\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 158, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/158\hfil Cauchy problem for dispersive equations] {Cauchy problem for dispersive equations in $\alpha$-modulation spaces} \author[Q. Huang, J. Chen \hfil EJDE-2014/158\hfilneg] {Qiang Huang, Jiecheng Chen} \address{Qiang Huang \newline Department of Mathematics, Zhejiang University, Hangzhou 310027, China} \email{huangqiang0704@163.com} \address{Jiecheng Chen \newline Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China} \email{jcchen@zjnu.edu.cn} \thanks{Submitted May 14, 2014. Published July 17, 2014.} \subjclass[2000]{35A01, 35A02, 35L05} \keywords{$\alpha$-Modulation spaces; dispersive equation; Cauchy problem} \begin{abstract} In this article, we consider the Cauchy problem for dispersive equations in $\alpha$-Modulation spaces. For this purpose, we find a method for estimating $u^{k}$ in $\alpha$-modulation spaces when $k$ is not an integer, and develop a Strichartz estimate in $M_{p,q}^{s,\alpha}$ which is based on semigroup estimates. In the local case, we that the domain of $p$ is independent of $\alpha$, which is also the case in the Modulation spaces and in the Besov space. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction and statement of main results} In this article we study the Cauchy problem for the following nonlinear Klein-Gordon equation (NLKG): \begin{equation} \begin{gathered} u_{tt}+(I-\Delta)u=\pm |u|^{k}u,\\ u(0)=u_0,\quad u_{t}(0)=u_1, \end{gathered} \label{e1.1} \end{equation} and the Cauchy problem for the nonlinear Heat equation (NLH) \begin{equation} \begin{gathered} u_{t}+\Delta u=|u|^{k}u,\\ u(0)=u_0\,, \end{gathered}\label{e1.2} \end{equation} where $k\in(0,+\infty)\backslash\mathbb{Z}$, $\Delta=\partial^{2}/\partial^{2}x_1+\dots +\partial^{2}/\partial^{2}x_{n}$. By Duhamel's formula, \eqref{e1.1} has the equivalent integral form \begin{equation} u(t)=K'(t)u_0+K(t)u_1-\int^{t}_0K(t-\tau)|u|^{k}ud\tau\,,\label{e1.3} \end{equation} where $\omega=(I-\Delta)$, $$ K(t)=\frac{\sin(t\omega^{1/2})}{\omega^{1/2}},\quad K'(t)=\cos(t\omega^{1/2})\,. $$ The solution of \eqref{e1.2} is \begin{equation} u(t)=e^{t\Delta}u_0-\int^{t}_0e^{(t-\tau)\Delta}|u|^{k}ud\tau \,.\label{e1.4} \end{equation} We study the local and global well posedness of \eqref{e1.1} in $\alpha$-modulation spaces. As we know, the frequency-dyadic-decomposition technique plays an important role in the theory of function space. Using this technique we can define the Besove space and the Trieble-Lizorkin space \cite{T}. On the other hand, Modulation spaces was fist introduced by Feichtinger in \cite{F} where he used short-time Fouier transform and window function to define it. His initial motivation was using this space to measure smoothness for some function or distribution spaces. Then, Wang and Hudzik \cite{BHH} used the frequency-uniform-decomposition operators to give another equivalent definition of modulation spaces and considered global solution for the nonlinear Schr\"{o}dinger equation and the nonlinear Klein-Gordon equation in modulation spaces. Based on this equivalent definition, there are many studies of PDEs in modulation spaces, such as \cite{TI,RMW,BCC,BH,BZG}. Then, Gr\"obner \cite{G} introduce a new decomposition called $\alpha$-covering, he used this decomposition to define $\alpha$-modulation space $M_{p,q}^{s,\alpha}$ which is an intermediate function space to connect modulation spaces and Besov space with respect to a parameter $\alpha\in[0,1)$. When $\alpha=0$, $M_{p,q}^{s,0}$ is equivalent to modulation space $M_{p,q}^{s}$ which is define in \cite{BHH}. Besov space can be regarded as the limit case of $\alpha$-modulation space as $\alpha\to 1$. Later, Han and Wang \cite{HW} give another equivalent definition which is more convenient for calculations. In this paper, we will use the Han and Wang's definition. For equations \eqref{e1.3} and \eqref{e1.4}, we focus on the case $k\notin\mathbb{Z}$. Because when $k$ is an integer, we can only use the algebra proposition or analysis on $\Box_{k}^{\alpha}$ simply. When $k$ is not an integer, we use Besov space as an auxiliary space to estimate $|u|^{k}u$ in $\alpha$-modulation space which was first introduced in our previous paper\cite{HCF}. We also find an interesting phenomenon that the domain of $p$ is independent of $\alpha$ which is same as modulation space and Besov space. The following theorems are the main results in this paper: \begin{theorem} \label{thm1.1} For any $1\leq q<\infty$, $2\leq p<\infty$, $[s]0$ such that equation \eqref{e1.3} has an unique solution in \begin{equation} X=L^{\infty}(0,T;M_{2,q}^{s})\cap L^{\gamma} (0,T;M_{p,q}^{s-\frac{\delta}{2}})\label{e1.6} \end{equation} where $\gamma=2/\mu>(k+2)$. Moreover, if $\gamma=2/\mu=(k+2)$. Then there exists a small $\nu>0$ such that for any $\|u_0\|_{M_{p,q}^{s}}+\|u_1\|_{M_{p,q}^{s-1}}\leq\nu$, equation \eqref{e1.1} has an unique global solution \begin{equation} u\in L^{\infty}(R;M_{p,q}^{s})\cap L^{\gamma}(R;M_{p,q}^{s-\frac{\delta}{2}}) \label{e1.7} \end{equation} \end{theorem} \begin{remark} \label{rmk1.2} \rm Theorem \ref{thm1.1} extends the local well posedness in modulation space and Besov space. The only difference is that $R(p,q)$ replace $n/p$ in Besov space and $n/q'$ in modulation space. This phenomenon coincides with the nature of $\alpha$-modulation space (see \eqref{e2.2}). \end{remark} \begin{remark} \label{rmk1.3} \rm When $p=2$, the condition $q\in[p',p]$ means $q=2$. Han and Wang \cite{HW} proved that $M_{2,2}^{s,\alpha}$ is equivalent to $H^{s}$ for any $\alpha\in[0,1]$, so this result is meaningless. Actually, when $p=2$, we do not need to choose $q=2$. The range of $q$ for $p=2$ is wider which will be described in Remark \ref{rmk2.6}. \end{remark} For \eqref{e1.4}, we have similar result as in Theorem \ref{thm1.1}. The estimate of the Heat semigroup is different to NLKG's, so its domain of $p$, $q$, $s$ and work space are also different. Specifically, we have following result for \eqref{e1.2}. \begin{theorem} \label{thm1.4} For any $1\leq q<\infty$, $2\leq p<\infty$, $[s]0$ such that equation \eqref{e1.3} has an unique solution in $L^{\infty}(0,T;M_{p,q}^{s,\alpha})$ \end{theorem} \section{Preliminaries} In this section we give some definitions and properties of function spaces. Also, we will prove the key lemma to estimate $|u|^{k}u$ in $\alpha$-Modulation space when k is not an integer. \begin{definition}[$\alpha$-Modulation spaces] \label{def2.1} \rm Let $\rho$ be a nonnegative smooth radial bump function supported in $B(0,2)$, satisfying $\rho(\xi)=1$ for $|\xi|<1$ and $\rho(\xi)=0$ for $|\xi|>2$. For any $k=(k_1,k_{2},\dots ,k_{n})\in\mathbb{Z}^{n}$, we set $$ \rho^{\alpha}_{k}(\xi) =\rho\Big(\frac{\xi-\langle k\rangle^{\frac{\alpha}{1-\alpha}}k} {\langle k\rangle^{\frac{\alpha}{1-\alpha}}}\Big) $$ and denote $$ \eta_{k}^{\alpha}=\rho^{\alpha}_{k}(\xi)\Big(\sum_{l\in\mathbb{Z}^{n}} \rho^{\alpha}_{k}\Big)^{-1} $$ Corresponding to the sequence $\{\eta_{k}^{\alpha}\}_{k\in\mathbb{Z}^{n}}$, we define an operator sequence denoted by $\{\Box_{k}^{\alpha}\}_{k\in\mathbb{Z}^{n}}$ $$ \Box_{k}^{\alpha}=\mathcal{F}^{-1}\eta_{k}^{\alpha}\mathcal{F} $$ where $\mathcal{F}$ denote standard Fourier transform. This type of decomposition on frequency extends the dyadic and the uniform decomposition. Moreover, it still has almost orthogonal property which is the same as that in dyadic and the uniform decomposition. That is, for any $k\in\mathbb{Z}^{n}$ the number of l which satisfy $\Box_{l}^{\alpha}\Box_{k}^{\alpha}\neq0$ is uniformly bounded and independent of $k$. For any $\alpha$ we use $\Lambda_{\alpha}$ to denote this number. When $0\leq\alpha<1$, $1q_{2}$, and } s_1>s_{2}+n\alpha(\frac{1}{p_1}-\frac{1}{p_{2}}) +n(1-\alpha)(\frac{1}{q_{2}}-\frac{1}{q_{2}}) \label{e2.2} \end{gather} \end{proposition} When $\alpha=1$, we can see that \eqref{e2.2} coincides with that in Besov space, although we can not use $\alpha=1$ to define Besov spaces. We always say that index $n/p$ influences the regularity in Besov spaces, and $n/q'$ influences the regularity in modulation space. Actually, in $\alpha$-modulation space, that index is $\alpha n/p+(1-\alpha)n/q'$ which coincide with Besov space and modulation space. That is why we define \[ R(p,q)=\alpha\frac{n}{p}+(1-\alpha)\frac{n}{q'} \] in Theorem \ref{thm1.1}. For convenience and we use $R(p,q)$ through out this article. \begin{lemma}[Embedding with Besove spaces \cite{HW}] \label{lem2.3} Assume $B^{s}_{p,q}$ is the standard Besov spaces, and $1\leq p$, $q\leq\infty$, $s\in\mathbb{R}$, we have following embeddings: \begin{gather} M^{s+\sigma(p,q),\alpha}_{p,q}\subset B^{s}_{p,q},\quad \sigma(p,q)=\max(0,n(1-\alpha)(\frac{1}{p\wedge p'}-\frac{1}{q}))\label{e2.3}\\ B^{s+\tau(p,q)}_{p,q}\subset M^{s,\alpha}_{p,q},\quad \tau(p,q)=\max(0,n(1-\alpha)(\frac{1}{q}-\frac{1}{p\vee p'}))\label{e2.4} \end{gather} \end{lemma} Moreover, we need nonlinear estimate in Besov spaces. There are many forms of such estimate, such as \cite{C}\cite{CW}\cite{B}. All of these forms restricted $q=2$, but in $\alpha$-modulation space $q$ will influence regularity, so we use a new form which is obtained in \cite{HCF}. \begin{lemma}[nonlinear estimate in Besove space] \label{lem2.4} Assume $2\leq p<\infty$, $1\leq q\leq\infty$, $0\leq\delta0\label{e2.5} \end{equation} then we have \begin{equation} \||u|^{k}u\|_{B^{s-\delta}_{p',q}}\preceq \|u\|^{k+1}_{B^{s_1}_{p,q}}\label{e2.6} \end{equation} \end{lemma} Then, by Lemmas \ref{lem2.3} and \ref{lem2.4} we can estimate the nonlinear part in $\alpha$-modulation spaces which is the crucial lemma in this paper. \begin{lemma}[Nonlinear estimate in $\alpha$-modulation spaces] \label{lem2.5} Let $1\leq q<\infty$, $2\leq p<\infty$, $[s]0$, so we can use Lemma \ref{lem2.5} to obtain \begin{equation} \|u^{k+1}\|_{B^{s-r+n(1-\alpha)(\frac{1}{q}-\frac{1}{p})}_{p',q}} \preceq\|u\|^{k+1}_{B_{p,q}^{s-n(1-\alpha)(\frac{1}{p'}-\frac{1}{q})}}\label{e2.9} \end{equation} and choose $s_1=s+\varepsilon$ in \eqref{e2.6} then $s$ satisfies \begin{equation} k(\frac{1}{p}-\frac{1}{n}(s-n(1-\alpha)(\frac{1}{p'}-\frac{1}{q})) +\frac{1}{p}-\frac{1}{n}(r-n(1-\alpha)(1-\frac{2}{p})-\varepsilon) =\frac{1}{p'}.\label{e2.10} \end{equation} by \eqref{e2.13} we have \begin{equation} s=n(\frac{\alpha}{p}+\frac{1-\alpha}{q'}) -\alpha\frac{n}{k}(1-\frac{2}{p})-\frac{r}{k} +\frac{\varepsilon}{k}\label{e2.11} \end{equation} because $\tau(p',q)+\sigma(p,q)=n(1-\alpha)(1-\frac{2}{p})2$, $p=2,n(1-\alpha)(\frac{1}{2}-\frac{1}{q})