\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 147, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/147\hfil Dirichlet impulsive differential equations] {Existence of solutions to Dirichlet impulsive differential equations through a local minimization principle} \author[G. A. Afrouzi, S. Shokooh, A. Hadjian \hfil EJDE-2014/147\hfilneg] {Ghasem A. Afrouzi, Saeid Shokooh, Armin Hadjian} % in alphabetical order \address{Ghasem A. Afrouzi \newline Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran} \email{afrouzi@umz.ac.ir} \address{Saeid Shokooh \newline Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran} \email{saeid.shokooh@stu.umz.ac.ir} \address{Armin Hadjian \newline Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, P.O. Box 1339, Bojnord 94531, Iran} \email{hadjian83@gmail.com} \thanks{Submitted January 20, 2014. Published June 24, 2014.} \subjclass[2000]{34B37, 34B15, 58E05} \keywords{Impulsive differential equations; Dirichlet condition; \hfill\break\indent classical solution; variational methods} \begin{abstract} A critical point theorem (local minimum result) for differentiable functionals is used for proving that a Dirichlet impulsive differential equation admits at least one non-trivial solution. Some particular cases and a concrete example are also presented. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} %\newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article, we study the existence of at least one non-trivial classical solution to the nonlinear Dirichlet boundary-value problem \begin{equation}\label{e1.1} \begin{gathered} -(p(t)u'(t))'+q(t)u(t)=\lambda f(t,u(t)), \quad t\in [0,T],\; t\not= t_j,\\ u(0)=u(T)=0,\\ \Delta u'(t_j)=\lambda I_j(u(t_j)),\quad j=1,2,\dots,n, \end{gathered} \end{equation} where $T>0$, $p\in C^1([0,T],]0,+\infty[)$, $q\in L^{\infty}([0,T])$, $\lambda \in ]0,+\infty[$, $f:[0,T]\times \mathbb{R} \to \mathbb{R}$ is an $L^1$-Carath\'{e}odory function, $0=t_0-p^-$, where $$ p^-:=\operatorname{ess\,inf}_{t\in[0,T]}p(t)>0, \quad q^-:=\operatorname{ess\,inf}_{t\in[0,T]}q(t). $$ Moreover, put $\sigma_0:=\min\{T^2q^-/\pi^2,0\}$ and $\delta:=\sqrt{p^-+\sigma_0}$. Then, we have the following useful proposition. \begin{proposition}\label{prop2.2} Let $u \in X$. Then \begin{gather}\label{e2.3} \|u'\|_{L^2([0,T])}\leq \frac{1}{\delta} \|u\|, \\ \label{e2.4} \|u\|_{\infty }\leq \frac{\sqrt T}{2\delta}\|u\|. \end{gather} \end{proposition} \begin{proof} First we prove \eqref{e2.3}. To this end, let $q^-\geq 0$. Then, $\sigma_0=0$ and $\delta=\sqrt{p^-}$. Therefore, \begin{align*} \|u'\|_{L^2([0,T])}^2 &\leq\frac{1}{p^-}\int_0^T p(t)|u'(t)|^2\,dt\\ &\leq\frac{1}{p^-}\int_0^T \left(p(t)|u'(t)|^2+q(t)|u(t)|^2\right)dt =\frac{1}{\delta^2}\|u\|^2. \end{align*} Thus, the desired inequality \eqref{e2.3} follows. On the other hand, if $q^-<0$, we have $\sigma_0=\frac{T^2q^-}{\pi^2}$ and $\delta=\sqrt{p^-+\frac{T^2q^-}{\pi^2}}$. Obviously, $$ q^-\|u\|_{L^2([0,T])}^2\leq\int_0^T q(t)|u(t)|^2\,dt. $$ Now, applying inequality \eqref{e2.2} and bearing in mind that $q^-<0$, one has $$ \frac{T^2q^-}{\pi^2}\|u'\|_{L^2([0,T])}^2\leq q^-\|u\|_{L^2([0,T])}^2. $$ By the above inequalities we have $$ \frac{T^2q^-}{\pi^2}\|u'\|_{L^2([0,T])}^2\leq\int_0^T q(t)|u(t)|^2\,dt. $$ This inequality together with $$ p^-\|u'\|_{L^2([0,T])}^2\leq\int_0^T p(t)|u'(t)|^2\,dt, $$ imply \eqref{e2.3}. In view of H\"{o}lder's inequality and \eqref{e2.3}, one has $$ \|u\|_{\infty }\leq \frac{\sqrt T}{2}\|u'\|_{L^2([0,T])}\leq \frac{\sqrt T}{2\delta}\|u\|, $$ which completes and the proof. \end{proof} Put $k:=\big(\|p\|_{\infty }+\frac{T^2}{\pi^2}\|q\|_{\infty }\big)^{1/2}$. Then, from \eqref{e2.2} we have \begin{equation}\label{e2.5} \|u\|\leq k\|u'\|_{L^2([0,T])}. \end{equation} Here and in the sequel $f:[0,T]\times\mathbb{R}\to\mathbb{R}$ is an $L^1$-Carath\'eodory function, namely: \begin{itemize} \item[(a)] the mapping $t\mapsto f(t,x)$ is measurable for every $x\in\mathbb{R}$; \item[(b)] the mapping $x\mapsto f(t,x)$ is continuous for almost every $t\in [0,T]$; \item[(c)] for every $\rho>0$ there exists a function $l_\rho\in L^1([0,T])$ such that $$ \sup_{|x|\leq \rho}|f(t,x)|\leq l_{\rho}(t) $$ for almost every $t\in [0,T]$. \end{itemize} Corresponding to $f$ we introduce the function $F:[0,T]\times\mathbb{R}\to\mathbb{R}$ as follows $$ F(t,x):=\int_0^x f(t,\xi)\,d\xi, $$ for all $(t,x)\in [0,T]\times\mathbb{R}$. By a \textit{classical solution} of problem \eqref{e1.1}, we mean a function $$ u\in\left\{w\in C([0,T]): w|_{{[t_j,t_{j+1}]}}\in H^2([t_j,t_{j+1}])\right\} $$ that satisfies the equation in \eqref{e1.1} a.e. on $[0,T]\setminus \{t_1,\dots,t_n\}$, the limits $u'(t^+_j)$, $u'(t^-_j)$, $j=1,\dots,n$, exist, satisfy the impulsive conditions $\Delta u'(t_j)=\lambda I_j(u(t_j))$ and the boundary condition $u(0)=u(T)=0$. We say that a function $u \in X$ is a \textit{weak solution} of problem \eqref{e1.1}, if $u$ satisfies \begin{align*} &\int_0^T p(t)u'(t)v'(t)\,dt+\int_0^Tq(t)u(t)v(t)\,dt \\ &-\lambda\Big(\int_0^T f(t,u(t))v(t)\,dt-\sum_{j=1}^n p(t_j)I_j(u(t_j))v(t_j)\Big)=0, \end{align*} for any $v\in X$. \begin{lemma}[{\cite[Lemma 2.3]{bodihe}}]\label{lem2.3} The function $u\in X$ is a weak solution of problem \eqref{e1.1} if and only if $u$ is a classical solution of \eqref{e1.1}. \end{lemma} \begin{lemma}[{\cite[Lemma 3.1]{bodihe}}]\label{lem2.4} Assume that \begin{itemize} \item [(A1)] there exist constants $\eta, \theta>0$ and $\sigma\in [0,1[$ such that $$ |I_j(x)|\leq2\eta|x|+\theta|x|^{\sigma+1}\quad \text{for all } x \in \mathbb{R}, \; j=1,2,\dots,n. $$ \end{itemize} Then, for any $u\in X$, we have \begin{equation} \label{e2.6} \big|\sum_{j=1}^n p(t_j)\int_0^{u(t_j)}I_j(x)\,dx\big|\le \sum_{j=1}^n p(t_j)\Big(\eta\|u\|_\infty^2+\frac{\theta}{\sigma+2} \|u\|_{\infty}^{\sigma+2}\Big). \end{equation} \end{lemma} Also put \[ \tilde p:=\sum_{j=1}^n p(t_j),\quad \mu(\tau):=\frac{\sqrt{2}k\tau}{\delta}, \quad\Gamma_c:=\frac{\eta}{c}+ \Big(\frac{\theta}{\sigma+2}\Big)c^{\sigma-1}, \] where $\eta$, $\theta$, $\sigma$ are given by (A1) and $c,\tau$ are positive constants. We assume throughout, and without further mention, that the assumption (A1) holds. \section{Main results} For a given non-negative constant $\nu$ and a positive constant $\tau$ with $\delta^2\nu^2\neq 2k^2\tau^2,$ put $$ a_\tau(\nu):=\frac{\int_0^T\max_{|x|\leq\nu}F(t,x)\,dt +\tilde{p}\nu^3\Gamma_\nu +\tilde{p}(\mu(\tau))^3\Gamma_{\mu(\tau)}-\int_{T/4}^{3T/4}F(t,\tau)\,dt} {\delta^2\nu^2-2k^2\tau^2}. $$ \begin{theorem}\label{the3.1} Assume that there exist a non-negative constant $\nu_1$ and two positive constants $\nu_2$ and $\tau$, with $\nu_1<\sqrt 2\tau<\delta\nu_2/k$, such that \begin{itemize} \item[(A2)] $F(t,\xi)\geq 0$ for all $(t,\xi)\in([0,\frac{T}{4}] \cup[\frac{3T}{4},T])\times [0,\tau]$; \item[(A3)] $a_\tau(\nu_2)0}\frac{\nu^2}{TF(\nu)+\tilde p\nu^3\Gamma_\nu}[$, problem \eqref{e3.1} admits at least one non-trivial classical solution $u_0\in X$. \end{theorem} \begin{proof} For fixed $\lambda$ as in the conclusion, there exists a positive constant $\nu$ such that \begin{equation}\label{e3.2} \lambda(TF(\nu)+\tilde p\nu^3\Gamma_\nu)<\frac{2\delta^2\nu^2}{T}. \end{equation} Moreover, assumption (A7) implies that $\lim_{t\to 0^+}\frac{F(\xi)}{\xi^2}=+\infty$. On the other hand, $$ \lim_{\xi\to 0^+}\frac{{(\mu(\xi))^3} \Gamma_{\mu(\xi)}}{\xi^2} =\begin{cases} \eta\big(\frac{\sqrt2\,k}{\delta}\big)^2, & \text{if } 0<\sigma<1,\\ \Gamma_1\big(\frac{\sqrt2\,k}{\delta}\big)^2, & \text{if } \sigma=0. \end{cases} $$ Therefore, $$ \lim_{\xi\to 0^+}\frac{F(\xi)-{(\mu(\xi))^3} \Gamma_{\mu(\xi)}}{\xi^2}=+\infty. $$ So, a positive constant $\tau$ satisfying $\sqrt 2k\tau <\delta\nu$ can be chosen such that \begin{equation}\label{e3.3} \lambda\Big(\frac{\frac{T}{2}F(\tau)-\tilde p\,{(\mu(\tau))^3} \Gamma_{\mu(\tau)}}{\tau^2}\Big)>\frac{4k^2}{T}. \end{equation} Hence, taking \eqref{e3.2} and \eqref{e3.3} into account, Theorem \ref{the3.1} ensures the conclusion. \end{proof} \begin{remark}\label{rem3.5}\rm Taking (A7) into account, fix $\rho>0$ such that $f(\xi)>0$ for all $\xi\in ]0,\rho[$. Then, put $$ \lambda_\rho:=\frac{2\delta^2}{T}\sup_{\nu\in ]0,\rho[}\frac{\nu^2}{TF(\nu)+\tilde p\nu^3\Gamma_\nu}. $$ The result of Theorem \ref{the3.4} for every $\lambda \in ]0,\lambda_\rho[$ holds with $|u_0(t)|<\rho$ for all $t\in[0,T]$, where $u_0$ is the ensured non-trivial classical solution in $X$. \end{remark} \begin{example}\label{ex3.6}\rm Let $I(u(t_1))=u(t_1)$ for some $t_1\in(0,1)$. Then $I:\mathbb{R}\to\mathbb{R}$ is a continuous function satisfying the sublinear growth condition (A1) with $\eta=\theta=\frac{1}{3}$ and $\sigma=0$. Now, put $p(t)=1$, $q(t)=\frac{-\pi^2}{2}$ for all $t\in [0,1]$ and $f(\xi)=(1+\xi)e^\xi$ for every $\xi\in\mathbb{R}$. Clearly, one has $\delta=\frac{1}{\sqrt 2}$. Hence, since $$ \sup_{\nu\in]0,1[}\frac{\nu^2}{\int_0^\nu f(\xi)\,d\xi+\nu^3\Gamma_\nu}=\sup_{\nu\in]0,1[} \frac{\nu^2}{\nu e^\nu+\nu^3\Gamma_\nu}=\frac{2}{2e+1}, $$ from Remark \ref{rem3.5}, for every $\lambda\in\big]0,\frac{2}{2e+1}\big[$ the problem \begin{gather*} -u''(t)-\frac{\pi^2}{2}u(t)=\lambda(1+u(t))e^{u(t)} , \quad \text{ a.e. in } [0,1],\\ u(0)=u(1)=0,\\ \Delta u'(t_1)=\lambda u(t_1), \end{gather*} has at least one non-trivial classical solution $u_0\in H_0^1(0,1)$ such that $|u_0(t)|<1$ for all $t\in[0,1]$. \end{example} Here, we point out a special situation of our main result when the nonlinear term has separable variables. To be precise, let $\alpha\in L^1([0,T])$ such that $\alpha(t)\geq 0$ a.e. $t\in [0,T]$, $\alpha\not\equiv 0$, and let $g:\mathbb{R}\to\mathbb{R}$ be a nonnegative continuous function. Consider the following Dirichlet boundary-value problem \begin{equation}\label{e3.4} \begin{gathered} -(p(t)u'(t))'+q(t)u(t)=\lambda \alpha(t)g(u(t)), \quad t\in [0,T],\; t\not=t_j,\\ u(0)=u(T)=0,\\ \Delta u'(t_j)=\lambda I_j(u(t_j)),\quad j=1,2,\dots,n. \end{gathered} \end{equation} Put $ G(x):=\int_0^x g(\xi)\,d\xi$ for all $x\in\mathbb{R}$, and set $\|\alpha\|_1:=\int_0^T\alpha(t)\,dt$ and $\alpha_0:=\int_{T/4}^{{3T}/4}\alpha(t)\,dt$. \begin{corollary}\label{cor3.7} Let $I_j(x)\leq 0$ for all $x\in\mathbb{R}$, $j=1,\ldots,n$. Assume that there exist a non-negative constant $\nu_1$ and two positive constants $\nu_2$ and $\tau$, with $\nu_1<\sqrt{2}\tau<\delta\nu_2/k$, such that \begin{itemize} \item[(A8)] \begin{align*} &\frac{G(\nu_2)\|\alpha\|_1+\tilde{p}\nu_2^3\Gamma_{\nu_2} +\tilde{p}(\mu(\tau))^3\Gamma_{\mu(\tau)}-G(\tau)\alpha_0} {\delta^2\nu_2^2-2k^2\tau^2}\\ &<\frac{G(\nu_1)\|\alpha\|_1+\tilde{p}\nu_1^3\Gamma_{\nu_1} +\tilde{p}(\mu(\tau))^3\Gamma_{\mu(\tau)}-G(\tau)\alpha_0} {\delta^2\nu_1^2-2k^2\tau^2}. \end{align*} \end{itemize} Then, for each \begin{align*} &\lambda\in\Big]\frac{2\delta^2\nu_1^2-4k^2\tau^2} {T\big(G(\nu_1)\|\alpha\|_1+\tilde{p}\nu_1^3\Gamma_{\nu_1} +\tilde{p}(\mu(\tau))^3\Gamma_{\mu(\tau)}-G(\tau)\alpha_0\big)},\\ &\frac{2\delta^2\nu_2^2-4k^2\tau^2} {T\big(G(\nu_2)\|\alpha\|_1+\tilde{p}\nu_2^3\Gamma_{\nu_2} +\tilde{p}(\mu(\tau))^3\Gamma_{\mu(\tau)}-G(\tau)\alpha_0\big)}\Big[, \end{align*} problem \eqref{e3.4} admits at least one positive classical solution $u_0\in X$, such that $$ \frac{2\delta \nu_1}{\sqrt T}<\|u_0\|<\frac{2\delta \nu_2}{\sqrt T}. $$ \end{corollary} \begin{proof} Put $f(t,\xi):=\alpha(t)g(\xi)$ for all $(t,\xi)\in[0,T]\times\mathbb{R}$. Clearly, $F(t,x)=\alpha(t)G(x)$ for all $(t,x)\in [0,T]\times\mathbb{R}$. Therefore, taking into account that $G$ is a non-decreasing function, Theorem \ref{the3.1} and \cite[Lemma 3.6]{bodihe} ensure the conclusion. \end{proof} An immediate consequence of Corollary \ref{cor3.7} is the following. \begin{corollary}\label{cor3.8} Let $I_j(x)\leq 0$ for all $x\in\mathbb{R},\,j=1,\ldots,n$. Assume that there exist two positive constants $\nu$ and $\tau$, with $\sqrt{2}k\tau<\delta\nu$, such that \begin{itemize} \item[(A9)] $\frac{G(\nu)\|\alpha\|_1+\tilde{p}\nu^3\Gamma_\nu}{\nu^2} <\frac{\delta^2}{2k^2}\frac{G(\tau)\alpha_0-\tilde{p}(\mu(\tau))^3 \Gamma_{\mu(\tau)}}{\tau^2}$. \end{itemize} Then, for each $$ \lambda\in\Big]\frac{4k^2\tau^2}{T\big(G(\tau)\alpha_0 -\tilde{p}(\mu(\tau))^3\Gamma_{\mu(\tau)}\big)}, \frac{2\delta^2\nu^2}{T\big(G(\nu)\|\alpha\|_1+\tilde{p}\nu^3\Gamma_\nu\big)} \Big[, $$ problem \eqref{e3.4} admits at least one positive classical solution $u_0\in X$, such that $|u_0(t)|<\nu$ for all $t\in[0,T]$. \end{corollary} The above corollary follows directly from Theorem \ref{the3.2} and \cite[Lemma 3.6]{bodihe}. Now, consider the nonlinear Dirichlet boundary-value problem \begin{equation}\label{e3.5} \begin{gathered} -u''(t)+a(t)u'(t)+b(t)u(t)=\lambda h(t,u(t)), \quad t\in [0,T],\; t\neq t_j,\\ u(0)=u(T)=0,\\ \Delta u'(t_j)=\lambda I_j(u(t_j)),\quad j=1,2,\dots,n, \end{gathered} \end{equation} where $h:[0,T]\times \mathbb{R} \to \mathbb{R}$ is an $L^1$-Carath\'{e}odory function and $a,b \in L^{\infty}([0,T])$ satisfy the following conditions $$ \operatorname{ess\,inf}_{t\in[0,T]}a(t)\geq 0,\quad\operatorname{ess\,inf}_{t\in[0,T]}\big\{b(t)e^{-A(t)}\big\} >-\frac{\pi^2}{T^2}e^{-A(T)}, $$ where $A(t)$ be a primitive of $a(t)$. It is easy to see that the solutions of \eqref{e1.1} are solutions of \eqref{e3.5} if \[ p(t)=e^{-\int_0^t a(\xi)\,d\xi},\quad q(t)=b(t)e^{-\int_0^t a(\xi)\,d\xi},\quad f(t,u)=h(t,u)e^{-\int_0^t a(\xi)\,d\xi}. \] Let $H(t,x):=\int_0^x h(t,\xi)\,d\xi$. Then, by a simple computation, we obtain $$ F(t,x)=e^{-A(t)}H(t,x),\quad\forall(t,x)\in[0,T]\times\mathbb{R}. $$ Set \begin{gather*} \tilde{k}:=\Big(1+\frac{T^2}{\pi^2}\|be^{-A}\|_\infty\Big)^{1/2}, \quad\tilde{\sigma}_0:=\min\big\{\frac{T^2}{\pi^2} \operatorname{ess\,inf}_{t\in[0,T]}\big(b(t)e^{-A(t)}\big),0\big\},\\ \tilde{\delta}:=\sqrt{e^{-A(T)}+\tilde{\sigma}_0}. \end{gather*} For a given non-negative constant $\nu$ and a positive constant $\tau$ with $\tilde{\delta}^2\nu^2\neq 2\tilde{k}^2\tau^2,$ put $\tilde{\mu}(\tau):=\sqrt{2}\tilde{k}\tau/ \tilde{\delta}$ and \begin{align*} \tilde{a}_\tau(v) &:=\Big( \int_0^T e^{-A(t)}\max_{|x|\leq \nu}H(t,x)\,dt +\tilde p\nu^3\Gamma_\nu+\tilde p\,({\tilde{\mu}(\tau)})^3 \Gamma_{\tilde{\mu}(\tau)}\\ &\quad -\int_{T/4}^{3T/4}e^{-A(t)}H(t,\tau)\,dt\Big) \big/ \big(\tilde{\delta}^2 \nu^2-2\tilde{k}^2\tau^2\big). \end{align*} With the above notation and by Theorem \ref{the3.1}, we obtain the following existence property for problem \eqref{e3.5}. \begin{theorem}\label{the3.9} Assume that there exist a non-negative constant $\nu_1$ and two positive constants $\nu_2$ and $\tau$, with $\nu_1<\sqrt 2\tau<\tilde{\delta}\nu_2/\tilde{k}$, such that \begin{itemize} \item[(A10)] $H(t,\xi)\geq 0$ for all $(t,\xi) \in([0,\frac{T}{4}]\cup[\frac{3T}{4},T])\times [0,\tau]$; \item[(A11)] $\tilde{a}_\tau(\nu_2)<\tilde{a}_\tau(\nu_1)$. \end{itemize} Then, for each $\lambda\in]\frac{2}{T\,\tilde{a}_\tau(\nu_1)}, \frac{2}{T\,\tilde{a}_\tau(\nu_2)}[$, problem \eqref{e3.5} admits at least one non-trivial classical solution $u_0\in X$ such that $$ \frac{2\tilde{\delta} \nu_1}{\sqrt T}<\|u_0\|<\frac{2\tilde{\delta} \nu_2}{\sqrt T}. $$ \end{theorem} \begin{thebibliography}{99} \bibitem{AfHadHei} G. A. Afrouzi, A. Hadjian, S. Heidarkhani; \emph{Non-trivial solutions for a two-point boundary value problem}, Ann. Polon. Math., \textbf{108} (2013), 75--84. \bibitem{Bonanno} G. Bonanno; \emph{A critical point theorem via the Ekeland variational principle}, Nonlinear Anal., \textbf{75} (2012), 2992--3007. \bibitem{bodihe} G. Bonanno, B. Di Bella, J. Henderson; \emph{Existence of solutions to second-order boundary-value problems with small perturbations of impulses}, Electron. J. Differential Equations, Vol. \textbf{2013} (2013), No. 126, pp. 1--14. \bibitem{BonaDiOreg} G. Bonanno, B. Di Bella, D. O'Regan; \emph{Non-trivial solutions for nonlinear fourth-order elastic beam equations}, Comput. Math. Appl., \textbf{62} (2011), 1862--1869. \bibitem{BonaHeiOreg} G. Bonanno, S. Heidarkhani, D. O'Regan; \emph{Nontrivial solutions for Sturm-Liouville systems via a local minimum theorem for functionals}, Bull. Aust. Math. Soc., \textbf{89} (2014), 8--18. \bibitem{BonaMoliRad1} G. Bonanno, G. Molica Bisci, V. R\u{a}dulescu; \emph{Nonlinear elliptic problems on Riemannian manifolds and applications to Emden-Fowler type equations}, Manuscripta Math., \textbf{142} (2013), 157--185. \bibitem{BonaMoliRad2} G. Bonanno, G. Molica Bisci, V. R\u{a}dulescu; \emph{Weak solutions and energy estimates for a class of nonlinear elliptic Neumann problems}, Adv. Nonlinear Stud., \textbf{13} (2013), 373--389. \bibitem{BonaPizz1} G. Bonanno, P. F. Pizzimenti; \emph{Neumann boundary value problems with not coercive potential}, Mediterr. J. Math., \textbf{9} (2012), 601--609. \bibitem{BonaPizz2} G. Bonanno, P. F. Pizzimenti; \emph{Existence results for nonlinear elliptic problems}, Appl. Anal., \textbf{92} (2013), 411--423. \bibitem{BonaSci1} G. Bonanno, A. Sciammetta; \emph{An existence result of one nontrivial solution for two point boundary value problems}, Bull. Aust. Math. Soc., \textbf{84} (2011), 288--299. \bibitem{BonaSci2} G. Bonanno, A. Sciammetta; \emph{Existence and multiplicity results to Neumann problems for elliptic equations involving the $p$-Laplacian}, J. Math. Anal. Appl., \textbf{390} (2012), 59--67. \bibitem{chta1} P. Chen, X. Tang; \emph{New existence and multiplicity of solutions for some Dirichlet problems with impulsive effects}, Math. Comput. Modelling, \textbf{55} (2012), 723--739. \bibitem{Hei1} S. Heidarkhani; \emph{Non-trivial solutions for a class of $(p_1,\ldots,p_n)$-biharmonic systems with Navier boundary conditions}, Ann. Polon. Math., \textbf{105} (2012), 65--76. \bibitem{Hei2} S. Heidarkhani; \emph{Non-trivial solutions for two-point boundary-value problems of fourth-order Sturm-Liouville type equations}, Electron. J. Differential Equations, Vol. \textbf{2012} (2012), No. 27, pp. 1--9. \bibitem{nior} J. Nieto, D. O'Regan; \emph{Variational approach to impulsive differential equations}, Nonlinear Anal. Real World Appl., \textbf{10} (2009), 680--690. \bibitem{Ricceri1} B. Ricceri; \emph{A general variational principle and some of its applications}, J. Comput. Appl. Math., \textbf{113} (2000), 401--410. \bibitem{such} J. Sun, H. Chen, J. Nieto, M. Otero-Novoa; \emph{The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects}, Nonlinear Anal., \textbf{72} (2010), 4575--4586. \bibitem{tige} Y. Tian, W. Ge, D. Yang; \emph{Existence results for second-order system with impulse effects via variational methods}, J. Appl. Math. Comput., \textbf{31} (2009), 255--265. \bibitem{xini} J. Xiao, J. Nieto, Z. Luo; \emph{Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods}, Commun. Nonlinear Sci. Numer. Simul., \textbf{17} (2012), 426--432. \bibitem{jizh} J. Xu, Z. Wei, Y. Ding; \emph{Existence of weak solutions for $p$-Laplacian problem with impulsive effects}, Taiwanese J. Math., \textbf{17} (2013), 501--515. \end{thebibliography} \end{document}