\documentclass[reqno]{amsart}
\usepackage{hyperref}
\AtBeginDocument{{\noindent\small
\emph{Electronic Journal of Differential Equations},
Vol. 2014 (2014), No. 163, pp. 1--22.\newline
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
\newline ftp ejde.math.txstate.edu}
\thanks{\copyright 2014 Texas State University - San Marcos.}
\vspace{9mm}}
\begin{document}
\title[\hfilneg EJDE-2014/163\hfil Existence and nonexistence of solutions]
{Existence and nonexistence of solutions to nonlinear gradient
elliptic systems involving $(p(x),q(x))$-Laplacian operators}
\author[O. Saifia, J. V\'elin \hfil EJDE-2014/163\hfilneg]
{Ouarda Saifia, Jean V\'elin} % in alphabetical order
\address{Ouarda Saifia \newline
Department of mathematics,
University of Annaba, PO 12,
El Hadjar, 23000, Annaba, Algeria}
\email{wsaifia@gmail.com}
\address{Jean V\'elin \newline
Department of Mathematics and Computers,
Laboratory CEREGMIA, University of Antilles-Guyane,
Campus de Fouillole, 97159 Pointe-\`a-Pitre , Guadeloupe (French West Indies)}
\email{jean.velin@univ-ag.fr}
\thanks{Submitted April 2, 2014. Published July 25, 2014.}
\subjclass[2000]{35J20, 35J35, 35J45, 35J50, 35J60, 35J70}
\keywords{Fibering method; $p(x)$-Laplacian;
Generalized Pohozeav identity; \hfill\break\indent Pucci-Serrin identity}
\begin{abstract}
In this article, we establish the existence of nontrivial solutions
by employing the fibering method introduced by Pohozaev.
We also generalize the well-known Pohozaev and Pucci-Serrin identities
to a $(p(x),q(x))$-Laplacian system. A nonexistence result
for a such system is then proved.
\end{abstract}
\maketitle
\numberwithin{equation}{section}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{definition}[theorem]{Definition}
\allowdisplaybreaks
\section{Introduction}
After the pioneer work by Kovacik and Rokosnik \cite{kr}
concerning the $ L^{p(x)}(\Omega)$ and $W^{1,p(x)}(\Omega)$ spaces,
many researches have studied the variable exponent spaces.
We refer to \cite{xjd} for the properties of such spaces and \cite{cf,g}
for the applications of variable exponent on partial differential equations.
In the recent years, problems with $p(x)$-Laplacian have been applied to a large
number of application in nonlinear electrorheological fluids, elastic mechanics,
image processing, and flow in porous media
(see for instance \cite{am,as,clr,d,h,mr,r,z}).
In this article, we study the existence and non-existence of the weak
solutions for the following $(p(x),q(x))$-gradient elliptic system:
\begin{equation}\label{2}
\begin{gathered}
- \Delta _{p(x)}u=c(x)u |u|^{\alpha-1} |v|^{\beta+1} \quad \text{in } \Omega \\
- \Delta _{q(x)}v=c(x)v |v|^{\beta-1} |u|^{\alpha+1} \quad \text{in } \Omega \\
u=v=0 \quad \text{on } \Omega.
\end{gathered}
\end{equation}
Here $\Omega$ designates a bounded and open set in $\mathbb{R}^{N} $,
with a smooth boundary $\partial\Omega$.
$ p,q :\Omega \to \mathbb{R}$ are two measurable functions
from ${\Omega}$ to $[1,+\infty)$, and $c$ is a function with changing sign.
Concerning the existence and nonexistence results for such systems,
we cite the work \cite{bm}. There the authors use the fibering method introduced
by Pohozeav. They obtained the existence of multiple solutions for a
Dirichlet problem associated with a quasilinear system involving a pair of
$ (p,q)$-Laplacian operators.
Recently, Velin \cite{v1,v2}, employing the fibering method,
proved the existence of multiple positive solutions for a class of
$(p,q)$-gradient elliptic systems including systems like \eqref{2}.
Systems structured as \eqref{2} have been investigated for instance
in \cite{tv}. There the authors presented some results dealing with existence
and nonexistence of a non-trivial solution $(u,v)\in W_{0}^{1,p}(\Omega)\times
W_{0}^{1,q}(\Omega)$ of the system
\begin{equation} \label{a}
\begin{gathered}
- \Delta _{p}u=u |u|^{\alpha-1} |v|^{\beta+1} \quad \text{in } \Omega \\
- \Delta _{q}v=v |v|^{\beta-1} |u|^{\alpha+1} \quad \text{in}\; \Omega \\
u=v=0 \quad \text{on }\Omega.
\end{gathered}
\end{equation}
The authors have proved nonexistence results
when $\Omega$ is a strictly starshaped open domain in $\mathbb{R}^{N}$ and
\begin{equation}\label{pqcondition1}
(\alpha+1)\frac{N-p}{Np}+(\beta+1)\frac{N-q}{Nq}\geq 1\,.
\end{equation}
On the other hand, under the assumptions
\begin{equation}\label{pqcond2}
(\alpha+1)\frac{N-p}{Np}+(\beta+1)\frac{N-q}{Nq}<1,\quad
\frac{\alpha+1}{p}+\frac{\beta+1}{q}\neq 1,
\end{equation}
some existence results have been obtained.
In \cite{di}, the authors deal with nonexistence for an elliptic Dirichlet
equation governed by the $p(x)$-Laplacian operator.
The article has the following structure.
Section 2 is devoted to introduce some notation and preliminaries needed
for the framework of the paper. We also recall some tools defined by the theory
of variable exponents Lebesgue and Sobolev spaces.
Section 3 states the main results.
In Section 4, following the ideas explained in \cite{di}, we establish a
Pohozaev-type identity for the system \eqref{2}. By using this identity,
we deal with the non-existence results of non trivial solutions.
In section 5, after recalling the spirit of the fibering method,
we show that \eqref{2} admits at least one weak non-trivial solution.
\section{Preliminaries}
Let ${\mathcal P}(\Omega)$ denote the set
$\{p; p:\Omega\to [1,+\infty) \text{ is measurable } \}$.
$\Omega\subset \mathbb{R}^{N}$ is an open set.
$L^{p(x)}(\Omega)$ designates the generalized Lebesgue space.
$L^{p(x)}(\Omega)$ consists of all measurable functions $u$ defined on
$\Omega$ for which the $p(x)$-modular
\begin{equation*}
\rho _{p(.)}(u)=\int_{\Omega }| u(x)| ^{p(x)}dx
\end{equation*}
is finite. The Luxemberg norm on this space is defined as
\begin{equation*}
\| u\|_{p} =\inf \{\lambda >0;\rho _{p(.)}(u)=\int_{\Omega
}| \frac{u(x)}{\lambda }| ^{p(x)}dx\leq 1\}.
\end{equation*}
Equipped with this norm, $L^{p(x)}(\Omega)$ is a Banach space.
Some basic results on the generalized Lebesgue spaces can be find in
\cite{dhhr,xd,f,g,OS,GS,kr,mr,m}.
If $p(x)$ is constant, $L^{p(x)}(\Omega)$ is reduced to the standard Lebesgue space.
For any $p \in {\mathcal P}(\Omega)$ and $ m \in \mathbb{N}^*$, the generalized
Sobolev space $W^{m,p(x)}(\Omega)$ is defined by
\begin{gather*}
W^{m,p(.)}(\Omega )=\{u\in L^{p(.)}(\Omega ):D^{\alpha }u\in
L^{p(.)}(\Omega ) \text{ for all }| \alpha | \leq m\}, \\
\| u\| _{m,p(.)}=\sum_{| \alpha | \leq
m}\| D^{\alpha }u\| _{L^{p(.)}(\Omega )}\,.
\end{gather*}
The pair $(W^{m,p(.)}(\Omega ),\| \cdot\| _{m,p(.)}) $ is a separable Banach
space (reflexive if $ p^{-}>1$).
$ W_{0}^{1,p(.)}(\Omega)$ denotes the closure of
$ C_{0}^{\infty}(\Omega)$ in $ W^{1,p(.)}(\Omega)$.
On the generalized Sobolev space, we refer to the works due to
\cite{er, xjd, xd, xzg, hhkv, hh, kr}.
We define:
$p,q:\Omega \to [1,+\infty)$ as two measurable functions.
For a given measurable function $p:\Omega\to [1,+\infty)$, the conjugate
function designated by
$$
p'(x)=\frac{p(x)}{p(x)-1}.
$$
A function $ p: \Omega \to \mathbb{R}$ is $\ln$-H\"older continuous on $\Omega$
(See \cite{xd}),
provided that there exists a constant $ L>0$ such that
\begin{equation}\label{polder}
| p(x)-p(y)| \leq \frac{L}{-\ln| x-y| },\quad \text{for all } x,y\in \Omega,\;
| x-y| \leq \frac{1}{2}.
\end{equation}
\begin{gather*}
p^{-}=\min_{x\in\overline{\Omega}}p(x), \quad
q^{-}=\min_{x\in\overline{\Omega}}q(x), \\
p^{+}=\max_{x\in\overline{\Omega}}p(x), \quad
q^{+}=\max_{x\in\overline{\Omega}}q(x).
\end{gather*}
For $c:\Omega\to \mathbb{I}$, $c_+(x)\neq 0$, $c_-(x)\neq 0$.
\section{Main results}
Let us now state the main results of this paper:
\subsection*{A non-existence result for the $(p(x),q(x))$-Laplacian system \eqref{2}}
\begin{theorem}\label{NE}
Let $\Omega$ be a bounded open set of
$\mathbb{R}^{N}$, with boundary $\partial\Omega$ of class $C^{1}$.
Let
$p,q:\Omega\to\mathbb{I}$ functions of class
$C_{B}^{1}(\Omega)\cap\;C(\overline{\Omega})$, $p^{-},q^{-}>1$,
and
$c(.)\in C_B^1(\Omega\setminus{\mathcal C})$, with
$\operatorname{meas}({\mathcal C})=0$.
Assume that
$\Omega$ be a bounded domain of class $C^{1}$, starshaped
with respect to the origin;
$(p,q)\in C_{B}^{1}(\Omega)\cap C(\bar{\Omega})$;
$p^{-},q^{-} >1$; and
$(x\cdot\nabla p) \geq 0$, $(x\cdot\nabla q) \geq 0$,
\begin{gather}\label{gradc}
\langle x,\nabla c(x)\rangle \leq 0 \quad\text{ for any $x$ in }\Omega,\\
\label{Np+}
(\alpha+1) \frac{N-p^+}{Np^+}+ (\beta+1)\frac{N-q^+}{Nq^+}\geq 1.
\end{gather}
Then \eqref{2} has not a nontrivial classical
solution $(u,v)\in (C^{2}(\Omega)\cap C^{1}(\bar {\Omega}))^2$
which satisfies:
\begin{equation} \label{uvepq}
|\nabla u(x)|\geq e^{1/p(x)},\quad |\nabla
v(x)|\geq e^{1/q(x)}\quad \text{a.e } x\in\Omega,
\end{equation}
and
$$
\int_\Omega c(x)|u|^{\alpha+1}|v|^{\beta+1}dx >0.
$$
\end{theorem}
\subsection*{An existence result for the $(p(x),q(x))$-Laplacian system \eqref{2} }
\begin{theorem}\label{E}
Let $\Omega$ be a bounded open set of
$\mathbb{R}^{N}$, with boundary $\partial\Omega$ of class $C^{1}$. Let
$p,q:\Omega\to\mathbb{I}_+^*$ two functions of class
$C_{B}^{1}(\Omega)\cap\;C(\overline{\Omega})$; $p_{-},q_{-}>1$.
Assume that:
\begin{gather} \label{Np-}
(\alpha+1) \frac{N-p^-}{Np^-}+ (\beta+1)\frac{N-q^-}{Nq^-}< 1,\\
\label{alfa+}
\gamma^+=\frac{\alpha+1}{p^{+}}+\frac{\beta+1}{q^{+}}-1>0.
\end{gather}
Then system \eqref{2} admits at least one nontrivial solution
$(u^*,v^*)\in W_{0}^{1,p(x)}(\Omega)\times W_{0}^{1,q(x)}(\Omega)$.
Moreover, one have
\begin{gather*}
\|u^*\|_{1,p(x)}^{p^+}=\|v^*\|_{1,q(x)}^{q^+}, \\
\int_\Omega c(x)|u^*|^{\alpha+1}|v^*|^{\beta+1}dx >0.
\end{gather*}
\end{theorem}
\begin{remark} \rm
Let us remark that conditions \eqref{Np+} and \eqref{Np-} seem to generalize
to $(p(x),q(x))-$ gradient elliptic systems conditions \eqref{pqcondition1}
and \eqref{pqcond2} well known when $(p,q)-$ gradient elliptic systems are
considered. Obviously, conditions \eqref{Np+} and \eqref{Np-}
imply respectively
\begin{gather*}
1\leq (\alpha+1) \frac{N-p^-}{Np^-}+ (\beta+1)\frac{N-q^-}{Nq^-},\\
(\alpha+1) \frac{N-p^+}{Np^+}+ (\beta+1)\frac{N-q^+}{Nq^+}< 1.
\end{gather*}
\end{remark}
\section{A Pohozaev-type identity for $(p(x),q(x))$-Laplacian and a nonexistence
result}
Consider the elliptic system with Dirichlet boundary condition:
\begin{gather*}
-\Delta_{p(x)}u=c(x) u|u|^{\alpha-1}|v|^{\beta+1} \quad \text{in } \Omega \\
-\Delta_{q(x)}v=c(x)|u|^{\alpha+1}v|v|^{\beta-1}\quad \text{in }\Omega \\
u=v=0 \quad \text{on } \Omega,
\end{gather*}
where $\Omega\subset\mathbb{I}^{N}$ is a bounded open set with a regular boundary
$\partial\Omega$; $p,q, c$ are defined as in the previous section.
\[
\Delta_{p(x)}u=\frac{\partial } {\partial x_{i}} \Big(|\nabla u|^{p(x)-2}
\frac{\partial u} {\partial x_{i}}\Big).
\]
\begin{proposition}\label{pro1}
Let $\Omega$ be a bounded open set of
$\mathbb{R}^{N}$, with boundary $\partial\Omega$ of class $C^{1}$. Assume that
$p,q:\Omega\to\mathbb{I}$ are two functions of class
$C_{B}^{1}(\Omega)\cap\;C(\overline{\Omega})$;
$p^{-},q^{-}>1$;
$c(.)\in C_B^1(\Omega\setminus{\mathcal C})$, with
$\operatorname{meas}({\mathcal C})=0$ and
\begin{equation*}
\langle x,\nabla c(x)\rangle \leq 0 \quad \text{for any $x$ in }\Omega.
\end{equation*}
For every classical solution
$(u,v)\in C^{2}(\Omega)\cap C^{1}(\overline{\Omega})$
of \eqref{2}, the following identity holds:
\begin{align*}
&\frac{\alpha+1}{N} \int_{\partial \Omega} \frac{1-p(x)}{p(x)}
|\nabla u|^{p(x)} \langle x,\nu\rangle {\mathrm{d}}\sigma +\frac{\beta+1}{N}
\int_{\partial \Omega} \frac{1-q(x)}{q(x)}|\nabla v|^{q(x)}
\langle x,\nu\rangle {\mathrm{d}} \sigma \\
&=\frac{\alpha+1}{N} \int_{\Omega} \big(\frac{N-p(x)}{p(x)}
-a_1\big)|\nabla u|^{p(x)}{\mathrm{d}}x +\frac{\beta+1}{N}
\int_{\Omega} \big(\frac{N-q(x)}{q(x)}-a_2\big)|\nabla v|^{q(x)}{
\mathrm{d}}x \\
& \quad +\int_{\Omega} \Big[\frac{1}{p^{2}(x)}
\langle x\cdot\nabla p\rangle (\ln
|\nabla u|^{p(x)}-1)|\nabla u|^{p(x)} \\
&\quad + \frac{1}{q^{2}(x)} \langle x, \nabla q\rangle (\ln
|\nabla v|^{q(x)}-1)|\nabla v|^{q(x)} \Big]{\mathrm{d}}x \\
&\quad +\int_{\Omega}\big\{(\alpha+1)a_1+(\beta+1)a_2-N\big\}
c(x)|u|^{\alpha+1}|v|^{\beta+1}{\mathrm{d}}x\\
&\quad -\int_{\Omega}\langle x,\nabla c\rangle|u|^{\alpha+1}|v|^{\beta+1}{\mathrm{d}}x.
\end{align*}
for all $a_1$ and $a_2\in \mathbb{R}^{N}$.
\end{proposition}
Before proving the proposition \ref{pro1}, we present the following result
generalizing the variational identity of {Pucci-Serrin} \cite{ps}.
\begin{proposition}\label{pro2}
Let $\Omega$ be a bounded open set of
$\mathbb{R}^{N}$ with boundary $\partial\Omega$ of class $C^{1}$.
Assume that $ p,q:\Omega\to\mathbb{I}$ are tow functions of class
$C_{B}^{1}(\Omega)\cap C(\overline{\Omega})$;
$p^{-},q^{-}>1$;
$c(\cdot)\in C_B^1(\Omega\setminus{\mathcal C})$,
${\mathcal C}\subset\Omega$ with $\operatorname{meas}({\mathcal C})=0$.
For every classical solution
$(u,v)\in \big( C^{2}(\Omega)\cap C^{1}(\overline{\Omega})\big)^2$ of
problem \eqref{2}, the following equality holds
\begin{equation} \label{4}
\begin{aligned}
&\frac{\partial}{\partial x_{i}} \Big[x_{i}\Big(\frac{\alpha+1}{p(x)}
|\nabla u|^{p(x)}+ \frac{\beta+1}{q(x)}|\nabla v|^{q(x)}-
c(x)|u|^{\alpha+1}|v|^{\beta+1}\Big) \\
&- (\alpha+1)\big(x_{j}\frac{\partial u}{
\partial x_{j}}+ a_1u\big)|\nabla u|^{p(x)-2}
\frac{\partial u} {\partial x_{i}} -(\beta+1)\Big(x_{j}\frac{\partial v}{
\partial x_{j}}+a_2v\Big)|\nabla v|^{q(x)-2}\frac{
\partial v}{\partial x_{i}} \Big] \\
&=(\alpha+1)\Big[\frac{N-p(x)}{p(x)}-a_1 \Big]|\nabla u|^{p(x)} +
(\beta+1)\Big[\frac{N-q(x)}{q(x)}-a_2 \Big]|\nabla v|^{q(x)} \\
&\quad +\frac{\langle x,\nabla p\rangle}{p^{2}(x)}
(\ln |\nabla u|^{p(x)}-1)|\nabla u|^{p(x)}
+ \frac{\langle x,\nabla q\rangle}{q^{2}(x)}
(\ln |\nabla v|^{q(x)}-1)|\nabla v|^{q(x)} \\
&\quad +\{(\alpha+1)a_1+(\beta+1)a_2-N\}c(x)|u|^{\alpha+1}|v|^{\beta+1}
-\langle x, \nabla c\rangle |u|^{\alpha+1}|v|^{\beta+1} ,
\end{aligned}
\end{equation}
for all $a_1$ and $a_2$ in $\mathbb{R}$.
\end{proposition}
The proof of Proposition \ref{pro2} can be established by a simple computation.
\begin{proof}[Proof of Proposition \ref{pro1}]
In this proof, for any vectors in $\mathbb{I}^N$
$x=(x_i)_{i=1,\dots,N}$ and
$y=(y_i)_{i=1,\dots,N}$, the classical inner product $xy$ is denoted
$x_iy_i$ and the notation $\sum_{i=1}^N$ is omitted.
Let $(u,v) \in \left(C^{2}_{B} \cap C^{1} (\bar\Omega)\right)^2$ be a classical
solution of the problem \eqref{2}. According to the {Proposition} \ref{pro2},
$(u,v)$ satisfies the identity \eqref{4}. Integrating by part over $\Omega$,
we get
\begin{equation} \label{5}
\begin{aligned}
&\int_{\partial \Omega}\Big[\Big(\frac{\alpha+1}{
p(x)}|\nabla u|^{p(x)} + \frac{\beta+1}{q(x)}|\nabla
v|^{q(x)}-c(x)|u|^{\alpha+1}|v|^{\beta+1} \Big) \\
& -(\alpha+1)\big(x_{j}\frac{\partial u}{\partial x_{j}}+a_1u\big)|\nabla u|^{p(x)-2}
\frac{\partial u}{\partial x_{i}}\\
& -(\beta+1)\big(x_{j}\frac{\partial v}{\partial x_{j}}+a_2v\big)|\nabla v|^{q(x)-2}
\frac{\partial v}{\partial x_{i}} \Big] \nu_{i} {\mathrm{d}}\sigma\\
& =(\alpha+1)\int_{\Omega}\big(\frac{N-p(x)}{p(x)}-a_1
\big)|\nabla u|^{p(x)}{\mathrm{d}}x \\
&\quad +(\beta+1) \int_{\Omega}\big(\frac{N-q(x)}{q(x)}-a_2 \big)
|\nabla v|^{q(x)}{\mathrm{d}}x \\
&\quad +\int_{\Omega} \Big[\frac{1}{p^{2}(x)} \langle x\cdot\nabla p\rangle
(\ln|\nabla u|^{p(x)}-1)|\nabla u|^{p(x)}\\
&\quad + \frac{1}{q^{2}(x)} \langle x, \nabla q\rangle (\ln
|\nabla v|^{q(x)}-1)|\nabla v|^{q(x)} \Big]{\mathrm{d}}x\\
&\quad +\int_{\Omega}\Big\{(\alpha+1)a_1+(\beta+1)a_2-N\Big\}c(x)|u|^{\alpha+1}
|v|^{\beta+1}{\mathrm{d}}x\\
&\quad -\int_{\Omega}\langle x,\nabla c\rangle|u|^{\alpha+1}
|v|^{\beta+1}{\mathrm{d}}x,
\end{aligned}
\end{equation}
where $\nu$ is
the unit outer normal to the boundary $\partial \Omega$
Since $u=0 $ on $\partial \Omega$, clearly it follows that
$\frac{\partial u} {\partial {x_{i}}}=(\nabla u.\nu)\nu_{i}$
for $i=1,\dots,N$.
Then, for $x$ on $\partial \Omega$, we can write
\begin{align*}
x_{j} \frac{\partial u} {\partial x_{j}} \frac{\partial u} {\partial x_{i}}
|\nabla u|^{p(x)-2}\nu _{i}
&= x_{j}[(\nabla u.\nu)\nu_{j}]\frac{\partial u} {\partial x_{i}}
|\nabla u|^{p(x)-2}\nu_i \\
&=\frac{\partial u} {\partial x_{i}}\frac{\partial u} {\partial x_{i}}
|\nabla u|^{p(x)-2}(x.\nu) \\
&=|\nabla u|^{p(x)}(x.\nu)\quad \text{on }\partial \Omega
\end{align*}
Using the relation \eqref{5} and the fact that $u|_{\partial \Omega}=0$ in
the left hand side of this relation, the statement of the
Proposition \ref{pro1} occurs.
\end{proof}
\begin{remark}\label{cexemple}\rm
Before proving Proposition \ref{pro2}, we note that the set of functions $c$
satisfying to hypothesis \eqref{gradc}, is non-empty. Indeed, let $x_0$ be
in $\partial\Omega$ such that $\operatorname{dist}(0,\partial\Omega)=\operatorname{dist}(0,x_0)$.
We set $R_0=\operatorname{dist}(0,\partial\Omega)$. Obviously, we remark that the
ball $B(0,R_0)$ is contained in $\Omega$. We define the set $\Omega_1$
by $\Omega_1=\{x\in\Omega; 0\leq \|x\|\leq R_0/2 \}$.
For instance, we define the function
\[
c(x)=\begin{cases}
-e^{\| x\|^2}&\text{if }x\in\Omega_1\\
e^{-\| x\|^2}&\text{if }x\in\Omega\setminus\Omega_1.
\end{cases}
\]
This function changes sign in $\Omega$ and we also have for any
$x\in\Omega$, $\langle x, \nabla c(x)\rangle\leq 0$. Moreover,
$c\in L^{\infty}(\Omega)$.
\end{remark}
\begin{proof}[Proof of Theorem \ref{NE}]
Suppose that there exists a nontrivial classical solution
$(u,v)$ in $C^{2}(\Omega)\cap C^{1}(\bar {\Omega})$ of the problem \eqref{2}.
So that, $(u,v)$ satisfies the statement of Proposition \ref{pro1}.
Since $\Omega \subset \mathbb{R}^{N} $ is strictly starshaped with respect to
the origin, we have $x\cdot\nu >0$ on $\partial \Omega $ thus
\begin{equation*}
-\frac{\alpha+1}{N} \int_{\partial \Omega}\frac{1}{{\tilde p}
(x)} |\nabla u|^{p(x)} \langle x,\nu \rangle {\mathrm{d}}\sigma -\frac{\beta+1}{N}
\int_{\partial \Omega} \frac{1}{{\tilde q}(x)}|\nabla
v|^{q(x)} \langle x,\nu \rangle {\mathrm{d}} \sigma <0,
\end{equation*}
where $\frac{1}{{\tilde p}(x)}=\frac{p(x)-1}{p(x)}$,
$\frac{1}{{\tilde q} (x)}=\frac{q(x)-1}{q(x)}$.
On other hand, choosing $a_1\in \mathbb{I}$ and $a_2\in\mathbb{I}$ such that
$$
(\alpha+1)\frac{a_1}N+ (\beta+1)\frac{a_2}N= 1
$$
and using the relations \eqref{Np+}, \eqref{uvepq}, we obtain
\begin{align*}
&\frac{\alpha+1}{N} \int_{\partial \Omega} \frac{1-p(x)}{p(x)}
|\nabla u|^{p(x)} \langle x,\nu\rangle {\mathrm{d}}\sigma +\frac{\beta+1}{N}
\int_{\partial \Omega} \frac{1-q(x)}
{q(x)}|\nabla v|^{q(x)} \langle x,\nu\rangle {\mathrm{d}} \sigma \\
&=\frac{\alpha+1}{N} \int_{\Omega} \Big(\frac{N-p(x)}{p(x)}
-a_1\Big)|\nabla u|^{p(x)}{\mathrm{d}}x +\frac{\beta+1}{N}
\int_{\Omega} \Big(\frac{N-q(x)}{q(x)}-a_2\Big)|\nabla v|^{q(x)}{
\mathrm{d}}x\\
&\quad +\int_{\Omega}\Big\{(\alpha+1)a_1
+(\beta+1)a_2-N\Big\}c(x)|u|^{\alpha+1}|v|^{\beta+1}{\mathrm{d}}x\\
&\quad -\int_{\Omega}\langle x,\nabla c\rangle|u|^{\alpha+1}|v|^{\beta+1}{\mathrm{d}}x \\
& \geq {(\alpha+1)} \frac{N-p^+}{Np^+} \int_{\Omega}
|\nabla u|^{p(x)}{\mathrm{d}}x +{(\beta+1)}{\frac{N-q^+}{Nq^+}}
\int_{\Omega} |\nabla v|^{q(x)}{\mathrm{d}}x \\
&\quad - {(\alpha+1)} \frac{a_1}N\int_{\Omega}
|\nabla u|^{p(x)}{\mathrm{d}}x- {(\beta+1)}\frac{a_2}N
\int_{\Omega} |\nabla v|^{q(x)}{\mathrm{d}}x \\
&\quad + \int_{\Omega}\big\{(\alpha+1)a_1+(\beta+1)a_2-N\big\}c(x)
|u|^{\alpha+1}|v|^{\beta+1}{\mathrm{d}}x\\
&\quad -\int_{\Omega}\langle x,\nabla c\rangle|u|^{\alpha+1}|v|^{\beta+1}{\mathrm{d}}x \\
&\geq \{(\alpha+1) \frac{N-p^+}{Np^+} +{(\beta+1)}{\frac{N-q^+}{Nq^+}}
- {(\alpha+1)} \frac{a_1}N\\
&\quad -{(\beta+1)}\frac{a_2}N\}
\int_\Omega c(x)|u|^{\alpha+1}|v|^{\beta+1}dx\\
&\geq \{(\alpha+1) \frac{N-p^+}{Np^+} +{(\beta+1)}{\frac{N-q^+}{Nq+}}- 1\}
\int_\Omega c(x) |u|^{\alpha+1}|v|^{\beta+1}dx\\
&\quad -\int_\Omega\langle x,\nabla c\rangle |u|^{\alpha+1}|v|^{\beta+1}dx.
\end{align*}
Now we remark that any solution $(u,v)$ of \eqref{2} satisfies
$$
\int_\Omega c(x)|u|^{\alpha+1}|v|^{\beta+1}dx
=\int_{\Omega}|\nabla u|^{p(x)}{\mathrm{d}}x=\int_{\Omega}
|\nabla v|^{q(x)}{\mathrm{d}}x.
$$
So from the hypothesis \eqref{gradc}, the right-hand side is positive.
A contradiction occurs, then the proof is complete.
\end{proof}
\section{Existence results via the fibering method}
Throughout this section, $\Omega$ denotes a bounded open set in
$ \mathbb{R}^{N}$. The generalized Sobolev spaces $W_{0}^{1,p(x)}(\Omega)$
and $W_{0}^{1,q(x)}(\Omega)$ are equipped with the Luxembourg norm
$\| u\|_{W_{0}^{1,p(x)}(\Omega)}$ and $\|u\|_{W_{0}^{1,q(x)}(\Omega)}$
respectively. For a best reading, we denote as
$\| u\|_{W_{0}^{1,p(x)}(\Omega)}=\| u|\|_{1,p(x)}$ and
$\| u\|_{W_{0}^{1,q(x)}(\Omega)}=\|u\|_{1,q(x)}$.
Before starting this section, we need to make some crucial remarks
for the understanding of this article.
\begin{remark}\label{R1} \rm
Assuming that
\[
(\alpha+1)\frac{N-p^-}{Np_-}+(\beta+1)\frac{N-q^-}{Nq^-}\leq1.
\]
We can establish that the term $\int_\Omega c(x)|
z|^{\alpha+1}| w|^{\beta+1}dx$ is well defined.
Indeed, since the functional $c$ is bounded in $\Omega$, it suffices to verify
that $|z|^{\alpha+1}|w|^{\beta+1}$ belongs in $L^1(\Omega)$.
This fact derives to the condition $\frac{{\alpha}+1}{p^+}+\frac{ \beta+1}{q^+}> 1$
and so $\frac{{\alpha}+1}{p^-}+\frac{ \beta+1}{q^-}> 1$. So, there exists a
pair $({\hat p},{\hat q})$ such that (1)
\begin{gather} \label{pmoins}
{\ p}^-<{\hat p}<\frac{Np^-}{N-p^-}, \\
\label{qmoins}
{\ q}^-<{\hat q}<\frac{Nq^-}{N-q^-}
\end{gather}
(2)
$\frac{{\ \alpha}+1}{{\hat p}}+\frac{ \beta+1}{{\hat q}}= 1$.
\end{remark}
\begin{remark}\label{R2} \rm % \label{compact}
Since $\frac{Np^-}{N-p^-}<\frac{Np(x)}{N-p(x)}$ and
$\frac{Nq^-}{N-q^-}<\frac{Nq(x)}{N-q(x)}$, the assumption
$(\alpha+1)\frac{N-p^-}{Np^-}+(\beta+1)\frac{N-q^-}{Nq^-}\leq1$ implies that
for any $x\in\Omega$, inequalities \eqref{pmoins} and \eqref{qmoins} become
\begin{gather*}
{\ p}^{-}<{\hat p}<\frac{Np(x)}{N-p(x)},\\
{\ q}{-}<{\hat q}<\frac{Nq(x)}{N-q(x)}.
\end{gather*}
In particular, the imbeddings
$W_0^{1,p(x)}(\Omega)\hookrightarrow L^{{\hat p}}(\Omega)$ and
$W_0^{1,q(x)}(\Omega)\hookrightarrow L^{{\hat q}}(\Omega)$ are continuous.
Consequently, employing the H\"{o}lder inequality, the above estimate is fulfilled:
$$
\Big|\int_\Omega c(x)|u|^{\alpha+1}|v|^{\beta+1}dx\Big|
\leq \|c\|_{L^{\infty}(\Omega)}\|u\|_{L^{\hat{p}}(\Omega)}^{\alpha+1}
\|v\|_{L^{\hat{q}}(\Omega)}^{\beta+1}
\leq C st\|u\|_{1,p(x)}^{\alpha+1}\|v\|_{1,q(x)}^{\beta+1}.
$$
\end{remark}
\begin{remark} \rm
(1) Under assumption \eqref{alfa+}, we have
\begin{equation}\label{alfa-}
\frac{\alpha+1}{p^{-}}+\frac{\beta+1}{q^{-}}-1>0.
\end{equation}
(2) When $q(x)$ and $p(x)$ are constant, \eqref{alfa+} and \eqref{alfa-} are
reduced to the well-known condition
\[
1<\frac{\alpha+1}p+\frac{\beta+1}q.
\]
\end{remark}
\subsection{Notation and hypotheses}
\subsubsection*{ Notation }
$X_0(x)$ denotes $W_{0}^{1,p(x)}(\Omega) \times W_{0}^{1,q(x)}(\Omega)$.
For any $(z,w)\in X_0(x)$, we set
\begin{equation} \label{ABC}
\begin{gathered}
A(z)=\int_{_{\Omega}}|\nabla z|^{p(x)} dx, \quad
B(w)=\int_{_{\Omega}}|\nabla w|^{q(x)} dx, \\
C(z,w)=\int_{\Omega}c(x)|z|^{\alpha+1}|w|^{\beta+1}dx.
\end{gathered}
\end{equation}
$$
\gamma^+= \frac{\alpha+1}{p^{+}}+\frac{\beta+1}{q^{+}},\quad
\gamma^-= \frac{\alpha+1}{p^{-}}+\frac{\beta+1}{q^{-}}.
$$
$\mathbf{J}$ designates the functional from $X_0(x)$ to $\mathbb{R}$ and
defined by
\begin{equation}\label{grandJ}
\mathbf{J}(u,v) = (\alpha+1)\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)} dx+
(\beta+1)\int_{\Omega}\frac{1}{q(x)}|\nabla v|^{q(x)}dx -C(u,v)dx.
\end{equation}
Following remarks \ref{R1}-\ref{R2}, the functional $\mathbf{J}$ is well defined
from $X_0(x)$ to $\mathbb{I}$.
\subsubsection*{Hypotheses }
\begin{gather}\label{gamma}
1<\gamma^+,\\
(p, q)\in \big({\mathcal P}(\Omega)\cup C(\overline{\Omega})\big)^2
\text{ satisfies \eqref{polder}.} \label{Hpq}
\end{gather}
Moreover, assume that
\begin{equation}\label{p-p+}
1
0$.
\end{remark}
\subsection*{Existence of a fibering parameter $t(z,w)$}
Existence and properties:
Since $\frac{\partial \mathbf{J}}{\partial u}(u,v)$ and
$\frac{\partial \mathbf{J}}{\partial v}(u,v)$ exist, a weak solution of
\eqref{2} corresponds to a critical point of the energy functional $\mathbf{J}$
associated to the system \eqref{2}.
Hence, assuming that $(u,v) \in X_0(x) $ is a critical point of $\mathbf{J}$,
$(u,v)$ satisfies
$\big(\frac{\partial \mathbf{J}}{\partial u}(u,v),
\frac{\partial \mathbf{J}}{\partial v}(u,v)\big)=(0,0)$.
So, according to remark \ref{t}, a fibering
parameter $t(z,w)$ associated to $(z,w)$ is characterized as
\begin{equation} \label{9}
\frac{d \mathbf{J}}{d t}\big(t^{1/p^+}z,t^{1/q^+}w\big)=0.
\end{equation}
More precisely, $t(z,w)$ is defined by the following Proposition.
\begin{proposition}\label{existrro}
Let $(z,w)$ be fixed in $X_0(x)$ such that $C(z,w)>0$.
(1) Assuming \eqref{gamma}, there is $t(z,w)\in\mathbb{R}_+^*$
depending on $(z,w)$ such that
\begin{equation} \label{zp}
\frac{\alpha+1}{p^+\gamma^+}\int_{\Omega}t(z,w){^{\frac{p(x)}{p^+}}}|\nabla z|^{p(x)}dx
+\frac{\beta+1}{q^+\gamma^+}\int_{\Omega}t(z,w){^{\frac{q(x)}{q^+}}}|\nabla z|^{q(x)}dx
={t(z,w)}^{{\gamma^+}}C(z,w).
\end{equation}
(2) Location of $t(z,w)$:
for $t(z,w)>1$ (respectively, $t(z,w)\leq 1$) if $Q(z,w)>1$
(respectively $Q(z,w)\leq 1$), for any $(z,w)$ such that
$C(z,w)>0$, we have
$$
Q(z,w)=\frac{\frac{\alpha+1}{p^+\gamma^+}\int_{\Omega}|\nabla z|^{p(x)}dx
+\frac{\beta+1}{q^+\gamma^+}\int_{\Omega}|\nabla z|^{q(x)}dx}{C(z,w)}.
$$
Moreover, the following two estimates hold:
(a) If $00$, the location of
the fibering parameter $t(z,w)$.
\end{proof}
\begin{lemma}\label{HJ}
Assume \eqref{gamma}. Let $(z,w)$ in $X_{0}(x)\setminus\{(0,0)\}$ and $t(z,w)$
defined as in \eqref{zp}. The function
$(z,w)\longmapsto t(z,w)$ is $C^1$ on $X_{0}(x)\setminus\{(0,0)\}$.
\end{lemma}
\begin{proof}
From \eqref{zp}, we consider on the open set
$X_0(x)\setminus\{(0,0)\}\times(]0,1[\cup]1,+\infty[)$ of $X_0(x)\times\mathbb{I}$,
the functional $\eta$ defined as follows:
$$
\eta(z,w,t)=\frac{\alpha+1}{p^+\gamma^+}\int_\Omega {t}^{\frac{p(x)}{p^+}
-\gamma^+}|\nabla z|^{p(x)}dx+\frac{\beta+1}{q^+\gamma^+}
\int_\Omega {t}^{\frac{q(x)}{q^+}-\gamma^+}|\nabla w|^{q(x)}dx-C(z,w).
$$
Obviously, we note that $\eta(z,w,t(z,w))=0$ and
$\frac{\partial\eta}{\partial t}(z,w,t(z,w))< 0$.
We used the implicit function theorem for the function $\eta$.
Then $(z,w)\longmapsto t(z,w)$ is $C^1$ function on
$X_{0}(x)\setminus\{(0,0)\}$.
\end{proof}
\subsection*{A new definition for the enegy functional $\mathbf{J}$
derived from Proposition \ref{existrro} and Lemma \ref{HJ}}
On $X_0(x)\setminus\{(0,0)\}$, we define the function
\begin{equation}\label{matcalJ}
\begin{aligned}
\mathcal{J}(z,w) &=\int_{\Omega}\frac{ \alpha+1}{p(x)}t(z,w)^{
\frac{p(x)}{p^+}}|\nabla z|^{p(x)}dx +\int_{\Omega}\frac{ \beta+1}{q(x)
}t(z,w)^{ \frac{q(x)}{q^+}}|\nabla w|^{q(x)}dx\\
&\quad - {t(z,w)}^{\gamma^+}C(z,w).
\end{aligned}
\end{equation}
\subsection{A conditional critical point of $\mathcal{J}$}
We start by giving some lemmas.
\begin{lemma}\label{R}
Let $(z_0,w_0)\in X_0(x)\setminus\{(0,0)\}$ such that $C(z_0,w_0)\neq 0$.
Then, there exists $Z_0\in W_0^{1,p(x)}(\Omega)\setminus\{0\}$ satisfying
$C(Z_0,w_0)>0$.
\end{lemma}
\begin{proof}
We fix $(z_0,w_0)\in X_0(x)\setminus\{(0,0)\}$ for which $C(z_0,w_0)\neq 0$.
Then distinguish two cases:
(1) $C(z_0,w_0)>0$. Then, the assertion of Lemma \ref{R} holds
by taking $Z_0=z_0$.
(2) If $C(z_0,w_0)< 0$. In this context, we note that
$$
\int_\Omega c_+(x)|z_0|^{\alpha+1}|w_0|^{\beta+1}dx
< \int_\Omega c_-(x)|z_0|^{\alpha+1}|w_0|^{\beta+1}dx.
$$
Assuming that $c_+(x)> 0$ and $c_-(x)\geq 0$, we put
$$
Z_0=z_0\,{\chi}_{_{\{h>0\}}}-{\hat\varepsilon}{z_0}\,{\chi}_{_{\{h\leq 0\}}}
$$
and
$$
0<{\hat\varepsilon}<\Big[\frac{\int_{\{c>0\}}h_+(x)|z_0|^{\alpha+1}
|w_0|^{\beta+1}dx}{\int_{\{c\leq 0\}}h_-(x)|z_0|^{\alpha+1}
|w_1|^{\beta+1}dx+1} \Big]^{1/\alpha+1}.
$$
From easy calculations, it follows that
$ \int_{\Omega}c(x)|Z_0|^{\alpha+1}|w_0|^{\beta+1}dx>0$.
The proof is complete.
\end{proof}
Consequently, we define the set
\begin{equation} \label{Econstraint}
E=\big\{(z,w)\in X; \int_{\Omega}|\nabla z|^{p(x)}dx =1, \;
\int_{\Omega}|\nabla w|^{q(x)}dx =1 \big\}.
\end{equation}
It is obvious that $E$ is a nonempty set (see \cite{xd, kr}).
We then have the next lemma.
\begin{lemma}\label{Eczw}
The set $\{(z,w)\in E; C(z,w)>0 \}$ is nonempty.
\end{lemma}
\begin{proof}
Let $(z_0,w_0)$ be in $X_0(x)\setminus\{(0,0)\}$ such that
$C(z_0,w_0)\neq 0$. According to the lemma \ref{R}, there is
$({\mathcal Z},w_0)\in X_0(x)\setminus\{(0,0)\}$ such that
$C({\mathcal Z},w_0)>0$. The assert of the lemma is holds if for instance
$({\mathcal Z},w_0)\in E$. Now, assume that $({\mathcal Z},w_0)$ is not in $E$.
Assume that for instance $\int_\Omega|\nabla {\mathcal Z}|^{p(x)}dx>1$ and
$\int_\Omega|\nabla w_0|^{q(x)}dx<1$. Applying the mean value theorem
to the functions $t\to 1-\int_\Omega |\nabla t{\mathcal Z}|^{p(x)}dx$
and $s\to \int_\Omega |\nabla sw_0 |^{q(x)}dx -1$, we get a pair
$(t_p,s_q)\in ]0,1[\times ]1,+\infty[$ such that
$$
\int_\Omega |\nabla t_p{\mathcal Z}|^{p(x)}dx=1
=\int_\Omega |\nabla s_qw_0|^{q(x)}dx.
$$
Moreover, since $C({\mathcal Z},w_0)>0$, we also have
$C(t_p{\mathcal Z},s_qw_0)>0$.
The proof is complete.
\end{proof}
\begin{proposition}\label{caliJ}
Let the functional $\mathcal{J}$ be defined by \eqref{matcalJ}, and let
$(z,w)$ be in $E$. Under hypothesis \eqref{gamma}--\eqref{p-p+},
the following estimates hold:
\begin{gather*}
\frac{\gamma^+}{C(z,w)^{1/\gamma^+-1}}-1
\leq \mathcal{J}(z,w)\leq \frac{\gamma^--1}{C(z,w)
^{\min(\frac{p^-}{p^+},\frac{q^-}{q^+}) }}, \quad \text{if } c(z,w)\geq1,\\
\frac{\gamma^+-1}{C(z,w)^{\min(\frac{p^-}{p^+},\frac{q^-}{q^+})}}
\leq\mathcal{J}(z,w)\leq \frac{\gamma^-}{C(z,w)^{1/\gamma^+-1}}-1,\quad
\text{if }c(z,w)<1.
\end{gather*}
\end{proposition}
\begin{proof} Estimates \eqref{15} and \eqref{16} imply the
following lower and upper bounds for the functional $\mathcal{J}(z,w)$.
Indeed:
(1) Consider $t(z,w)\geq 1$: after combining \eqref{matcalJ} and \eqref{zp}, it follows that
\begin{align*}
&\mathcal{J}(z,w)\\
&= (\alpha+1)\int_{\Omega}\big(\frac1{p(x)}-\frac1{p^+\gamma^+} \big)
{t(z,w)}^{\frac{p(x)}{p^+}}|\nabla z|^{p(x)}dx\\
&\quad +(\beta+1)\int_{\Omega}\big(\frac1{q(x)}-\frac1{q^+\gamma^+} \big)
{t(z,w)}^{\frac{q(x)}{q^+}}|\nabla w|^{q(x)}dx\\
&\geq \Big[ (\alpha+1)\frac{\gamma^+-1}{p^+\gamma^+}\int_{\Omega}|\nabla z|^{p(x)}dx
\\
&\quad +(\beta+1)\frac{\gamma^+-1}{q^+\gamma^+}\int_{\Omega}|\nabla w|^{q(x)}dx\Big]
{t(z,w)}^{\min(\frac{p^-}{p^+},\frac{q^-}{q^+})}\\
&\geq \Big[ \frac{\alpha+1}{p^+\gamma^+}\int_{\Omega}|\nabla z|^{p(x)}dx
+\frac{\beta+1}{q^+\gamma^+}\int_{\Omega}|\nabla w|^{q(x)}dx\Big]
(\gamma^+-1)Q(z,w)^{\min(\frac{p^-}{p^+},\frac{q^-}{q^+})}.
\end{align*}
The functional $\mathcal{J}(z,w)$ is bounded as follows:
\begin{align*}
\mathcal{J}(z,w)
& \leq t(z,w)\Big[\frac{\alpha+1}{p^-}\int_{\Omega}|\nabla z|^{p(x)}dx
+\frac{\beta+1}{q^-}\int_{\Omega}|\nabla w|^{q(x)}dx\Big]-{t(z,w)}^{\gamma^+}C(z,w)\\
&\leq \Big[\frac{\alpha+1}{p^-}\int_{\Omega}|\nabla z|^{p(x)}dx
+\frac{\beta+1}{q^-}\int_{\Omega}|\nabla w|^{q(x)}dx\Big]Q(z,w)^{1/\gamma^+-1}\\
&\quad - \Big[\frac{\alpha+1}{p^+\gamma^+}\int_{\Omega}|\nabla z|^{p(x)}dx
+\frac{\beta+1}{q^+\gamma^+}\int_{\Omega}|\nabla w|^{q(x)}dx\Big].
\end{align*}
(2) Now, consider $t(z,w)< 1$:
\begin{align*}
&\mathcal{J}(z,w)\\
& \geq t(z,w)\Big[\frac{\alpha+1}{p^+}\int_{\Omega}|\nabla z|^{p(x)}dx
+\frac{\beta+1}{q^+}\int_{\Omega}|\nabla w|^{q(x)}dx\Big]
-{t(z,w)}^{\gamma^+}C(z,w)\\
&\geq \Big[\frac{\alpha+1}{p^+}\int_{\Omega}|\nabla z|^{p(x)}dx
+\frac{\beta+1}{q^+}\int_{\Omega}|\nabla w|^{q(x)}dx\Big]Q(z,w)^{1/\gamma^+-1}\\
&\quad- \Big[\frac{\alpha+1}{p^+\gamma^+}\int_{\Omega}|\nabla z|^{p(x)}dx
+\frac{\beta+1}{q^+\gamma^+}\int_{\Omega}|\nabla w|^{q(x)}dx\Big].
\end{align*}
Also we have
\begin{align*}
\mathcal{J}(z,w)
&=(\alpha+1)\int_{\Omega}\big(\frac1{p(x)}-\frac1{p^+\gamma^+} \big)
{t(z,w)}^{\frac{p(x)}{p^+}}|\nabla z|^{p(x)}dx\\
& \quad +(\beta+1)\int_{\Omega}\big(\frac1{q(x)}-\frac1{q^+\gamma^+} \big)
{t(z,w)}^{\frac{q(x)}{q^+}}|\nabla w|^{q(x)}dx\\
&\leq \Big[ (\alpha+1)\big(\frac1{p^-}-\frac1{p^+\gamma^+}\big)
\int_{\Omega}|\nabla z|^{p(x)}dx\\
&\quad +(\beta+1)\big(\frac1{q^-}-\frac1{q^+\gamma^+}\big)
\int_{\Omega}|\nabla w|^{q(x)}dx\Big]
{t(z,w)}^{\min(\frac{p^-}{p^+},\frac{q^-}{q^+})}\\
&\leq \Big[(\alpha+1)\big(\frac1{p^-}-\frac1{p^+\gamma^+}\big)
\int_{\Omega}|\nabla z|^{p(x)}dx \\
&\quad +(\beta+1)\big(\frac1{q^-}-\frac1{q^+\gamma^+}\big)
\int_{\Omega}|\nabla w|^{q(x)}dx \Big]Q(z,w)^{\min
(\frac{p^-}{p^+\gamma^+},\frac{q^-}{q^+\gamma^+})}.
\end{align*}
We choose $(z,w)\in E$, then $Q(z,w)$ is reduced to become
$Q(z,w)=\frac1{C(z,w)}$. Thus, the assert of the Proposition \ref{caliJ} follows.
\end{proof}
Consider the optimal problem \begin{equation}\label{inf}
\inf_{\{(z,w)\in E; \,\, c(z,w)>0\}} \frac{1}{C(z,w)}.
\end{equation}
We claim that the infimum value is attained in $E$.
To assert this claim, we need the following lemma.
\begin{lemma}\label{supC}
Under assumption \eqref{Hpq},
the optimal problem \eqref{inf} possesses at least one solution.
\end{lemma}
\begin{proof}
Solving \eqref{inf} is equivalent to solving the maximizing problem:
\begin{equation}\label{M}
\sup \Big\{\int_{\Omega}c(x)| z|^{\alpha+1}| w|^{\beta+1}dx; \,
(z,w)\in E,\; C(z,w)>0\Big\} =:M.
\end{equation}
Firstly, from Remarks \ref{R1} and \ref{R2}, we observe that $M$ is finite.
Indeed, from the end of Remark \ref{R2} and the use of \cite{xd} or \cite{kr},
for any $(z,w)\in E$, $00)$.
It is easy to see that $(z_{n},w_{n})$ is bounded in $ X_{0}(x)$.
It follows that
$ z_{n}\rightharpoonup \overline{z}$ weakly in $ W_{0}^{1.p(x)}(\Omega) $
and $z_{n}\to \overline{z}$ strongly in $L^{\hat{p}}(\Omega)$.
Similarly, $w_{n}\rightharpoonup\overline{w}$ weakly in
$ W_{0}^{1.q(x)}(\Omega) $
and $z_{n}\to \overline{z}$ strongly in $L^{\hat{q}}(\Omega)$.
Consequently
$$
C(z_n,w_n)\to C(\bar{z},\bar{w}).
$$
Moreover, since $ z\mapsto \int_\Omega |\nabla z|^{p(x)}dx$ is a semimodular
in the sense of \cite[Definition 2.1.1]{dhhr},
applying \cite[Theorem 2.2.8]{dhhr}),
we obtain that $p(x)$- and $q(x)$-modular functions
$\rho_p(\cdot)$ and $\rho_q(\cdot)$ are
weakly lower semicontinuous.
So, since $z_{n}\rightharpoonup \bar{z}$
weakly in $ W_{0}^{1.p(x)}(\Omega)$, we deduce that
$$
\int_{\Omega}| \nabla\bar{ z}|^{p(x)}\,dx
\leq\liminf_{n} \int_{\Omega}| \nabla \bar{ z_{n}}|^{p(x)}\,dx=1
$$
and
$$
\int_{\Omega}| \nabla\bar{ w}|^{q(x)}\,dx
\leq\liminf_{n}\int_{\Omega} | \nabla \bar{ w_{n}}|^{q(x)}\,dx=1.
$$
Now assume by contradiction that
$ \int_{\Omega}| \nabla \bar{ z}|^{p(x)}\,dx<1$ and
$ \int_{\Omega}| \nabla \bar{w}|^{p(x)}\,dx<1$. Then we have
$\|\bar{z}\|_{1,p(x)}<1$ and $\|\bar{w}\|_{1,p(x)}<1$.
We set
$$
a=\|\bar{z}\|_{1,p(x)}= \|\nabla \bar{z} \|_{L^{p(x)}},\quad
b = \|\bar{w}\|_{1,q(x)}=\|\nabla \bar{w} \|_{L^{q(x)}}.
$$
Using again the properties of the functions $\rho_p$ and
$\rho_q$, it follows that
$$
\rho_p\big(|\nabla(\frac{1}{a}\bar{ z})|\big)
=\int_{\Omega}|\nabla(\frac{1}{a} \bar{ z})|^{p(x)}\,dx=1
$$
and
$$
\rho_q\big(|\nabla (\frac{1}{b}\bar{ w})|\big)
=\int_{\Omega}|\nabla(\frac{1}{b} \bar{ w})|^{q(x)}\,dx=1.
$$
Obviously, we see that
$\big(\frac{1}{a}\bar{z},\frac{1}{b}\bar{w}\big)\in E$.
On the other hand,
$$
C\big(\frac{1}{a}z_n,\frac{1}{b}w_n\big) \to
C\big(\frac{1}{a}\bar{z},\frac{1}{b}\bar{w}\big) \quad \text{as } n\to +\infty.
$$
However, we remark that
$$
C\big(\frac{1}{a}\bar{z},\frac{1}{b}\bar{w}\big)
=\big(\frac{1}{a}\big)^{\alpha+1}\big(\frac{1}{b}\big)^{\beta +1}C(\bar{z},\bar{w})
= \big(\frac{1}{a}\big)^{\alpha+1}\big(\frac{1}{b}\big)^{\beta +1}M.
$$
Since $a<1$ and $b<1$, we obtain
$C\big(\frac{1}{a}\bar{z},\frac{1}{b}\bar{w}\big)>M$.
A contradiction occurs.
\end{proof}
Consequently, combining Proposition \ref{caliJ} and Lemma \ref{supC},
we deduce that
$$
\inf_{\{(z,w)\in E;\,\, C(z,w)>0\}}{\mathcal{J }}(z,w)
$$
exists.
In the next section, we will show that the infimum of the functional
${\mathcal{J }}(z,w)$ is attained on $E$.
\subsection*{Existence result for the optimal problem \eqref{inf}}
We are looking for $(z,w)\in E $ satisfying
\begin{equation}\label{inftildeJ}
\inf {\mathcal{J}}(z,w): A(z)=1,\; B(w)=1.
\end{equation}
To investigate \eqref{inftildeJ}, we give some lemmas and remarks.
\begin{lemma}\label{tutetav}
Let $E$ be the set defined as in \eqref{Econstraint}.
Assume that the functions $p$ and $q$ satisfy hypothesis \eqref{Hpq}.
Then, for any $(z,w) \in X_{0}(x)$, there exit $ \delta(z)>0$ and
$\theta(w)>0$ such that
\begin{equation*}
\big(\frac{1}{\delta(z)}z,\frac{1}{\theta(w)}w\big) \in E.
\end{equation*}
\end{lemma}
\begin{proof}
For any fixed $z$ in $W^{1,p(x)}_{0}(\Omega)\setminus\{0\}$, we define a
function $f$ on $]0,+\infty[$ by
\begin{equation*}
f(z,\delta)= \int_\Omega (\frac{1}{\delta})^{p(x)}|\nabla z|^{p(x)}dx-1.
\end{equation*}
For any $\delta>1$, we have
\begin{equation*}
(\frac1\delta)^{p_+}\int_\Omega |\nabla
z|^{p(x)}dx-1\leq f(z,\delta)
\leq (\frac1\delta)^{p^-} \int_\Omega|\nabla z|^{p(x)}dx-1.
\end{equation*}
Now, taking $\delta<1$, we obtain
\begin{equation*}
(\frac1\delta)^{p^-}\int_\Omega|\nabla z|^{p(x)}dx-1
\leq f(z,\delta)\leq \big(\frac1\delta\big)^{p^+}
\int_\Omega |\nabla z|^{p(x)}dx-1.
\end{equation*}
It follows from the above inequality that
\begin{itemize}
\item for $\delta$ large enough, $f(z,\delta)\to -1$ as $\delta\to +\infty$,
\item for $\delta$ small enough, $f(z,\delta)\to +\infty$ as $\delta\to 0$.
\end{itemize}
By applying the Mean Value Theorem, we conclude that there exists
$\delta_z\in ]0,+\infty[$ such that
\begin{equation*}
\int_\Omega \frac1{\delta_z^{p(x)}}|\nabla z|^{p(x)}dx=1.
\end{equation*}
Similarly, we can prove that, there exists $\theta_w>0$ such that:
\begin{equation*}
\int_\Omega \frac1{\theta_w^{q(x)}}|\nabla w|^{q(x)}dx=1.
\end{equation*}
The proof is complete.
\end{proof}
\begin{lemma} Let $(z,w) \in X_{0}(x)$ be fixed.
The functions $z\mapsto \delta(z)$ defined in Lemma \ref{tutetav} possess
$C^{1}$-regularity respectively from $\mathcal{U}_{z,\delta_z}$ to
$\mathbb{I}$ and $\mathcal{V}_{w,\theta_w}$ to $\mathbb{I}$.
Here, $\mathcal{U}_{z,\delta_z}$ is a neighborhood of
$({z,\delta_z})$ lying on the open set
$\mathcal{U}={W}_0^{1,p(x)}(\Omega)\setminus\{0\}\times ]0,+\infty[$ and
$\mathcal{V}_{w,\theta_w}$ is a neighborhood of $(w,\theta_w)$ lying on the
open set $\mathcal{V}=W_0^{1,q(x)}(\Omega)\setminus\{0\}\times ]0,+\infty[$.
\end{lemma}
\begin{proof}
After making a simple computation, it is easily to see that
\begin{equation*}
\frac{\partial f}{\partial \delta}(z,\delta)=-\frac1\delta\int_\Omega
p(x)\frac1{\delta^{p(x)}}|\nabla z|^{p(x)}dx.
\end{equation*}
Replacing $\delta$ by $\delta_{z}$, we have
\begin{equation*}
| \frac{\partial f}{\partial \delta}(z,\delta_z)| >\frac{p^-}{\delta_z}>0.
\end{equation*}
Hence, the implicit function theorem implies that there exist a neighborhood
of $({z,\delta_z})$, $\mathcal{U}_{z,\delta_z}\subset\mathcal{U}$
and a function of class $C^{1}:$ $z\longmapsto \delta(z)$ from
$\mathcal{U}_{z,\delta_{z}}$ to $\mathbb{I}$.
Particularly, for all $z$ in $ W_{0}^{1,q(x)}(\Omega)$, we have
\begin{equation}\label{n1}
\delta'(z)\cdot \phi=- \frac{\frac{\partial f}{\partial z}
(z,\delta_{z})\cdot\phi}{\frac{\partial f}{\partial \delta}(z,\delta_{z}) }.
\end{equation}
Since we have
\begin{equation*}
\frac{\partial f}{\partial z}(z,\delta_z)\cdot\phi= \int_\Omega
p(x)\frac1{\delta_z^{p(x)}}|\nabla z|^{p(x)-2}\nabla z\cdot\nabla \phi dx,
\end{equation*}
the definition \eqref{n1} then becomes
\begin{equation} \label{tprimez}
\delta'(z)\cdot\phi=-\frac{\int_\Omega
p(x)\frac1{\delta_z^{p(x)}}|\nabla z|^{p(x)-2}\nabla z\cdot\nabla \phi dx}{
\frac1\delta_z\int_\Omega p(x)\frac1{\delta_z^{p(x)}}|\nabla z|^{p(x)}dx}.
\end{equation}
In the same way, we have
\begin{equation} \label{thetaprimew}
\theta'(w)\cdot\psi=-\frac{\int_\Omega
q(x)\frac1{\theta_w^{q(x)}}|\nabla w|^{q(x)-2}\nabla w\cdot\nabla \psi dx}{
\frac1\theta_w\int_\Omega q(x)\frac1{\theta_w^{q(x)}}|\nabla
w|^{q(x)}dx.}.
\end{equation}
\end{proof}
\begin{remark} \rm
We introduce the functional ${\bf{\widetilde {J}}}$ defined on
${W_0^{1,p(x)}}\times{W_0^{1,q(x)}}\times\mathbb{I}$ by
\begin{equation}\label{barJ}
{\bf{\widetilde {J}}}(z,w,t)={\bf{{J}}}(t^{1/p^+}z,t^{1/q^+}{w}).
\end{equation}
Thus, for any $(z,w)\in X_0(x)\setminus\{(0,0)\}$ and $t(z,w)$ given by \eqref{zp},
this definition implies that
\begin{equation}
{\bf{\widetilde {J}}}(z,w,t(z,w))={\mathcal{J}}(z,w)
\end{equation}
where the functional ${\mathcal{J}}$ is given by \eqref{matcalJ}.
\end{remark}
\begin{lemma}\label{minimizing}
Let $(z_{n},w_{n}) \in E $ be a minimizing sequence of \eqref{inftildeJ},
the sequence $(u_n,v_n)$ with
$$
u_{n}=t(z_{n},w_{n})^{1/p^+}z_{n},\quad
v_{n}=t(z_{n},w_{n})^{1/q^+}w_{n}
$$
is then a Palais-Smale sequence for the functional $\mathbf{J}$. i.e.,
%\label{A:gp}
\begin{gather}
\mathbf{J}(u_n,v_n)\leq m,\label{1:gp1}\\
\mathbf{J}'(u_n,v_n)\to 0, \text{ in the meaning of the norm }
\|\cdot\|_{X_0^{*}(x)}.\label{A: gp2}
\end{gather}
\end{lemma}
\begin{proof}
We follow the ideas of \cite{ah}. For a best understanding, some of the notation
used here remain unchanged.
Generalizing \cite{ah}, we define
$\pi:W_0^{1,p(x)}(\Omega)\setminus\{0\} \to \mathbb{I}$ by
$$
\pi(z)= (\pi_1(z),\pi_2(z))=\big(\delta(z), \frac{z}{\delta(z)}\big)
$$
and $\tau: W_0^{1,q(x)}(\Omega)\setminus\{0\} \to \mathbb{I}$ by
$$
\tau(w)= (\tau_1(w),\tau_2(w))=\big(\theta(w), \frac{w}{\theta(w)}\big).
$$
Before continuing, let us designate by $T_{(z,w)}E$ the tangent space to $E$.
Denote
$$
E_p=\{z\in W_0^{1,p(x)}(\Omega); A(z)=1\}
$$
(respectively, $E_q=\{w\in W_0^{1,q(x)}(\Omega); B(z)=1\}$),
hence, it is clear that $T_{(z,w)}E=T_zE_p\times T_wE_q$.
Moreover, for any $(z,w)\in X_0(x)$, for any $(\Phi,\Psi)\in T_{(z,w)}E$,
we have
$$
{\mathcal{J}}'(z,w)(\Phi,\Psi)=\frac{\partial{\bf\widetilde{J}}}{\partial z}
(z,w,t(z,w))(\Phi)+\frac{\partial{\bf\widetilde{J}}}{\partial w}(z,w,t(z,w))(\Psi).
$$
Now, we consider a minimizing sequence $(z_{n},w_{n})\in E$. For any
$(\phi,\psi)\in X_0(x)$, it is obvious that
$(\pi'_2(z_n)\cdot\phi,\tau'_2(w_n)\cdot\psi)\in T_{(z,w)}E$.
From the above, setting $B_n=(z_n,w_n,t(z_n,w_n))$ and following the spirit
of the proof of the \cite[Lemma 3.1]{ah}, we have:
\begin{gather*}
\frac{\partial{\bf{J}}}{\partial u}(u_n,v_n)(\phi)
= \frac{\partial{\bf\widetilde{J}}}{\partial z}(B_n)(\pi'_2(z_n)\cdot\phi),\\
\frac{\partial{\bf{J}}}{\partial v}(u_n,v_n)(\phi)
= \frac{\partial{\bf\widetilde{J}}}{\partial w}(B_n)(\pi'_2(w_n)\cdot\psi),\\
{\mathcal{J}}'(z_n,w_n)(\pi'_2(z_n)\cdot\phi,\tau'_2(w_n)\cdot\psi)
=\frac{\partial{\bf\widetilde{J}}}{\partial z}(B_n)(\pi'_2(z_n)\cdot\phi)
+\frac{\partial{\bf\widetilde{J}}}{\partial w}(B_n)(\tau'_2(w_n)\cdot\psi).
\end{gather*}
Then, since
$$
\mathbf{J}'(u_n,v_n)(\phi,\psi)
=\frac{\partial{\bf{J}}}{\partial u}(u_n,v_n)(\phi)
+\frac{\partial{\bf{J}}}{\partial v}(u_n,v_n)(\psi)
$$
for any $(\phi,\psi)\in X_0(x)$,
it follows that
$$
{\bf{J}}'(u_n,v_n)(\phi,\psi)={\mathcal{J}}'(z_n,w_n)
(\pi'_2(z_n)\cdot\phi,\tau'_2(w_n)\cdot\psi).
$$
However, applying the Ekeland variational principle, we have
$$
|\mathcal{J}{'}(z_n,w_n)(\pi'_2(z_n)\cdot\phi,\tau'_2(w_n)\cdot\psi)|
\leq\frac{1}{n}\| (\pi'_2(z_n)\cdot\phi,\tau'_2(w_n)\cdot\psi)\|_{X_{0}(x)},
$$
for all $(\phi,\psi)\in X_0(x)$.
Therefore,
\begin{equation*}
| {\bf {J}}'(u_n,v_n)\cdot(\phi,\psi)|
\leq \frac1n \|\big(\pi'_2(z_n)\cdot\phi,\tau'_2(w_n)\cdot\psi\big)\|_{X_0(x)},
\quad \forall (\phi,\psi)\in X_0(x).
\end{equation*}
The space $X_0(x)$ is equipped with the cartesian norm
$\|\cdot \|_{X_0(x)}=\|\cdot \|_{1,p(x)}+\|\cdot \|_{1,q(x)}$.
Then the following estimate holds
\begin{equation}\label{Jpi2}
| {\bf {J}}'(u_n,v_n)\cdot(\phi,\psi)| \leq
\frac1n\Big(\|(\pi'_2(z_n)\cdot\phi\|_{1,p(x)}
+ \| \tau'_2(w_n)\cdot\psi)\|_{1, q(x)}\Big).
\end{equation}
To simplify notation, we set ${\tilde\delta}_n=\delta(z_n)$.
So, from the definition of $\pi_2$, we check that
\begin{equation*}
\pi_2'(z_n) \cdot\phi=\frac{\phi}{{\tilde\delta}_n
}-\frac{z_n\int_\Omega p(x)\frac1{{\tilde\delta}
_n^{p(x)}}|\nabla z_n|^{p(x)-2}\nabla z_n\cdot\nabla \phi
dx}{\frac1{\tilde\delta}_n\int_\Omega p(x)\frac1{{\tilde\delta}
_n^{p(x)}}|\nabla z_n|^{p(x)}dx}.
\end{equation*}
Thus,
\begin{align*}
\|\pi_2'(z_n) \cdot\phi\|_{1,p(x)}
& \leq \frac{\|\phi\|_{1,p(x)}}{{\tilde\delta}_n}+\frac{\|z
_n\|_{1,p(x)}|\int_\Omega p(x)\frac1{{\tilde\delta}
_n^{p(x)}}|\nabla z_n|^{p(x)-2}\nabla z_n\cdot\nabla \phi
dx|}{\frac1{\tilde\delta}_n\int_\Omega p(x)\frac1{{\tilde\delta}
_n^{p(x)}}|\nabla z_n|^{p(x)}dx}
\\
& \leq \frac{\|\phi\|_{1,p(x)}}{{\tilde\delta}_n}+\frac{|
\int_\Omega p(x)\frac1{{\tilde\delta}_n^{p(x)}}|\nabla z
_n|^{p(x)-2}\nabla z_n\cdot\nabla \phi dx|}{
\int_\Omega p(x)\frac1{{\tilde\delta}_n^{p(x)}}|\nabla z_n|^{p(x)}dx}.
\end{align*}
Particularly, applying successively the H\"{o}lder inequality for
$p(x)$-Lebesgue space \cite{kwz,kr,xd}, we find
% \label{B:gp}
\begin{gather}
\begin{aligned}
\big|\int_\Omega p(x) \frac{|\nabla z_n|^{p(x)-2}}{z_n^{p(x)-2}}
\frac{\nabla z_n}{{\tilde\delta}_n}\cdot\frac{
\nabla \phi}{{\tilde\delta}_n}dx\big|
& \leq p+\big|\frac{|\nabla z
_n|^{p(x)-1}}{{\tilde\delta}_n^{p(x)-1}} \big|_{L^{\frac{p(x)}{p(x)-1}
}(\Omega)} \frac{\|\phi\|_{1,p(x)}}{{\tilde\delta}_n} \\
& =p^+ \frac{\|\phi\|_{1,p(x)}}{{\tilde\delta}_n}.
\end{aligned}\label{B:gp1}
\\
\int_\Omega p(x)\frac1{{\tilde\delta}_n^{p(x)}}|\nabla
z_n|^{p(x)}dx\geq p^{-}\int_\Omega \frac1{{\tilde\delta}
_n^{p(x)}}|\nabla z_n|^{p(x)}dx\geq p^-.\label{B;gp2}
\end{gather}
The above remarks allow us to obtain the new estimate:
\begin{equation*}
\|\pi_2'(z_n) \cdot\phi \|_{1,p(x)}
\leq \big(1+\frac{p+}{p^-} \big) \frac{\|\phi\|_{1,p(x)}}{{\tilde\delta}_n}.
\end{equation*}
From the properties on the spaces
$L^{p(x)}(\Omega)$ and $W^{1,p(x)}(\Omega)$ spaces
(see for instance \cite{xd}), and because
$\int_\Omega\frac{|\nabla z_n|^{p(x)}}{{\tilde\delta}_n^{p(x)}}dx=1$
and $\int_\Omega |\nabla z_n|^{p(x)}dx=1$, we have $\|z_n\|_{1,p(x)}={\tilde\delta}_n=1$.
Therefore
\begin{equation*}
\|\pi_2'(z_n) \cdot\phi\|_{1,p(x)}
\leq\big(1+\frac{p^+}{p^-} \big) \|\phi\|_{1,p(x)}.
\end{equation*}
Similarly,
\begin{equation*}
\|\tau_2'(w_n) \cdot\psi \|_{1,q(x)}
\leq \big(1+ \frac{q^+}{q^-} \big)\|\psi\|_{1,q(x)}.
\end{equation*}
Taking into account the estimate \eqref{Jpi2}, we conclude that
\begin{equation*}
\lim_{n\to+\infty}\|\mathbf{J}'(u_n,v_n) \|_{X_0^*(x)}=0.
\end{equation*}
This completes the proof.
\end{proof}
\begin{lemma}\label{L}
Assume that \eqref{gamma} holds.
Let $(z_n,w_n)$ be a minimizing sequence of $\mathbf{J}$ on the manifold $E$.
The sequence $(u_n,v_n)=(t(z_n,w_n)^{1/p^+}z_n,t(z_n,w_n)^{1/q^+}w_n)$ is bounded
in $ X_0(x)$.
\end{lemma}
\begin{proof}
Since $u_n=t(z_n,w_n)^{1/p^+}z_n$, $v_n=t(z_n,w_n)^{1/q^+}w_n$, by
the characterization \eqref{zp}, it follows that
\begin{equation} \label{Jprimen}
\int_\Omega |\nabla u_n|^{p(x)}dx
+ \int_\Omega |\nabla v_n|^{q(x)}dx
-2\int_\Omega c(x)| u_n|^{\alpha+1}| v_n|^{\beta+1}dx=0.
\end{equation}
On the other hand, because $(z_n,w_n)$ is a minimizing sequence for
$\inf_{(z,w)\in E}{\mathcal {J}}(z,w)$, we have
\begin{equation} \label{m}
m\leq (\alpha+1)\int_\Omega \frac1{p(x)} |\nabla
u_n|^{p(x)}dx+(\beta+1)\int_\Omega \frac1{q(x)}
|\nabla v_n|^{q(x)}dx-C(u_n,v_n)0}$, it occurs $\|\bar{z}\|_{1,p(x)}=1$.
In the same manner, we obtain
$\|\bar{w}\|_{1,q(x)}=1$.
We can conclude that $(\bar{z},\bar{w})$ is solution of the conditional
problem \eqref{inftildeJ}. Furthermore, since
$\|\bar{z}\|_{1,p(x)}=\|\bar{w}\|_{1,q(x)}=1$, using \cite{xd}, we
deduce the second part of the Theorem \ref{E}.
The proof is complete.
\end{proof}
The material needed to prove Theorem \ref{E} is complete.
Next, we establish that the boundary value problem \eqref{2}
admits at least one solution.
\subsection{Proof of Theorem \ref{E}}
Existence of a critical point for ${\bf{J}}$.
\begin{proof}
The previous lemmas imply that $ (\bar{z},\bar {w} )$ is a conditional
critical point for $\mathcal{J}$.
From the Euler-Lagrange characterization, we deduce that there is a pair
$(m_1,m_2)$ in $\mathbb{I}^2$ such that for any $(h,k)\in X_0(x)$,
\begin{equation}\label{mm}
\nabla\mathcal{J}(\bar{z},\bar{w})\cdot (h,k)
= m_1\nabla{A}(\bar{z},\bar{w})\cdot (h,k)+m_2\nabla{B}(\bar{z},\bar{w})\cdot(h,k).
\end{equation}
In \eqref{mm}, we choose $h=\bar {z}$, $k=\bar{w}$, we obtain
\begin{equation}\label{Jzw}
\mathcal{J}'(\bar{z},\bar{w})(\bar{z},\bar{w})=0.
\end{equation}
Combining \eqref{mm} and \eqref{Jzw}, we obtain
\begin{gather*}
m_1A^{(1)}\cdot (\bar{z},\bar{w})+m_2 B^{(1)}\cdot (\bar{z},\bar{w})=0\\
m_1 {A}^{(2)}\cdot (\bar{z},\bar{w})+m_2 {B}^{(2)}\cdot (\bar{z},\bar{w})=0.
\end{gather*}
Here, $A^{(1)}$, $B^{(1)}$ (resp. $A^{(2)}$ and $B^{(2)}$) denote the
first derivatives with respect to $z$ (resp. $w$).
Note taht
\[\det \begin{pmatrix}
A^{(1)}\cdot (\bar{z},\bar{w}) &B^{(1)}\cdot(\bar{z},\bar{w})\\
A^{(2)}\cdot (\bar{z},\bar{w}) &B^{(2)}\cdot(\bar{z},\bar{w})
\end{pmatrix}
\geq p^{-}q^{-}A(\bar{z})B(\bar{w})=p^{-}q^{-}>0.
\]
It follows that $ m_1=m_2=0$.
Consequently, $ \mathcal{J}'(\bar{z},\bar{w})=0$,
or again,
$$
\mathbf{J}'(\bar{r}\bar{z},\bar{\rho}\bar{w}) =0
$$
Finally, we can conclude that $(u^*,v^*)=(\bar{r}\bar{z},\bar{\rho}\bar{w})$
is a critical point of $\mathbf{J}$.
\end{proof}
%%%%%%%%%%%%%%
\begin{thebibliography}{1}
\bibitem{am} E. Acerbi, G. Mingione;
\emph{Regularity results for stationary electrheological fluids, }
{ Archive for rational mechanic and analysis,} 164 (3) (2002), 213-259.
\bibitem{A} K. Adriouch;
\emph{Sur les syst\`emes elliptiques quasi-lin\'eaires et anisotropiques
avec exposants critiques de Sobolev,}
{ Th\`ese de Doctorat, Universit\'e de La Rochelle}
\bibitem{ah} K. Adriouch, A. El Hamidi;
\emph{The Nehari manifold for systems of nonlinear elliptic equations,}
{ Nonlinear Analysis} 64 (2006), 2149-2167.
\bibitem{abc} L. Antonio-Ribeiro de Santana, Y. Bozhkov, W. Castro Ferreiro Jr;
\emph{Species survival versus eigeinvalues,}
{Abstract and Applied Analysis} 2004 (2) (2004), 115-135.
\bibitem{as} S. N. Antontsev, S. I. Shmarev;
\emph{A model porous medium equation with variable exponent of nonlinearity:
existence, uniqueness and localization properties of solutions, }
{ Nolinear Analysis: theory, Methods and Applications}, 60 (3) (2005), 515-554.
\bibitem {bm}Y. Bozhkova, E. Mitidieri;
\emph{Existence of multiple solutions for quasilinear systems via Fibering method,}
{ J. Differential Equations} 190 (2003), 239-267.
\bibitem{bt} K. Brown, T-F. Wu;
\emph{A fibering map approach to a semilinear elliptic boundary value problem,}
{Electron. J. Diff. Equ.} 2007 (69) (2007), 1-9.
\bibitem{cf} J. { Chabrowski, Y. Fu;
\emph{existence of solutions for $ p(x)$-Laplacian problem on a bounded domain,}
{ Journal of Mathematical Analysis and applications} 306 (2) (2005), 604-618.
\bibitem{clr} Y. Chen, S. Levine, M. Rao;
\emph{Variable exponent, linear growty Functionals in image restoration,}
{ SIAM journal on Applied Mathematics, } 66 (4) (2006), 1383-1406.
\bibitem{d} L. Diening;
\emph{Theoretical and numerical results for eletrorheological fluids},
PhD. Thesis, university of Frieburg, Germany (2000).
\bibitem{d2} L. Diening;
\emph{Maximal function on generalized Lebesgue spaces $L^{p(.)}$, }
Math. Inequal.Appl. 7 (2) (2004), 245-253.
\bibitem{dhhr} L. Diening, P. Harjulehto, P. H\"ast\"o, M. R\.{u}\v{z}i\v{c}ka};
\emph{Lebesgue and Sobolev spaces with variable exponents,}
Lecture Notes in Mathematics, Springer-Verlag Berlin Heidelberg (2011).
\bibitem{di} G. Dinca, F. Issaia;
\emph{Generalized Pohozeav and Pucci-Serrin Identities and non-existence results
for p(x)-laplacian type equations,}
{Rendiconti del circolo matimatico di palermo} 59 (2010), 1-46.
\bibitem{dp} P. Drabeck, S. I. Pohozaev;
\emph{Positive solutions for the
p-Laplacian: application of the fibering method, }
{ Proceedings of the Royal Society of Edinburgh,} 127A (1997), 703-726.
\bibitem{er1} D. Edminds, J. Rakosnik;
\emph{Density of smooth functions in $W^{k,p(x)}(\Omega)$, }
{ Proc. Roy. Soc. London Ser. A,} 437 (1992), 229-236.
\bibitem{er} D. Edminds, J. Rakosnik;
\emph{Sobolev embedding with variable exponent, } { Studia mathematical,}
143 (3) (2000), 267-293.
\bibitem{xjd} X. L. Fan, J. Shen, D. Zhao;
\emph{Sobolev Embedding theorems for spaces $W^{k,p(x)}(\Omega)$},
J. math. Anal. Appl, 262 (2001), 749-760.
\bibitem{fwz} X. L. Fan, S. Y. Wang, D. Zhao;
\emph{Density of $ C^{\infty}(\Omega)$ in $W^{1.p(x)}$ with discontinous
exponent $ p(x),$} { Math. Nachr.,} 279 (1-2) (2006), 142-149.
\bibitem{xd} X. L. Fan, D. Zhao;
\emph{On the spaces $L^{p(x)}(\Omega)$ and $
W^{1,p(x)}(\Omega),$} { J. Math. Anal. Appl} 263 (2001), 424-446.
\bibitem{xzg} X. L. Fan, Q. H. Zhang;
\emph{Existence of solutions for $p(x)-$laplacian Dirichlet problem},
{ Nonlinear Analysis} 52 (2003) 1843-1852.
\bibitem{f} X. Fan;
\textit {Solutions for $p(x)$-Laplacian Dirichlet problems with singular
coefficients}, Journal of Mathematical Analysis and applications,
312 (1) (2005), 464-477.
\bibitem{g} M. Galewski;
\emph{New variation method for $p(x)$-Laplacian equation},
Bulletin of the Australian Mathematical society, 72 (1) (2005), 53-65.
\bibitem{h} T. C. Halsey;
\emph{Electrorheological fluids,} Science 258 (1992), 761-766.
\bibitem{hhkv} P. Harjulehto, P. Hasto, M. Koskenoja, S. Varonen;
\emph{The Dirichlet energy integral and variable exponent Sobolev spaces
with zero boundary values} Potentiel Anal. 25 (2006), 79-94.
\bibitem{hh} P. Harjulehto, P. Hasto;
\emph{Sobolev inequalies for variable exponents attaining the value 1 and $n$},
Publ. Mat. 52:2 (2008), 347-363.
\bibitem{OS} H. Hudzik;
\emph{On generalized Orlicz-Sobolev space,}
{Funct. Approximatio Comment. Math.} 4 (1976) , 37-51.
\bibitem {GS} H. Hudzik;
\emph{ A generalization of Sobolev spaces.I,}
{ Funct. Approximatio Comment. Math.} 2 (1976), 67-73.
\bibitem{i} Y. S. Il'yasov;
\emph{The Pokhozhaev identity and the fibering method,}
{ Diff. Equations,} 38 (10) (2002), 1453-1459.
\bibitem {km} D. A. Kandilakis, M. Magiropoulos;
\emph{ Existence results for a $p$-Laplacian problem with competing nonlinear
boundary conditions}, Electron. J. Diff. Equ., 2011 (95) (2011), 1-6.
\bibitem{kwz} Yun-Ho Kim, L. Wang, C. Zhang;
\emph{Global bifurcation for a class of
degenerate elliptic equations with variable exponents,} {J.Math.Anal.Appl.}
371 (2010), 624-637.
\bibitem{kr} O. Kovacik, J. Rakosnik;
\emph{On the spaces $L^{p(x)}(\Omega)$ and $
W^{1,p(x)}(\Omega) $}, { Czechoslovak Math. Journal} 41(4) (1991), 592-618.
\bibitem{mr} M. Minailescu, V. Rodulescu;
\emph{ A mulplicity result for nonlinear degenerate problem arising in the
theory of electrorheological fluids, }
Procedings of the royal society of london A, 426 (2073) (2006), 2625-2641.
\bibitem{m} J. Musielak;
\emph{Orliez Spaces and Modular Spaces, }
Lecture Notes in Mathematics 1034, Springer-Verlag, Berlin (1983).
\bibitem{stp} S. I. Pohozaev;
\emph{On a constructive method in the calculus of variations,}
Dokl. Akad. NaukSSSR 298 (1988), pp. 1330-1333 (in Russian).
\bibitem{p} S. I. Pohozeav;
\emph{Eigenfunctions of the equation $-\Delta u +\lambda f(u)=0,$}
Soviet Math. Dokl. 6 (1965), 1408-1411.
\bibitem{sp} S. I. Pohozeav;
\emph{Nonlinear variationnal problems Via the Fibering Method,}
{ Steklov mathematical Institute, Russian academy of sciences,
Gubkina str.8,} (1991) Moscow, Russia.
\bibitem{sipo} S. I. Pohozaev;
\emph{On the global fibrering method in variational problems,}
{Proceedings of the Steklov Institute of Mathematics,} 219 (1997), 281-328.
\bibitem{ps} P. Pucci, J. Serrin;
\emph{A general variationnal identity, }
{Indiana Univ. Math.} 35 (3) (1986), 681-703.
\bibitem{r} M. R\.{u}\v{z}i\v{c}ka;
\emph{Eletrorheological Fluids,} { Modeling and mathematical theory, }
vol. 1748 Lecture Notes in Mathemathematics, Springer, Berlin, Germany, 2000.
\bibitem {as1} A. Salvatore;
\emph{Some multiplicity results for a superlinear elliptic problem in
$\mathbb{R}^{N},$} {Topological Methods in Nonlinear Analysis, } 21 (2003), 29-39.
\bibitem {as2} A. Salvatore;
\emph{Multiple solutions for elliptic systems with nonlinearities of
arbitrary growth}, J. Diff. Eq., 244 (2008), 2529-2544.
\bibitem {sa} S. Samoko;
\emph{Convolution type operators in $ L^{p(x)}(\mathbb{R}^{N}),$}
{ Integral transform. Spec. Funct.,} 7 (1-2) (1998), 123-144.
\bibitem{tv} F de Th\'elin, J. V\'elin;
\textit {Existence and non-existence of non-trivial solutions for
quasilinear elliptic systems,} { Rev. Mat. Univ. Complutence Madrid }
6 (1993) 153-154.
\bibitem{v1} J. V\'elin;
\textit {On an existence result for a class of $(p,q)$-gradient elliptic
systems via a fibering method}, { Nonlinear Analysis T.M.A} 75 (2012), 6009-6033.
\bibitem{v2} J. V\'elin;
\emph{Multiple solutions for a class of $(p,q)$-gradient elliptic systems
via a fibering method}, Proceedings of the Royal Society of Edinburgh,
Section A, 144 (2) (2014), 363-393.
\bibitem{tw} T-F. Wu;
\emph{Multiple positive solutions of a nonlinear boundary value problem
involving a sign-changing weight,} {Nonlinear Analysis: T.M.A, }
74 (12) (2011), 4223-4233.
\bibitem{yw} G. Yang, M. Wang;
\emph{Existence of multiple positive solutions for a $p$-Laplacian system with
sign-changing weight,} {Computer and Mathematics with applications, }
55 (4) (2008), 636-653.
\bibitem{z} V. V. Zhikov;
\emph{Averaging of functionals of calculus of variations and elasticity theory},
Izvestiya Akademii Nauk SSSR. Seriya Mathematicheskaya, 50 (4) (1986) 675-710,
(Russian).
\end{thebibliography}
\end{document}
\end{document}