)\geq 0,\quad \lim_{t\to t_2^{-}}p_2(t)y(t)|y'(t)|^{\alpha-1}y'(t)\leq 0 , $$ then any nontrivial solution $x$ of $\ell_{s}x=0$ either has a zero in $(t_1, t_2)$ or it is a nonzero constant multiple of $y$. \end{corollary} \subsection*{Acknowledgments} This manuscript is dedicated to the memory of honorable Necdet Do\u{g}anata, the founder of Izmir University. The author would like to thank the anonymous referee for his/her useful comments and suggestions. \begin{thebibliography}{00} \bibitem{Aharonov} Aharonov, D.; Elias, U.; \emph{Singular Sturm comparison theorems}, J. Math. Anal. Appl. 371(2), (2010), 759-763. \bibitem{Ahmad} Ahmad, S.; Lazer, A., C.; \emph{A new generalization of the Sturm comparison theorem to self adjoint systems}, Proc. Amer. Math. Soc., 68 (1978), 185-188. \bibitem{Ahmad2} Ahmad, S.; \emph{On Sturmian theory for second order systems}, Proc. Amer. Math. Soc. 87 (1983), 661-665. \bibitem{Allegretto} Allegretto, W.; \emph{Sturm type theorems for solutions of elliptic nonlinear problems}, Nonlinear Differ. Equ. Appl., 7 (2000), 309-321. \bibitem{AllegrettoH} Allegretto, W.; Huang, Y.-X.; \emph{A Picones identitiy for the p-Laplacian and applications}, Nonlinear Analysis T. M. A, 32 (1998), 819-830. \bibitem{Allegretto2} Allegretto, W.; \emph{Sturm theorems for degenerate elliptic equations}, Proc. Amer. Math. Soc. 129 (2001), 3031-3035. \bibitem{Dosly}Do\v{s}ll\'y, O.; \emph{The Picone identity for a class of partial differential equations}, Mathematica Bohemica, 127 (2002), 581-589. \bibitem{DoslyandJaros} Do\v{s}l\'y, O.; Jaro\v{s}, J.; \emph{A singular version of Leighton's comparison theorem for forced quasilinear second-order differential equations}, Arch. Math. (BRNO), 39 (2003), 335-345. \bibitem{Fisnarova} Fi\v{s}narov\'a, S.; Ma\v{r}\'ik, R.; \emph{Generalized Picone and Riccati inequalites for half-linear differential operators with arbitrary elliptic matrices}, Electronic J. Diff. Equations, No: 111, (2010), pp. 1-13. \bibitem{Hardy} Hardy, G. H., Littlewood, J. E.; Polya, G.; \emph{Inequalities}, Cambridge Univ. Press, 1988. \bibitem{JarosandKusano} Jaro\v{s}, J.; Kusano T., A; \emph{Picone type identity for second order half-linear differential equations}, Acta Math. Univ. Comenianae, Vol. LXVIII, 1(1999), 137-151. \bibitem{JarosKusanoYoshida} Jaro\v{s}, J.; Kusano, T.; Yoshida, N.; \emph{Forced superlinear oscillations via Picone's identity}, Acta Math. Univ. Comenianae, LXIX (2000), 107-113. \bibitem{JarosKusanoYoshida2} Jaro\v{s}, J., Kusano, T.; Yoshida, N.; \emph{Picone type inequalies for half linear elliptic equations and their applications}, Adv. Math. Sci. Appl., 12(2), (2002), 709-724. \bibitem{Kreith} Kreith, K.; \emph{Oscillation Theory, Lecture Notes in Mathematics}, no. 324, Springer-Verlag, 1973. \bibitem{Leighton} Leighton, W.; \emph{Comparison theorems for linear differential equations of second order}, Proc. Amer. Math. Soc. 13 (1962), 603–610. \bibitem{Li} Li, H. J.; Yeh, C. C.; \emph{Sturmian comparison theorem for half-linear second order differential equations}, Proc. Roy. Soc. Edinburgh 125A (1995), 1193–1204. \bibitem{Muller} M\"uller-Pfeiffer, E.; \emph{Sturm Comparison theorems for non-selfadjoint differential equations on non-compact intervals}, Math. Nachr., 159 (1992), 291-298. \bibitem{Picone} Picone, M.; \emph{Sui valori eccezionali di un parametro da cui dipende un’equazione differenziale lineare ordinaria del second ordine}, Ann. Scuola Norm. Pisa 11 (1909), 1-141. \bibitem{Sturm} Sturm, C.; \emph{Sur les \'equations diff\'entielles lin\'earies du second ordere}, J. Math. Pures. Appl., 1 (1836), 106-186. \bibitem{Swanson} Swanson, C. A.; \emph{Comparison and Oscillation Theory of Linear Differential Equations}, Academic Press, New York, 1968. \bibitem{Tadie} Tadie; \emph{Oscillation criteria for semilinear elliptic equations with a damping term in $R^n$}, Electronic J. Diff. Equations, No. 51, (2010), pp. 1-5. \bibitem{TyagiR} Tyagi, T.; Raghavendra, V.; \emph{A note on generalization of Sturm's comparison theorem}, Nonlinear Dyn. Syst. Theory, 8(2) (2008), 213-216. \bibitem{Tyagi} Tyagi, J.; \emph{Generalization of Sturm-Picone theorem for second order nonlinear differential equations}, Taiwanese Journal of Mathematics, Vol. 17, No. 1 ,(2013) pp. 361-378. \bibitem{Yoshida} Yoshida, N.; \emph{Oscillation theory of partial differential equations}, World Scientific, 2008. \bibitem{Yoshida2} Yoshida, N.; \emph{A Picone identity for half-linear elliptic equations and its applications to oscillation theory}, Nonlinear Anal., 71 (2009), pp. 4935-4951. \bibitem{Zhang}Zhang, C.; Sun, S.; \emph{Sturm-Picone comparison theorem of second-order linear equations on time scales}, Adv. Diff. Eqs., (2009), pp. 12. \end{thebibliography} \end{document}