\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 161, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/161\hfil IVPs for hybrid Hadamard fractional DEs] {Initial-value problems for hybrid Hadamard fractional differential equations} \author[B. Ahmad, S. K. Ntouyas \hfil EJDE-2014/161\hfilneg] {Bashir Ahmad, Sotiris K. Ntouyas} % in alphabetical order \address{Bashir Ahmad \newline Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia} \email{bashirahmad\_qau@yahoo.com} \address{Sotiris K. Ntouyas\newline Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece} \email{sntouyas@uoi.gr} \thanks{Submitted May 17, 2014. Published July 24, 2014.} \subjclass[2000]{34A08, 34B18} \keywords{Hadamard fractional derivative; initial value problem; \hfill\break\indent fixed point theorem; existence} \begin{abstract} In this article, we discuss the existence of solutions for an initial-value problem of nonlinear hybrid differential equations of Hadamard type. The main result is proved by means of a fixed point theorem due to Dhage. An example illustrating the existence result is also presented. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} In this article, we study the existence of solutions for an initial-value problem of hybrid fractional differential equations of Hadamard type given by \begin{equation}\label{e1} \begin{gathered} _{H}D ^{\alpha}\Big(\frac{x(t)}{f(t,x(t))}\Big)=g(t,x(t)), \quad 1\le t \le T,\; 0<\alpha\le 1,\\ _{H}J^{1-\alpha}x(t)|_{t=1}=\eta, \end{gathered} \end{equation} where $_{H}D^{\alpha}$ is the Hadamard fractional derivative, $f\in C([1,T]\times {\mathbb R}, \mathbb{R}\setminus\{0\})$ and $g: C([1,T]\times \mathbb{R}, \mathbb{R})$, $_{H}J^{(\cdot)}$ is the Hadamard fractional integral and $\eta\in {\mathbb R}$. Fractional calculus has evolved into an important and interesting field of research in view of its numerous applications in technical and applied sciences. The mathematical modeling of many real world phenomena based on fractional-order operators is regarded as better and improved than the one depending on integer-order operators. In particular, fractional calculus has played a significant role in the recent development of special functions and integral transforms, signal processing, control theory, bioengineering and biomedical, viscoelasticity, finance, stochastic processes, wave and diffusion phenomena, plasma physics, social sciences, etc. For further details and applications, see \cite{b5,b2}. Fractional differential equations involving Riemann-Liouville and Caputo type fractional derivatives have extensively been studied by several researchers. However, the literature on Hadamard type fractional differential equations is not enriched yet. The fractional derivative due to Hadamard, introduced in 1892 \cite{Hadd}, differs from the aforementioned derivatives in the sense that the kernel of the integral in the definition of Hadamard derivative contains logarithmic function of arbitrary exponent. A detailed description of Hadamard fractional derivative and integral can be found in \cite{B1, Had, Had1, Had2, b2, Had3, Had4}. Another interesting class of problems involves hybrid fractional differential equations. For some recent work on the topic , we refer to \cite{B2, hb4, hb1, N1, hb3, hb2} and the references cited therein. The article is organized as follows: Section 2 contains some preliminary facts that we need in the sequel. In Section 3, we present the main existence result for the given problem whose proof is based on a fixed point theorem due to Dhage \cite{Dh}. \section{Preliminaries} \begin{definition}[\cite{b2}]\rm The Hadamard fractional integral of order $q$ for a continuous function $g$ is defined as $$ _{H}J^q g(t)=\frac{1}{\Gamma(q)}\int_1^t \Big(\log\frac{t}{s}\Big)^{q-1} \frac{g(s)}{s}ds, ~~q>0. $$ \end{definition} \begin{definition}[\cite{b2}] \rm The Hadamard derivative of fractional order $q$ for a continuous function $g: [1, \infty)$ $\to \mathbb{R}$ is defined as $$ _{H}D^q g(t)=\frac{1}{\Gamma(n-q)}\Big(t\frac{d}{dt}\Big)^n \int_{1}^t \Big(\log\frac{t}{s}\Big)^{n-q-1}\frac{g(s)}{s}ds, \quad n-1 < q < n,\; n=[q]+1, $$ where $[q]$ denotes the integer part of the real number $q$ and $\log (\cdot) =\log_e (\cdot)$. \end{definition} \begin{theorem}[{\cite[p. 213]{b2}}] \label{Ki} Let $\alpha>0$, $n=-[-\alpha]$ and $0\le \gamma<1$. Let $G$ be an open set in ${\mathbb R}$ and let $f: (a,b]\times G\to {\mathbb R}$ be a function such that: $f(x,y)\in C_{\gamma,\log}[a,b]$ for any $y\in G$, then the problem \begin{gather}\label{eKil} _HD^{\alpha}y(t)=f(t,y(t)), \quad \alpha>0, \\ \label{eKil-IC} _HJ^{\alpha-k}y(a+)=b_k, ~~b_k\in {\mathbb R}, \quad (k=1,\ldots, n, \; n=-[-\alpha]), \end{gather} satisfies the Volterra integral equation \begin{equation}\label{eKi-V} y(t)=\sum_{j=1}^{n}\frac{b_j}{\Gamma(\alpha-j+1)} \Big(\log\frac{t}{a}\Big)^{\alpha-j}+\frac{1}{\Gamma(\alpha)} \int_a^t\Big(\log\frac{t}{s}\Big)^{\alpha-1}f(s,y(s))\frac{ds}{s}, \end{equation} for $t>a>0$; i.e., $y(t)\in C_{n-\alpha, \log}[a,b]$ satisfies the relations \eqref{eKil}-\eqref{eKil-IC} if and only if it satisfies the Volterra integral equation \eqref{eKi-V}. In particular, if $0<\alpha\le 1$, problem \eqref{eKil}-\eqref{eKil-IC} is equivalent to the equation \begin{equation}\label{ee} y(t)=\frac{b}{\Gamma(\alpha)}\Big(\log\frac{t}{a}\Big)^{\alpha-1} +\frac{1}{\Gamma(\alpha)}\int_a^t\Big(\log\frac{t}{s}\Big)^{\alpha-1} f(s,y(s))\frac{ds}{s}, \quad s>a>0. \end{equation} \end{theorem} Further details can be found in \cite{b2}. From Theorem \ref{Ki} we have the following result. \begin{lemma} \label{l2} Given $y\in C([1,T], {\mathbb R})$, the integral solution of initial-value problem \begin{equation}\label{e-gr} \begin{gathered} _{H}D^{\alpha}\Big(\frac{x(t)}{f(t,x(t))}\Big) =y(t), \quad 00$ such that \begin{equation}\label{e-r} r \ge K\big[\frac{|\eta|}{\Gamma(\alpha)} +\log T\frac{1}{\Gamma(\alpha+1)}\|p\|\Omega(r)\big]. \end{equation} where $|f(t,x)|\le K, ~~\forall (t,x)\in [1,T]\times {\mathbb R}$ and $$ \|\phi\|\big[\frac{|\eta|}{\Gamma(\alpha)}+\log T\frac{1}{\Gamma(\alpha+1)} \|p\|\Omega(r)\big]<1. $$ \end{itemize} Then the initial-value problem \eqref{e1} has at least one solution on $[1,T]$. \end{theorem} \begin{proof} Set $X=C([1,T], {\mathbb R})$ and define a subset $S$ of $X$ as $$ S=\{x\in X: \|x\|_C\le r\}, $$ where $r$ satisfies inequality \eqref{e-r}. Clearly $S$ is closed, convex and bounded subset of the Banach space $X$. By Lemma \ref{l2}, the initial-value problem \eqref{e1} is equivalent to the integral equation \begin{equation}\label{op} x(t)=f(t,x(t))\Big(\frac{\eta}{\Gamma(\alpha)} (\log t)^{\alpha-1} +\frac{1}{\Gamma(\alpha)}\int_1^t \Big(\log\frac{t}{s}\Big)^{\alpha-1} \frac{g(s,x(s))}{s}ds \Big), \end{equation} for $ t\in [1,T]$. Define two operators ${\mathcal A}: X\to X$ by \begin{equation}\label{A} {\mathcal A}x(t)=f(t,x(t)), \quad t\in [1,T], \end{equation} and ${\mathcal B}: S\to X$ by \begin{equation}\label{B} {\mathcal B}x(t)=\frac{\eta}{\Gamma(\alpha)} (\log t)^{\alpha-1} +\frac{1}{\Gamma(\alpha)}\int_1^t \Big(\log\frac{t}{s}\Big)^{\alpha-1} \frac{g(s,x(s))}{s}ds,\quad t\in [1,T]. \end{equation} Then $x={\mathcal A}x{\mathcal B}x$. We shall show that the operators ${\mathcal A}$ and ${\mathcal B}$ satisfy all the conditions of Lemma \ref{Dh}. For the sake of clarity, we split the proof into a sequence of steps. \smallskip \noindent \textbf{Step 1.} We first show that ${\mathcal A}$ is a Lipschitz on $X$, i.e. (a) of Lemma \ref{Dh} holds. Let $x,y\in X$. Then by (H1) we have \begin{align*} |(\log t)^{1-\alpha}{\mathcal A}x(t)-(\log t)^{1-\alpha}{\mathcal A}y(t)| &= (\log t)^{1-\alpha}|f(t,x(t))-f(t,y(t))|\\ &\le \phi(t)(\log t)^{1-\alpha}|x(t)-y(t)|\\ &\le \|\phi\|\|x-y\|_C \end{align*} for all $t\in [1,T]$. Taking the supremum over the interval $[1,T]$, we obtain $$ \|{\mathcal A}x-{\mathcal A}y\|_C\le \|\phi\| \|x-y\|_C $$ for all $x, y\in X$. So ${\mathcal A}$ is a Lipschitz on $X$ with Lipschitz constant $\|\phi\|$. \smallskip \noindent \textbf{Step 2.} The operator ${\mathcal B}$ is completely continuous on $S$, i.e. (b) of Lemma \ref{Dh} holds. First we show that ${\mathcal B}$ is continuous on $S$. Let $\{x_n\}$ be a sequence in $S$ converging to a point $x\in S$. Then by Lebesque dominated convergence theorem, \begin{align*} &\lim_{n\to \infty}(\log t)^{1-\alpha}{\mathcal B}x_n(t)\\ &= \lim_{n\to \infty}\Big(\frac{\eta}{\Gamma(\alpha)} +(\log t)^{1-\alpha}\frac{1}{\Gamma(\alpha)}\int_1^t \Big(\log\frac{t}{s}\Big)^{\alpha-1}\frac{g(s,x_n(s))}{s}ds\Big)\\ &= \Big(\frac{\eta}{\Gamma(\alpha)} +(\log t)^{1-\alpha}\frac{1}{\Gamma(\alpha)}\int_1^t \Big(\log\frac{t}{s}\Big)^{\alpha-1}\frac{\lim_{n\to \infty} g(s,x_n(s))}{s}ds\Big)\\ &=\Big(\frac{\eta}{\Gamma(\alpha)} +(\log t)^{1-\alpha} \frac{1}{\Gamma(\alpha)}\int_1^t \Big(\log\frac{t}{s}\Big)^{\alpha-1} \frac{ g(s,x(s))}{s}ds \Big)\\ &=(\log t)^{1-\alpha}{\mathcal B}x(t), \end{align*} for all $t\in [1,T]$. This shows that ${\mathcal B}$ is continuous os $S$. It is sufficient to show that ${\mathcal B}(S)$ is a uniformly bounded and equicontinuous set in $X$. First we note that \begin{align*} (\log t)^{1-\alpha}|{\mathcal B}x(t)| &=\Big|\frac{\eta}{\Gamma(\alpha)} +(\log t)^{1-\alpha}\frac{1}{\Gamma(\alpha)} \int_1^t \Big(\log\frac{t}{s}\Big)^{\alpha-1}\frac{g(s,x(s))}{s}ds\Big|\\ &\le \Big[\frac{|\eta|}{\Gamma(\alpha)} +\|p\|\Omega(r)(\log T)^{1-\alpha} \frac{1}{\Gamma(\alpha)}\int_1^t \Big(\log\frac{t}{s}\Big)^{\alpha-1}\frac{1}{s}ds \Big]\\ &= \frac{|\eta|}{\Gamma(\alpha)}+(\log T)\frac{1}{\Gamma(\alpha+1)}\|p\|\Omega(r), \end{align*} for all $t\in [1,T]$. Taking supremum over the interval $[1,T]$, the above inequality becomes $$ \|{\mathcal B}x\|_C\le \frac{|\eta|}{\Gamma(\alpha)} +(\log T)\frac{1}{\Gamma(\alpha+1)}\|p\|\Omega(r), $$ for all $x\in S$. This shows that ${\mathcal B}$ is uniformly bounded on $S$. Next we show that ${\mathcal B}$ is an equicontinuous set in $X$. Let $\tau_1, \tau_2 \in [1,T]$ with $\tau_1< \tau_2$ and $x \in S$. Then we have \begin{align*} &\big|(\log \tau_2)^{1-\alpha}({\mathcal B}x)(\tau_2) -(\log \tau_1)^{1-\alpha}({\mathcal B}x)(\tau_1)\big|\\ &\leq \frac{\|p\|\Omega(r)}{\Gamma(\alpha)} \Big|\int_1^{\tau_2}(\log \tau_2)^{1-\alpha} \left(\log\frac{\tau_2}{s}\right)^{\alpha-1}\frac{1}{s}ds -\int_1^{\tau_1} (\log \tau_1)^{1-\alpha}\left(\log\frac{\tau_1}{s} \right)^{\alpha-1}\frac{1}{s}ds\Big|\\ &\le \frac{\|p\|\Omega(r)}{\Gamma(\alpha)}\Big|\int_1^{\tau_1} \Big[(\log \tau_2)^{1-\alpha}\left(\log\frac{\tau_2}{s}\right) ^{\alpha-1}-(\log \tau_1)^{1-\alpha} \left(\log\frac{\tau_1}{s}\right)^{\alpha-1}\Big]\frac{1}{s}ds\Big|\\ &\quad +\frac{\|p\|\Omega(r)}{\Gamma(\alpha)} \Big|\int_{\tau_1}^{\tau_2}(\log \tau_2)^{1-\alpha} \left(\log\frac{\tau_2}{s}\right)^{\alpha-1}\frac{1}{s}ds\Big|. \end{align*} Obviously the right hand side of the above inequality tends to zero independently of $x \in S$ as $t_2- t_1 \to 0$. Therefore, it follows from the Arzel\'a-Ascoli theorem that ${\mathcal B}$ is a completely continuous operator on $S$. \smallskip \noindent \textbf{Step 3.} Next we show that hypothesis (c) of Lemma \ref{Dh} is satisfied. Let $x\in X$ and $y\in S$ be arbitrary elements such that $x={\mathcal A}x {\mathcal B}y$. Then we have \begin{align*} (\log t)^{1-\alpha}|x(t)| &=(\log t)^{1-\alpha}|{\mathcal A}x(t)| |{\mathcal B}y(t)|\\ &= |f(t,x(t))|\Big|\Big(\frac{\eta}{\Gamma(\alpha)} +(\log t)^{1-\alpha}\frac{1}{\Gamma(\alpha)}\int_1^t \Big(\log\frac{t}{s}\Big)^{\alpha-1}\frac{g(s,y(s))}{s}ds\Big)\Big|\\ &\le K\Big|\Big(\frac{\eta}{\Gamma(\alpha)} +(\log t)^{1-\alpha} \frac{1}{\Gamma(\alpha)}\int_1^t \Big(\log\frac{t}{s}\Big)^{\alpha-1} \frac{g(s,y(s))}{s}ds \Big)\Big|\\ &\le K\Big[ \frac{|\eta|}{\Gamma(\alpha)} +(\log T)^{1-\alpha}\|p\|\Omega(r)\frac{1}{\Gamma(\alpha)}\int_1^t \Big(\log\frac{t}{s}\Big)^{\alpha-1}\frac{1}{s}ds\Big]\\ &\le K\Big[\frac{|\eta|}{\Gamma(\alpha)} +(\log T) \frac{1}{\Gamma(\alpha+1)}\|p\|\Omega(r)\Big]. \end{align*} Taking supremum for $t\in [1,T]$, we obtain $$ \|x\|_C\le K\big[\frac{|\eta|}{\Gamma(\alpha)} +(\log T) \frac{1}{\Gamma(\alpha+1)}\|p\|\Omega(r)\big]\le r, $$ that is, $x\in S$. \smallskip \noindent \textbf{Step 4.} Now we show that $Mk<1$, that is, (d) of Lemma \ref{Dh} holds. This is obvious by $(H_4)$, since we have $M =\|B(S)\|=\sup\{\|{\mathcal B}x\|: x\in S\} \le \frac{|\eta|}{\Gamma(\alpha)} +(\log T)\frac{1}{\Gamma(\alpha+1)}\|p\|\Omega(r)$ and $k=\|\phi\|$. Thus all the conditions of Lemma \ref{Dh} are satisfied and hence the operator equation $x={\mathcal A}x{\mathcal B}x$ has a solution in $S$. In consequence, the problem \eqref{e1} has a solution on $[1,T]$. This completes the proof. \end{proof} \begin{example} \rm Consider the initial-value problem \begin{equation}\label{ex} \begin{gathered} _{H}D^{1/2}\Big(\frac{x(t)}{f(t, x)}\Big) =g(t, x), \quad 1