\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 167, pp. 1--26.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/167\hfil Lipschitz stability for linear parabolic systems] {Lipschitz stability for linear parabolic systems with interior degeneracy} \author[I. Boutaayamou, G. Fragnelli, L. Maniar \hfil EJDE-2014/167\hfilneg] {Idriss Boutaayamou, Genni Fragnelli, Lahcen Maniar} % in alphabetical order \address{Idriss Boutaayamou \newline D\'epartement de Math\'ematiques, Facult\'e des Sciences Semlalia\\ LMDP, UMMISCO (IRD-UPMC), Universit\'e Cadi Ayyad, Marrakech 40000, B.P. 2390, Morocco} \email{dsboutaayamou@gmail.com} \address{Genni Fragnelli \newline Dipartimento di Matematica, Universit\`a degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari - Italy} \email{genni.fragnelli@uniba.it} \address{Lahcen Maniar \newline D\'epartement de Math\'ematiques, Facult\'e des Sciences Semlalia\\ LMDP, UMMISCO (IRD-UPMC), Universit\'e Cadi Ayyad, Marrakech 40000, B.P. 2390, Morocco} \email{maniar@uca.ma} \thanks{Submitted June 28, 2014. Published July 30, 2014.} \subjclass[2000]{35k65} \keywords{Parabolic system; interior degeneracy; Carleman estimates; \hfill\break\indent Lipschitz stability} \begin{abstract} In this article, we study an inverse problem for linear degenerate parabolic systems with one force. We establish Lipschitz stability for the source term from measurements of one component of the solution at a positive time and on a subset of the space domain, which contains degeneracy points. The key ingredient is the derivation of a Carleman-type estimate. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} The null controllability and inverse problems of parabolic equations and parabolic coupled systems have attracted much interest in these last years, see \cite{Ammar2,Ammar4, Ben,BCrGT,BukhgeimKlibanov,CrGR,CrGRY,FG, FGPY,Gu,Yam,LR,RqCr1,RqCr2,Rus}. The main result in these papers is the development of suitable Carleman estimates, which are crucial tools to obtain observability inequalities and Lipschitz stability for term sources, initial data, potentials and diffusion coefficients. The above systems are considered to be non degenerate. In other words, the diffusion coefficients are uniformly coercive. On the contrary, the case of degenerate coefficients at the boundary is also considered in several papers by developing adequate Carleman estimates. The null controllability and inverse problems of degenerate parabolic equations are studied in \cite{Tort,Can1,Can2,Can3,21,Tort1}, and for the coupled degenerate parabolic systems in \cite{bahm,hajjaj,Bou,CanTer,Liu}. In these papers, the degeneracy considered is at the boundary of the spatial domain. \par After the pioneering works \cite{Fra1,Fra2}, there has been substantial progress in understanding the null controllability of parabolic equations with interior degeneracy (see, e.g., \cite{fm}). In this scope, the goal of this paper is to study an inverse source problem of a $2 \times 2$ parabolic systems with interior degeneracy and different diffusion coefficients \begin{equation} \label{system} \begin{gathered} u_t-(a_{1}u_x)_x+b_{11}u+b_{12}v=f, \quad (t,x)\in Q,\\ v_t-(a_{2}v_x)_x+b_{22}v=0, \quad (t,x)\in Q,\\ u(t,0)=u(t,1)=v(t,0)=v(t,1)=0, \quad t \in (0,T),\\ u(0,x)=u_0(x), \quad v(0,x)=v_0(x), \quad x\in (0,1), \end{gathered} \end{equation} where $u_0, v_0 \in L^2 (0,1) $, $T> 0$ fixed, $Q:=(0,T)\times (0,1)$, $b_{ij}\in L^\infty(0,1)$, $i,j=1,2$, and every $a_i$, $i=1,2$, degenerates at an interior point $x_i$ of the spatial domain $(0,1)$ (for the precise assumptions we refer to Section 2). For $t_0\in (0,T)$ given, let $Q_{t_0}^T=(t_0,T)\times (0,1)$ and $ T':=\frac{T+t_0}{2}$. For a given $C_0>0$, we denote by $S(C_0)$ the space \begin{align*} S(C_0):=\{f\in H^1(0,T;L^2(0,1)) : |f_t(t,x)|\leq C_0|f(T',x)|, \text{ a.e. } (t,x)\in Q\}. \end{align*} More precisely, we want to establish Lipschitz stability for the source term $f$ from measurements of the component $u$ at time $T'$ and on a subset $\omega\subset (0,1)$, which contains the degeneracy points. The main ingredient to obtain Lipschitz stability is Carleman estimates for degenerate equations. For null controllability of a parabolic equation with interior degeneracy, Carleman estimates were obtained in \cite{fm} and in \cite{Fra2}. For inverse problems, these estimates are not sufficient, and one needs also some additional estimates on the term $u$ with a special weight and the derivative term $u_t$. We prove first these for parabolic equations with interior degeneracy similar to the ones obtained in \cite{Tort, Tort1} in the case of a boundary degeneracy. This will lead to obtain our Carleman estimates for system \eqref{system}. At the end having these Carleman estimates in hand, we follow the method developed in \cite{Ben,BukhgeimKlibanov,Yam} to obtain the Lipschitz stability for the source term $f$. The main task here is to estimate the source $f$ by the measurements, on the domain $\omega$, of the first component $u$ of the solutions of system \eqref{system}. To prove our Carleman estimates, we use the following Hardy-Poincar\'e inequality proved in \cite[Proposition 2.1]{Fra2} \begin{equation}\label{hardy} \int_0^1\frac{p(x)}{(x-x_0)^2}w^2(x)\,dx\leq C_{HP}\int_0^1p(x)|w_x(x)|^2\,dx \end{equation} for all functions $w$ such that $$ w(0)=w(1)=0\quad\text{and}\quad \int_0^1p(x)|w_x(x)|^2\,dx<\infty. $$ Here $p$ is any continuous function in $[0,1]$, with $p>0$ on $[0,1]\setminus\{x_0\}$, $p(x_0)=0$, for some $x_0$ in $(0,1)$, and such that there exists $\vartheta\in(1,2)$ so that the function $ x\mapsto p(x)/|x-x_0|^\vartheta$ is non-increasing on the left of $x_0$ and nondecreasing on the right of $x_0$. This article is organized as follows: in Section 2, we discuss the well-posedness of the system \eqref{system}. Then, in Section 3, we establish different Carleman estimates for parabolic equations and parabolic systems \eqref{system}. Finally, in Section 4, we apply the Carleman estimates to prove the Lipschitz stability result. \section{Assumptions and well-posedness} To study the well-posedness of system \eqref{system}, we consider two situations, namely the weakly degenerate (WD) and the strongly degenerate (SD) cases. The associated weighted spaces and assumptions on diffusion coefficients are the following: \noindent\textbf{Case (WD):} for $i=1,2$, let $$ H_{a_i}^1(0, 1):=\big\{ u \text{ abs. cont. in }[0, 1],\; \sqrt{a_i} u_x \in L^2(0, 1),\; u(0)=u(1) = 0\big\}, $$ where the functions $a_i$ satisfy \begin{equation} \label{assump} \parbox{10cm}{there exists $x_i\in (0,1)$, $i=1,2$ such that $a_i(x_i)=0$, $a_i>0$ in $[0,1]\setminus \{x_i\}$, $a_i\in C^1([0,1]\setminus\{x_i\})$; \\ and there exists $K_i\in (0,1)$ such that $(x-x_i)a_i'\leq K_ia_i$, a.e. in $[0,1]$.} \end{equation} \noindent\textbf{Case (SD):} for $i=1,2$, let \begin{align*} H_{a_i}^1(0, 1) :=\Big\{&u\in L^2(0,1): u \text{ is locally abs. cont. in } [0, 1]\setminus\{x_i\},\\ &\sqrt{a_i} u_x \in L^2(0, 1),\; u(0)=u(1) = 0\Big\}, \end{align*} where the functions $a_i$ satisfy \begin{equation} \label{assump2} \parbox{10cm}{there exists $x_i\in (0,1)$, $i=1,2$ such that $a_i(x_i)=0$, $a_i>0$ in $[0,1]\setminus \{x_i\}$, $a_i\in C^1([0,1]\setminus\{x_i\})\cap W^{1,\infty}(0,1)$; there exists $K_i\in [1,2)$ such that $(x-x_i)a_i'\leq K_ia_i$ a.e. in $[0,1]$, and if $K_i > 4/3$, there exists $\gamma\in(0,K_i]$ such that $a_i/|x-x_i|^\gamma$ is non-increasing on the left of $x_i$ and nondecreasing on the right of $x_i$.} \end{equation} In both cases, for $i=1,2$, we consider the space $$ H^2_{a_i} (0, 1):=\big\{ u \in H^1_{a_i}(0, 1) \,: \, a_iu_x \in H^1(0, 1)\big\} $$ with the norms $$ \|u\|^2_{ H^1_{a_i}} := \|u\|^2_{L^2(0,1)} + \|\sqrt{a_i}u_x\|^2_{ L^2(0,1)}, \quad \|u\|^2_{H^2_{a_i}} := \|u\|^2 _{H^1_{a_i}} + \|(a_iu_x)_x\|^2_{ L^2(0,1)}. $$ We recall from \cite{fm} that, for $i=1,2$, the operator $(A_i,D(A_i))$ defined by $A_iu := (a_iu_x)_x$, $u \in D(A_i) = H^2_{a_i}(0, 1)$ is closed negative self-adjoint with dense domain in $L^2(0, 1)$. In the Hilbert space $\mathbb{H}:= L^2(0,1) \times L^2(0, 1) $, the system \eqref{system} can be transformed into the Cauchy problem \begin{gather*} X'(t) =\mathcal{A}X(t) -BX(t)+F(t), \quad t\in (0,T),\\ X(0)=\begin{pmatrix} u_0\\ v_0 \end{pmatrix}, \end{gather*} where $X(t)=\begin{pmatrix} u(t)\\ v(t) \end{pmatrix}$, $\mathcal{A}=\begin{pmatrix} A_1&0\\ 0&A_2 \end{pmatrix}$, $D(\mathcal{A})=D(A_1)\times D(A_2)$, $F(t)=\begin{pmatrix} f(t)\\ 0 \end{pmatrix}$ and $ B=\begin{pmatrix} b_{11}&b_{12}\\ 0&b_{22} \end{pmatrix}$. Since the operator $\mathcal{A}$ is diagonal and $B$ is a bounded perturbation, the following well-posedness and regularity results hold. \begin{proposition}\label{estimsemigroup} (i) The operator $\mathcal{A}$ generates a contraction strongly continuous semigroup. (ii) For all $(u_0,v_0)\in D(\mathcal{A})$ and $f\in H^1(0,T;L^2(0,1))$, the problem \eqref{system} has a unique solution $(u,v)\in C\big([0,T],D(\mathcal{A})\big)\cap C^1(0,T;\mathbb{H})$. (iii) For all $f\,\in L^2({Q})$, $u_0,v_0\in L^2(0,1)$, and $\varepsilon\in (0,T)$, there exists a unique mild solution $(u,v)\in X_T:=H^1\big( [\varepsilon,T],\mathbb{H} \big) \cap L^2\big(\varepsilon,T;D(\mathcal{A})\big)$ of \eqref{system} satisfying \begin{align*} \|(u,v)\|_{X_T}\leq C_T\Big(\|(u_0,v_0)\|_{\mathbb{H}}^2 +\|(F,G)\|_{\mathbb{H}}^2\Big). \end{align*} Moreover, for $f\,\in H^1(0,T;L^2(0,1))$ and $\varepsilon\in (0,T)$, we have $(u,v)\in Y_T:=C\big([\varepsilon,T],D(\mathcal{A})\big) \cap C^1(\varepsilon,T;\mathbb{H})$. \end{proposition} \section{Carleman estimate} The main topic of this section is to establish a Carleman estimate for a degenerate parabolic single equation with a boundary observation on the right hand side. Then, we will deduce the one for the degenerate system \eqref{system} with distributed observation of $u$ on the subdomain $\omega$. Part of these estimates were obtained in \cite{Fra2, fm} under two different assumptions on the degenerate diffusion coefficient for a null controllability purpose. In the forthcoming theorems we will prove additional estimates on $u$ and $u_t$, that are crucial to prove Lipschitz stability results. Throughout this section, we set $\omega=(\lambda,\beta)$ and assume, without loss of generality, $x_10$ and $c_2>\max \big\{\frac{(1-x_0)^2}{a(1)(2-K)},\frac{x_0^2}{a(0)(2-K)}\big\}$. For this choice it is easy to prove that $-c_1c_2 \le \psi(x)<0$ for every $x\in [0,1]$, and that $\eta$ is positive if $00$. Then there exist two positive constants $C$ and $s_0$ such that the solution $u$ of \eqref{problem} in $H^1\left( [\varepsilon,T],L^2(0,1) \right) \cap L^2\left(\varepsilon,T;H^2_{a}(0,1)\right)$ satisfies, for all $s\geq s_0$, \begin{equation} \label{carlinv} \begin{aligned} &\int_{Q_{t_0}^T} \Big(s\theta a(x)u_x^2+s^3 \theta^3 \frac{(x-x_0)^2}{a(x)}u^2+s\theta^{3/2} |\eta \psi|u^2+\frac{1}{s\theta}u_t^2 \Big)e^{2s\varphi}\,dx\,dt \\ & \leq C\Big( \int_{Q_{t_0}^T} h^2 e^{2s\varphi}\,dx\,dt + sc_1\int_{t_0}^T \Big[\theta a(x-x_0)u_x^2e^{2s\varphi}\Big]_{x=0}^{x=1}dt\Big). \end{aligned} \end{equation} \end{theorem} \begin{proof} Let $u$ be the solution of \eqref{problem}. For $s>0$, the function $w=e^{s\varphi}u$ satisfies \[ \underbrace{-(aw_x)_x-s\varphi_tw-s^2a\varphi_x^2w}_{L_s^+w} +\underbrace{w_t+2sa\varphi_xw_x+s(a\varphi_x)_xw}_{L_s^-w} =\underbrace{he^{s\varphi}-cw}_{h_s}. \] Moreover, $w(t_0,x)=w(T,x)=0$. This property allows us to apply the Carleman estimates established in \cite{fm} to $w$ with $Q_{t_0}^T$ in place of $(0,T)\times (0,1)$ \begin{equation}\label{3.4} \begin{aligned} & \|L_s^+w\|^2+\|L_s^-w\|^2+\int_{Q_{t_0}^T} \Big(s^3 \theta^3\frac{(x-x_0)^2}{a(x)}w^2+s\theta a(x)w_x^2 \Big)\,dx\,dt \\ & \leq C\Big( \int_{Q_{t_0}^T} h^2 e^{2s\varphi}\,dx\,dt + sc_1\int_{t_0}^T \Big[\theta a(x-x_0)w_x^2\Big]_{x=0}^{x=1}dt\Big). \end{aligned} \end{equation} The operators $L_s^+$ and $L_s^-$ are not exactly the ones of \cite{Fra2,fm}. However, one can prove that the Carleman estimates do not change. Using the previous estimate we will bound the integral $ \int_{Q_{t_0}^T}\big(\frac{1}{s\theta}u_t^2 + s\theta^{3/2}|\eta \psi|u^2\big)e^{2s\varphi}\,dx\,dt$. In fact, we have \begin{align*} &\int_{Q_{t_0}^T} s\theta^{3/2}|\eta \psi|w^2\,dx\,dt\\ &\leq C\int_{Q_{t_0}^T} s\theta^{3/2}w^2\,dx\,dt\\ & = sC \big|\int_{Q_{t_0}^T} \Big( \theta\frac{a^{1/3}}{|x-x_0|^{2/3}}w^2 \Big)^{3/4}\Big( \theta^3\frac{|x-x_0|^2}{a}w^2\Big)^{1/4}\,dx\,dt\big|\\ & \leq sC \frac32 \int_{Q_{t_0}^T} \theta\frac{a^{1/3}}{|x-x_0|^{2/3}}w^2\,dx\,dt + s^3C \frac12 \int_{Q_{t_0}^T} \theta^3\frac{|x-x_0|^2}{a}w^2 \,dx\,dt, \end{align*} since $|\eta|\leq T+t_0$ and $|\psi|\leq c_1c_2$. Now, if $ K \le 4/3$, we consider the function $p(x)=|x-x_0|^{4/3}$. Obviously, there exists $ q\in (1,4/3)$ such that the function $ \frac{p(x)}{|x-x_0|^q}$ is non-increasing on the left of $x_0$ and nondecreasing on the right of $x_0$. Then, we can apply the Hardy-Poincar\'e inequality \eqref{hardy}, obtaining \begin{align*} \int_0^1 \frac{a^{1/3}}{|x-x_0|^{2/3}}w^2\,dx & \leq \max_{x\in[0,1]}a^{1/3}(x)\int_0^1 \frac{1}{|x-x_0|^{2/3}}w^2\,dx\\ & = \max_{x\in[0,1]}a^{1/3}(x)\int_0^1 \frac{p(x)}{|x-x_0|^2}w^2\,dx\\ & \leq \max_{x\in[0,1]}a^{1/3}(x)C_{HP}\int_0^1 p(x)w_x^2\,dx\\ & = \max_{x\in[0,1]}a^{1/3}(x)C_{HP}\int_0^1 \ a \frac{|x-x_0|^{4/3}}{a}w_x^2\,dx\\ & = \max_{x\in[0,1]}a^{1/3}(x)C_{HP}C_1\int_0^1 aw_x^2\,dx, \end{align*} where \[ C_1=\max\Big(\frac{x_0^{4/3}}{a(0)},\frac{(1-x_0)^{4/3}}{a(1)}\Big). \] In the previous inequality, we have used the property that the map $ x \mapsto |x-x_0|^\gamma/a(x)$ is non-increasing on the left of $x_0$ and nondecreasing on the right of $x_0$ for all $\gamma>K$, see \cite[Lemma 2.1]{Fra2}. If $K >4/3$, we can consider the function $p(x) = (a(x)|x-x_0|^4)^{1/3}$. Then $ p(x)= a(x)\Big(\frac{(x-x_0)^2}{a(x)}\Big)^{2/3}\le C_1 a(x)$, where \[ C_1:=\max\Big\{\Big(\frac{x_0^2}{a(0)}\Big)^{2/3}, \Big(\frac{(1-x_0)^2}{a(1)}\Big)^{2/3}\Big\}, \quad \frac{a^{1/3}}{|x-x_0|^{2/3}}= \frac{p(x)}{(x-x_0)^2}. \] Moreover, using hypothesis \eqref{assump2}, one has that the function $\frac{p(x)}{|x-x_0|^q}$, with $ q: =\frac{4+\gamma}{3}$ in $(1,2)$, is non-increasing on the left of $x_0$ and nondecreasing on the right of $x_0$. The Hardy-Poincar\'{e} inequality implies \begin{align*} %\label{hpappl} \int_0^1 \frac{a^{1/3}}{|x-x_0|^{2/3}}w^2dx &= \int_0^1 \frac{p}{(x-x_0)^2} w^2 dx \le C_{HP}\int_0^1 p (w_x)^2 dx\\ &\le C_{HP}C_1 \int_0^1 a (w_x)^2 dx. \end{align*} Thus, in every case, \begin{equation}\label{step0} \int_{Q_{t_0}^T} \theta\frac{a^{1/3}}{|x-x_0|^{2/3}}w^2\,dx\,dt \leq C\int_{Q_{t_0}^T} \theta a w_x^2\,dx\,dt \end{equation} for a positive constant $C$. Then, for $s$ large enough, we have \begin{gather}\label{tag} \int_{Q_{t_0}^T} s\theta^{3/2}|\eta \psi|w^2\,dx\,dt \leq C\int_{Q_{t_0}^T} \big(s\theta a w_x^2+s^3\theta^3 \frac{|x-x_0|^2}{a}w^2\big)\,dx\,dt, \\ \label{etoil} \int_{Q_{t_0}^T} s\theta^{3/2}|\eta \psi|w^2\,dx\,dt \leq C\Big( \int_{Q_{t_0}^T} h^2 e^{2s\varphi}\,dx\,dt + sc_1\int_{t_0}^T \Big[\theta a(x-x_0)w_x^2\Big]_{x=0}^{x=1}dt\Big). \end{gather} On the other hand, we have \[ \frac{1}{\sqrt{s\theta}}L_s^-w = \frac{1}{\sqrt{s\theta}}w_t+2c_1\sqrt{s\theta}(x-x_0)w_x+c_1\sqrt{s\theta}w. \] Therefore, \begin{equation} \label{dis} \begin{aligned} \int_{Q_{t_0}^T} \frac{1}{s\theta}w_t^2\,dx\,dt & \leq C\Big( \|L_s^-w\|^2+ \int_{Q_{t_0}^T} s\theta \frac{|x-x_0|^2}{a} aw_x^2\,dx\,dt+\int_{Q_{t_0}^T} s\theta w^2\,dx\,dt\Big)\\ & \leq C\Big( \|L_s^- w\|^2+\int_{Q_{t_0}^T} s\theta a w_x^2\,dx\,dt +\int_{Q_{t_0}^T} s\theta w^2\,dx\,dt\Big), \end{aligned} \end{equation} since $1/\sqrt{\theta}$ is bounded and \[ \frac{|x-x_0|^2}{a(x)}\leq \text{max}\Big\{\frac{x_0^2}{a(0)}, \frac{(1-x_0)^2}{a(1)}\Big\} \] (see \cite[Lemma 2.1]{Fra2}). Proceeding as in the proof of \eqref{step0}, we can estimate $\int_{Q_{t_0}^T} s\theta w^2\,dx\,dt$ thanks to the Hardy-Poincar\'e inequality \eqref{hardy}, \begin{align*} \int_{Q_{t_0}^T} s\theta w^2\,dx\,dt & = s \Big|\int_{Q_{t_0}^T} \Big( \theta\frac{a^{1/3}}{|x-x_0|^{2/3}}w^2 \Big)^{3/4}\Big( \theta\frac{|x-x_0|^2}{a}w^2\Big)^{1/4}\,dx\,dt\Big|\\ & \leq s \frac32 \int_{Q_{t_0}^T} \theta\frac{a^{1/3}}{|x-x_0|^{2/3}}w^2\,dx\,dt + \frac{s}{2} \int_{Q_{t_0}^T} \theta\frac{|x-x_0|^2}{a}w^2 \,dx\,dt\\ &\leq C \int_{Q_{t_0}^T} \Big(s\theta aw_x^2+s^3\theta^3\frac{(x-x_0)^2}{a}w^2 \Big)dx\,dt. \end{align*} Hence, taking $s$ large enough, one has \begin{equation}\label{w_t} \int_{Q_{t_0}^T} \frac{1}{s\theta} w_t^2\,dx\,dt \leq C\Big( \int_{Q_{t_0}^T} h^2 e^{2s\varphi}\,dx\,dt + sc_1\int_{t_0}^T \Big[\theta a(x-x_0)w_x^2\Big]_{x=0}^{x=1}dt\Big). \end{equation} Now from \eqref{etoil} and \eqref{w_t} we can get the estimate of $u_t$ as follows: from the definition of $w$, we have $w_t=u_te^{s\varphi}+s\varphi_tw$. Hence \begin{equation*} \int_{Q_{t_0}^T} \frac{1}{s\theta}u_t^2e^{2s\varphi}\,dx\,dt \leq 2\Big(\int_{Q_{t_0}^T} \frac{1}{s\theta} w_t^2\,dx\,dt +\int_{Q_{t_0}^T} \frac{s^2\varphi_t^2}{s\theta} w^2\,dx\,dt\Big). \end{equation*} The second term in the above right-hand side is estimated as follows: \begin{align*} \int_{Q_{t_0}^T} \frac{s^2\varphi_t^2}{s\theta} w^2\,dx\,dt &=16\int_{Q_{t_0}^T} s\theta^{3/2}\eta^2\psi^2 w^2\,dx\,dt\\ &\leq 16(T+t_0)c_1c_2 \int_{Q_{t_0}^T} s\theta^{3/2}|\eta\psi| w^2\,dx\,dt. \end{align*} Hence using \eqref{etoil} and \eqref{w_t} we conclude that \begin{equation}\label{3.12} \int_{Q_{t_0}^T} \frac{1}{s\theta}u_t^2e^{2s\varphi}\,dx\,dt \leq C\Big( \int_{Q_{t_0}^T} h^2 e^{2s\varphi}\,dx\,dt + sc_1\int_{t_0}^T \Big[\theta a(x-x_0)w_x^2\Big]_{x=0}^{x=1}dt\Big). \end{equation} Thus \eqref{carlinv} follows by \eqref{3.4}, \eqref{step0} and \eqref{3.12}. \end{proof} \subsection{Carleman estimate for systems} By the above Carleman estimate \eqref{carlinv}, we are able to show the main result of this section, which is the $\omega$-Carleman estimate for the system \eqref{system}. For $x\in[0,1]$, let us define \[ \varphi_i(t,x):=\theta(t)\psi_i(x),\quad \theta(t):=\frac{1}{[(t-t_0)(T-t)]^4},\quad \psi_i(x)=c_i[\int_{x_i}^x\frac{y-x_i}{a_i(y)}\,dy-d_i], \] and, for $x\in [-1,1]$, $$ \Phi_i(t,x):=\theta(t)\Psi_i(x),\quad \Psi_i(x)=e^{2\rho_i}-e^{r_i\zeta_i(x)}, $$ where \[ \zeta_i(x)=\int_x^1\frac{dy}{\sqrt{\tilde{a}_i(y)}},\quad \rho_i=r_i\zeta_i(-1), \quad \tilde{a}_i(x):= \begin{cases} a_i(x), & x\in [0,1],\\ a_i(-x), & x\in [-1,0]. \end{cases} \] Here the functions $a_i$, $i=1,2$, satisfy hypothesis \eqref{assump} or \eqref{assump2} and the positive constants $c_i,\,d_i,\text{ and }r_i$ are chosen such that \begin{gather}\label{choice} d_2>\frac{16A}{16A-15}\max\Big\{\frac{x_2^2}{(2-K_2)a_2(0)}, \frac{(1-x_2)^2}{(2-K_2)a_2(1)},d_2^\star\Big\},\quad \frac{15}{16}\max\Big\{\frac{x_1^2}{(2-K_1)a_1(0)},\frac{(1-x_1)^2}{(2-K_1)a_1(1)}\Big\},\\ \rho_2>2\ln(2),\quad e^{2\rho_1}-e^{r_1\zeta_1(0)}\geq e^{2\rho_2}-1, \end{gathered}\\ \begin{aligned} &\max\Big\{\frac{e^{2\rho_2}-1}{d_2-d_2^\star}, \frac{(2-K_2)a_2(1)(e^{2\rho_2}-1)}{(2-K_2)a_2(1)d_2-(1-x_2)^2}, \frac{(2-K_2)a_2(0)(e^{2\rho_2}-1)}{(2-K_2)a_2(0)d_2-x_2^2}\Big\}\\ &\leq c_2 < \frac{4A}{3d_2}(e^{2\rho_2}-e^{r_2\zeta_{2}(0)}) \end{aligned} \\ \label{choice2} \begin{aligned} c_1\geq \max\Big\{&\frac{e^{2\rho_1}-1}{d_1-d_1^\star}, \frac{(2-K_1)a_1(1)(e^{2\rho_1}-1)}{(2-K_1)a_1(1)d_1-(1-x_1)^2},\\ &\frac{(2-K_1)a_1(0)(e^{2\rho_1}-1)}{(2-K_1)a_1(0)d_1-x_1^2}, \frac{c_2d_2}{d_1-d_1^\star}\Big\}, \end{aligned} \end{gather} where \[ A={\frac{\min \Psi_2(-x)}{\max \Psi_2(x)}},\quad d_i^\star:=\max\Big\{\int_{x_i}^1\frac{y-x_i}{a_i(y)}\,dy, \int_{x_i}^0\frac{y-x_i}{a_i(y)}\,dy\Big\}. \] \begin{remark} \label{rmk3.2} \rm The interval \begin{align*} \Big[&\max\Big\{\frac{e^{2\rho_2}-1}{d_2-d_2^\star}, \frac{(2-K_2)a_2(1)(e^{2\rho_2}-1)}{(2-K_2)a_2(1)d_2-(1-x_2)^2}, \frac{(2-K_2)a_2(0)(e^{2\rho_2}-1)}{(2-K_2)a_2(0)d_2-x_2^2}\Big\},\\ &\frac{4A(e^{2\rho_2}-e^{r_2\zeta(0)})}{3d_2}\Big] \end{align*} is not empty. In fact, from $\rho_2>2\ln2$, $A>15/16$ and $d_2> 16A d_2^\star /(16A-15)$, we have \begin{align*} \frac{d_2^\star}{d_2}<1-\frac{15}{16A} &\Leftrightarrow \frac{5}{4}\leq \frac{4A}{3}(1-\frac{d_2^\star}{d_2})\\ & \Leftrightarrow 1+e^{-\rho_2}< \frac{4A}{3}(1-\frac{d_2^\star}{d_2})\\ & \Leftrightarrow \frac{e^{2\rho_2}-1}{d_2-d_2^\star}<\frac{4A}{3d_2} (e^{2\rho_2}-e^{\rho_2})<\frac{4A}{3d_2}(e^{2\rho_2}-e^{r_2\zeta_2(0)}). \end{align*} Similarly for \[ d_2>\frac{16A}{16A-15}\max\Big\{\frac{x_2^2}{(2-K_2)a_2(0)}, \frac{(1-x_2)^2}{(2-K_2)a_2(1)}\Big\} \] one has \begin{align*} &\max\Big\{\frac{(2-K_2)a_2(1)(e^{2\rho_1}-1)}{(2-K_2)a_2(1)d_2-(1-x_2)^2}, \frac{(2-K_2)a_2(0)(e^{2\rho_1}-1)}{(2-K_2)a_2(0)d_2-x_2^2}\Big\}\\ &<\frac{4A}{3d_2}(e^{2\rho_2}-e^{r_2\zeta_2(0)}). \end{align*} \end{remark} From \eqref{choice}-\eqref{choice2}, we have the following results. \begin{lemma}\label{fcweiineq} (i) For $(t,x)\in [0,T]\times[0,1]$, \begin{equation} \label{3.24} \varphi_1\leq\varphi_2,\quad -\Phi_1\leq -\Phi_2,\quad \varphi_i\leq-\Phi_i. \end{equation} (ii) For $(t,x)\in [0,T]\times[0,1]$, \begin{equation} \label{3.25} -\Phi_2(t,x)\leq -\Phi_2(t,-x),\quad 4\Phi_2(t,-x)+3\varphi_2(t,x)>0. \end{equation} \end{lemma} \begin{proof} (i) \begin{enumerate} \item $\varphi_1\leq\varphi_2:$ since $\theta\geq 0$ it is sufficient to prove $\psi_1\leq\psi_2$. By the choice of $c_1$, we have $c_1\geq \frac{c_2d_2}{d_1-d_1^\star}$. Then $\max\{\psi_1(0),\psi_1(1)\}\leq -c_2d_2$. Hence, $\psi_1(x)\leq\psi_2(x)$. \item $-\Phi_1\leq-\Phi_2:$\\ since $\Psi_i$ is increasing, it is sufficient to prove that $\min \Psi_1(x)\geq \max \Psi_2(x)$. Indeed $\Psi_1(0)=e^{2\rho_1}- e^{r_1\zeta_1(0)}\geq e^{2\rho_2}-1=\Psi_2(1)$. \item $\varphi_i\leq-\Phi_i:$ since $c_i\geq \frac{e^{2\rho_i}-1}{d_i-d_i^\star}$, then $\max\{\psi_i(0),\psi_i(1)\}\leq -\Psi_i(1)$ and the thesis follows immediately. \end{enumerate} (ii) \begin{enumerate} \item The first inequality follows from $-\Psi_2(x)\leq -\Psi_2(-x)$ for all $x\in [0,1]$. \item $4\Psi_2(-x)+3\psi_2(x)>0:$ by definition of $A$, we have $A\Psi_2(x)\leq \Psi_2(-x)$ and, obviously, $4\Psi_2(-x)+3\psi_2(x)\geq 4A\Psi_2(x)+3\psi_2(x)$. Thus, to obtain the thesis, it is sufficient to prove that $4A\Psi_2(x)+3\psi_2(x)>0$. This follows easily observing that, by the assumption $3c_2d_2<4A\Psi_2(0)$, $-3\psi_2(x_0)< 4A\Psi_2(0)$. Hence $-3\psi_2(x)\le-3\psi_2(x_0)< 4A\Psi_2(0) \le 4A\Psi_2(x)$ for all $x \in [0,1]$. \end{enumerate} \end{proof} We show first an intermediate Carleman estimate with distributed observation of $u$ and $v$. \begin{theorem} \label{theofun} Let $T>0$. There exist two positive constants $C$ and $s_0$ such that, for every $(u_0,v_0)\in \mathbb{H}$ and all $s\geq s_0$, the solution of \eqref{system} satisfies \begin{align*} &\int_{Q_{t_0}^T} \Big(s\theta a_1u_x^2+s^3 \theta^3\frac{(x-x_1)^2}{a_1}u^2 +s\theta^{3/2}|\eta \psi_1|u^2+\frac{1}{s\theta}u_t^2\Big)e^{2s\varphi_1}\,dx\,dt\\ &+\int_{Q_{t_0}^T} \Big(s\theta a_2v_x^2+s^3 \theta^3\frac{(x-x_2)^2}{a_2}v^2 +s\theta^{3/2}|\eta \psi_2|v^2+\frac{1}{s\theta}v_t^2\Big)e^{2s\varphi_2}\,dx\,dt\\ & \leq C\Big(\int_{Q_{t_0}^T}f^2e^{-2s\Phi_2(t,-x)}dx\,dt +\int_{t_0}^T\int_{\omega'}s^2\theta^2(u^2+v^2)e^{-2s\Phi_2(t,-x)}dx\,dt\Big). \end{align*} \end{theorem} For the proof we shall use the following classical Carleman estimate (see \cite{Fra2}). \begin{proposition} Let $z$ be the solution of \begin{gather*} %\label{sysclassic} z_t-(az_x)_x=h, \quad x\in (A,B),\; t\in (0,T),\\ z(t,A)=z(t,B)=0, \quad t \in (0,T), \end{gather*} where $a\in C^1([A,B])$ is a strictly positive function. Then there exist two positive constants $r$ and $s_0$ such that for any $s\geq s_0$, \begin{align}\label{carclassic} & \int_{t_0}^T\int_A^Bs\theta e^{r\zeta}z_x^2e^{-2s\Phi}\,dx\,dt +\int_{t_0}^T\int_A^Bs^3\theta^3 e^{3r\zeta}z^2e^{-2s\Phi}\,dx\,dt\\ & \leq c\Big(\int_{t_0}^T\int_A^Bh^2e^{-2s\Phi}\,dx\,dt -c\int_{t_0}^T\big[ \sigma(t,\cdot)z_x^2(t,\cdot)e^{-2s\Phi(t,\cdot)}\big]_{x=0}^{x=1} \,dt\Big) \end{align} for some positive constant c. Here the functions $\Phi$, $\sigma$ and $\zeta$ are defined, for $r,s>0$ and $(t,x)\in [0,T]\times[A,B]$, by \begin{gather*} \phi(t,x):=\theta(t)\Psi(x),\quad \Psi(x):=e^{2r\zeta(A)}-e^{r\zeta(x)}>0, \\ \zeta(x):=\int_x^B\frac{1}{\sqrt{a(y)}}\,dy,\quad \sigma(t,x):=rs\theta(t)e^{r\zeta(x)}. \end{gather*} \end{proposition} \begin{proof}[Proof of Theorem \ref{theofun}] Consider a cut-off function $\xi:[0,1]\to R$ such that \begin{gather*} 0\leq \xi(x)\leq1,\quad \text{for all } x\in[0,1],\\ \xi(x)=1,\quad x\in[\lambda_1,\beta_2],\\ \xi(x)=0, \quad x\in [0,1]\setminus\omega. \end{gather*} Define $w:=\xi u$ and $z:=\xi v$, where $(u,v)$ is the solution of \eqref{system}. Hence, $w$ and $z$ satisfy the system \begin{gather*} w_t-(a_1w_x)_x+b_{11}w=\xi f-b_{12}z-(a_1\xi_x u)_x-\xi_xa_1u_x=:g, \quad (t,x) \in Q,\\ z_t-(a_2z_x)_x+b_{22}z=-(a_2\xi_x v)_x-\xi_xa_2v_x, \quad (t,x) \in Q,\\ w(t,0)=w(t,1)=z(t,0)=z(t,1)=0, \quad t \in (0,T). \end{gather*} Applying the estimate \eqref{carlinv} and using $w=w_x=0$ in a neighborhood of $x=0$ and $x=1$, from the definition of $\xi$, we have \begin{align*} &\int_{Q_{t_0}^T} \Big(s\theta a_1w_x^2+s^3 \theta^3\frac{(x-x_1)^2}{a_1}w^2 +s\theta^{3/2}|\eta \psi_1|w^2+\frac{1}{s\theta}w_t^2 \Big)e^{2s\varphi_1}\,dx\,dt \\ &\leq C \int_{{Q_{t_0}^T}} g^2 e^{2s\varphi_1}\,dx\,dt \end{align*} for all $s\geq s_0$. Then using the fact that $\xi_x$ and $\xi_{xx}$ are supported in $\omega''$, we can write $$ g^2\leq C(\xi^2f^2+b_{12}^2z^2+(u^2+u_x^2)\chi_{\omega''}). $$ Hence, applying Cacciopoli inequality \eqref{cacciopoli} and the previous estimates, we obtain \begin{equation} \label{estimw} \begin{aligned} &\int_{{Q_{t_0}^T}} \Big(s\theta a_1w_x^2+s^3 \theta^3\frac{(x-x_1)^2}{a_1}w^2 +s\theta^{3/2}|\eta \psi_1|w^2+\frac{1}{s\theta}w_t^2 \Big)e^{2s\varphi_1}\,dx\,dt\\ & \leq C\Big(\int_{Q_{t_0}^T}\xi^2f^2e^{2s\varphi_1} \,dx\,dt+\int_{Q_{t_0}^T}b_{12}^2z^2e^{2s \varphi_1}\,dx\,dt\\ &\quad +\int_{t_0}^T\int_{\omega'} ((1+s^2\theta^2)u^2+f^2)e^{2s\varphi_1}\, dx\,dt\Big). \end{aligned} \end{equation} Arguing as before and applying the estimate \eqref{carlinv} to the second component $z$ of the system, we obtain \begin{align*} &\int_{Q_{t_0}^T} \Big(s\theta a_2z_x^2+s^3 \theta^3 \frac{(x-x_2)^2}{a_2}z^2+s\theta^{3/2}|\eta \psi_2|z^2 +\frac{1}{s\theta}z_t^2\Big)e^{2s\varphi_2}\,dx\,dt\\ &\leq C\int_{t_0}^T\int_{\omega''} (v^2+v_x^2)e^{2s\varphi_2}\,dx\,dt. \end{align*} Hence, Cacciopoli inequality \eqref{cacciopoli} yields \begin{equation} \label{estimz} \begin{aligned} &\int_{Q_{t_0}^T} \Big(s\theta a_2z_x^2+s^3 \theta^3 \frac{(x-x_2)^2}{a_2}z^2+s\theta^{3/2}|\eta \psi_2|z^2 +\frac{1}{s\theta}z_t^2\Big)e^{2s\varphi_2}\,dx\,dt \\ &\leq C\int_{t_0}^T\int_{\omega'} (1+s^2\theta^2)v^2e^{2s\varphi_2}\,dx\,dt. \end{aligned} \end{equation} On the other hand, using the Poincar\'e inequality and the fact that $\varphi_1<\varphi_2$, we have \begin{align*}%\label{new} \int_0^1b_{12}^2z^2e^{2s\varphi_1}dx & \leq\|b_{12}\|_\infty^2\int_0^1(ze^{s\varphi_2})^2dx\\ &=\|b_{12}\|_\infty^2 \int_0^1\Big(\frac{|x-x_2|^2}{a_2(x)}z^2e^{2s\varphi_2} \Big)^{1/4}\Big(\frac{a_2^{1/3}(x)}{|x-x_2|^{2/3}} z^2e^{2s\varphi_2}\Big)^{3/4}dx\\ &\le \frac{\|b_{12}\|_\infty^2 }{4}\int_0^1\frac{|x-x_2|^2}{a_2(x)}z^2 e^{2s\varphi_2} dx \\ &\quad + \frac{3\|b_{12}\|_\infty^2 }{4} \int_0^1\frac{a_2^{1/3}(x)}{|x-x_2|^{2/3}}z^2e^{2s\varphi_2}dx. \end{align*} Applying the Hardy-Poincar\'{e} inequality to $w(t,x):= e^{s\varphi(t,x)} z(t,x)$ and proceeding as in the proof of \eqref{step0}, one has \begin{align*} \int_0^1\frac{a_2^{1/3}(x)}{|x-x_2|^{2/3}}z^2e^{2s\varphi_2}dx &= \int_0^1\frac{a_2^{1/3}(x)}{|x-x_2|^{2/3}}w^2dx\le C\int_0^1a(w_x)^2dx \\ &\le C\int_0^1 s^2\theta^2\frac{|x-x_2|^2}{a_2(x)}z^2e^{2s\varphi}dx + C\int_0^1a_2z_x^2e^{2s\varphi_2}dx, \end{align*} since $\psi_{2,x}(x)=c_2\frac{x-x_2}{a_2(x)}$. Hence, for a universal positive constant $C$, it results \[ \int_{Q_{t_0}^T}b_{12}^2z^2e^{2s\varphi_1}dx\,dt \leq C\int_{Q_{t_0}^T}(a_2z_x^2+s^2\theta^2\frac{(x-x_2)^2}{a_2}z^2) e^{2s\varphi_2}dx\,dt. \] Taking $s$ such that $C \le \frac{s\theta}{2}$, we have \begin{align}\label{absorbz} \int_{Q_{t_0}^T}b_{12}^2z^2e^{2s\varphi_1}dx\,dt\leq\frac12\int_{Q_{t_0}^T} \Big(s\theta a_2z_x^2+s^3 \theta^3\frac{(x-x_2)^2}{a_2}z^2\Big) e^{2s\varphi_2}\,dx\,dt. \end{align} Combining \eqref{estimw}, \eqref{estimz} and \eqref{absorbz} we obtain for $s$ large enough \begin{align*} &\int_{Q_{t_0}^T} \Big(s\theta a_1w_x^2+s^3 \theta^3\frac{(x-x_1)^2}{a_1}w^2 +s\theta^{3/2}|\eta \psi_1|w^2+\frac{1}{s\theta}w_t^2\Big)e^{2s\varphi_1}\,dx\,dt\\ &+\int_{Q_{t_0}^T} \Big(s\theta a_2z_x^2+s^3 \theta^3\frac{(x-x_2)^2}{a_2}z^2 +s\theta^{3/2}|\eta \psi_2|z^2+\frac{1}{s\theta}z_t^2\Big)e^{2s\varphi_2}\,dx\,dt\\ & \leq C\Big(\int_{Q_{t_0}^T}\xi^2f^2e^{2s\varphi_1} \,dx\,dt+\int_{t_0}^T\int_{\omega'} s^2\theta^2v^2e^{2s\varphi_2}\,dx\,dt\\ &\quad +\int_{t_0}^T\int_{\omega'} (s^2\theta^2u^2+f^2)e^{2s\varphi_1}\,dx\,dt\Big). \end{align*} By the previous inequality, the definition of $w$ and $z$, it follows that \begin{align} &\int_{t_0}^T\int_{\lambda_1}^{\beta_1} \Big(s\theta a_1u_x^2 +s^3 \theta^3\frac{(x-x_1)^2}{a_1}u^2+s\theta^{3/2}|\eta \psi_1|u^2 +\frac{1}{s\theta}u_t^2\Big)e^{2s\varphi_1}\,dx\,dt \nonumber\\ &+\int_{t_0}^T\int_{\lambda_1}^{\beta_1} \Big(s\theta a_2v_x^2+s^3 \theta^3\frac{(x-x_2)^2}{a_2}v^2+s\theta^{3/2}|\eta \psi_2|v^2 +\frac{1}{s\theta}v_t^2\Big)e^{2s\varphi_2}\,dx\,dt \nonumber\\ &=\int_{t_0}^T\int_{\lambda_1}^{\beta_1} \Big(s\theta a_1w_x^2 +s^3 \theta^3\frac{(x-x_1)^2}{a_1}w^2+s\theta^{3/2}|\eta \psi_1|w^2 +\frac{1}{s\theta}w_t^2\Big)e^{2s\varphi_1}\,dx\,dt \nonumber\\ &\quad +\int_{t_0}^T\int_{\lambda_1}^{\beta_1} \Big(s\theta a_2z_x^2 +s^3 \theta^3\frac{(x-x_2)^2}{a_2}z^2+s\theta^{3/2}|\eta \psi_2|z^2 +\frac{1}{s\theta}z_t^2\Big)e^{2s\varphi_2}\,dx\,dt\\ &\leq\int_{Q_{t_0}^T} \Big(s\theta a_1w_x^2+s^3 \theta^3\frac{(x-x_1)^2}{a_1}w^2 +s\theta^{3/2}|\eta \psi_1|w^2+\frac{1}{s\theta}w_t^2\Big)e^{2s\varphi_1}\,dx\,dt \nonumber\\ &\quad+\int_{Q_{t_0}^T} \Big(s\theta a_2z_x^2+s^3 \theta^3\frac{(x-x_2)^2}{a_2}z^2 +s\theta^{3/2}|\eta \psi_2|z^2+\frac{1}{s\theta}z_t^2\Big)e^{2s\varphi_2}\,dx\,dt \nonumber\\ & \leq C\Big(\int_{Q_{t_0}^T}\xi^2f^2e^{2s\varphi_1} \,dx\,dt+\int_{t_0}^T\int_{\omega'} s^2\theta^2v^2e^{2s\varphi_2}\,dx\,dt \nonumber\\ &\quad +\int_{t_0}^T\int_{\omega'} (s^2\theta^2u^2+f^2)e^{2s\varphi_1}\,dx\,dt\Big). \label{I} \end{align} Now define $U=\chi u$ and $V=\chi v$, where $(u,v)$ is the solution of \eqref{system} and $\chi:\,[0,1]\to \mathbb{R}$ is a cut-off function defined as \begin{gather*} 0\leq \chi(x)\leq1,\quad x\in[0,1],\\ \chi(x)=1, \quad x\in[\beta_2,1],\\ \chi(x)=0, \quad x\in [0,\frac{\lambda_2+2\beta_2}{3}]. \end{gather*} Then $U$ and $V$ satisfy \begin{gather*} U_t-(a_1U_x)_x+b_{11}U=\chi f-b_{12}V-(a_1\chi_x u)_x-\chi_xa_1u_x, \quad (t,x) \in Q\\ V_t-(a_2V_x)_x+b_{22}V=-(a_2\chi_x v)_x-\chi_xa_2v_x, \quad (t,x) \in Q\\ U(t,0)=U(t,1)=V(t,0)=V(t,1)=0, \quad t \in (0,T). \end{gather*} Using \eqref{carclassic} and a technique similar to the one used in \eqref{dis}-\eqref{w_t}, one has \begin{align*} & \int_{Q_{t_0}^T}(s\theta e^{r_1\zeta_1}U_x^2+s^3\theta^3e^{3r_1\zeta_1}U^2 +\frac{1}{s\theta}U_t^2)e^{-2s\Phi_1}\,dx\,dt\\ & \leq C\int_{Q_{t_0}^T}\chi^2f^2e^{-2s\Phi_1}dx\,dt +\tilde{C}\int_{Q_{t_0}^T}V^2e^{-2s\Phi_1}dx\,dt\\ &\quad +C\int_{t_0}^T\int_{\overline{\overline{\omega}}}(u^2+u_x^2)e^{-2s\Phi_1} \,dx\,dt. \end{align*} Analogously, one can prove that $V$ satisfies \begin{align*} & \int_{Q_{t_0}^T}(s\theta e^{r_2\zeta_2}V_x^2+s^3\theta^3e^{3r_2\zeta_2}V^2 +\frac{1}{s\theta}V_t^2)e^{-2s\Phi_2}\,dx\,dt\\ &\leq C\int_{t_0}^T\int_{\overline{\overline{\omega}}}(v^2+v_x^2)e^{-2s\Phi_2}dx\,dt. \end{align*} Thus combining the last two inequalities, \begin{align*} & \int_{Q_{t_0}^T}(s\theta e^{r_1\zeta_1}U_x^2+s^3\theta^3e^{3r_1\zeta_1}U^2 +\frac{1}{s\theta}U_t^2)e^{-2s\Phi_1}\,dx\,dt\\ &+\int_{Q_{t_0}^T}(s\theta e^{r_2\zeta_2}V_x^2+s^3\theta^3e^{3r_2\zeta_2}V^2 +\frac{1}{s\theta}V_t^2)e^{-2s\Phi_2}\,dx\,dt\\ & \leq C\int_{Q_{t_0}^T}\chi^2f^2e^{-2s\Phi_1}dx\,dt +\tilde{C}\int_{Q_{t_0}^T}V^2e^{-2s\Phi_1}dx\,dt\\ &\quad +C\int_{t_0}^T\int_{\overline{\overline{\omega}}}(u^2+u_x^2)e^{-2s\Phi_1}dx\,dt +C\int_{t_0}^T\int_{\overline{\overline{\omega}}}(v^2+v_x^2)e^{-2s\Phi_2}dx\,dt. \end{align*} Taking $s$ such that $\tilde{C}\leq \frac12 s^3\theta^3e^{3r_2\zeta_2}$, using $-\Phi_1\leq-\Phi_2$ and Cacciopoli inequality \eqref{cacciopoli}, we obtain \begin{align*} & \int_{Q_{t_0}^T}(s\theta e^{r_1\zeta_1}U_x^2+s^3\theta^3e^{3r_1\zeta_1}U^2 +\frac{1}{s\theta}U_t^2)e^{-2s\Phi_1}\,dx\,dt\\ &+\int_{Q_{t_0}^T}(s\theta e^{r_2\zeta_2}V_x^2 +\frac{1}{2}s^3\theta^3e^{3r_2\zeta_2}V^2+\frac{1}{s\theta}V_t^2)e^{-2s\Phi_2} \,dx\,dt\\ & \leq C\int_{Q_{t_0}^T}\chi^2f^2e^{-2s\Phi_1}dx\,dt+ C\int_{t_0}^T\int_{\overline{\omega}}(s^2\theta^2u^2+f)e^{-2s\Phi_1}dx\,dt\\ &\quad +C\int_{t_0}^T\int_{\overline{\omega}}s^2\theta^2v^2e^{-2s\Phi_2}dx\,dt. \end{align*} Then, by Lemma \ref{fcweiineq}, one can prove that there exists a positive constant $C$ such that for every $(t,x)\in [0,T]\times \operatorname{supp}(\chi)$, \begin{align}\label{3.44} a_i(x)e^{2s\varphi_i(t,x)}\leq Ce^{r_i\zeta_i}e^{-2s\Phi_i}, \quad \frac{(x-x_i)^2}{a_i(x)}e^{2s\varphi_i(t,x)} \leq \frac{C}{2}e^{3r_i\zeta_i}e^{-2s\Phi_i}. \end{align} Consequently, \begin{align*} &\int_{Q_{t_0}^T} \Big(s\theta a_1U_x^2+s^3 \theta^3\frac{(x-x_1)^2}{a_1}U^2 +s\theta^{3/2}|\eta \psi_1|U^2+\frac{1}{s\theta}U_t^2\Big)e^{2s\varphi_1}\,dx\,dt\\ &+\int_{Q_{t_0}^T} \Big(s\theta a_2V_x^2+s^3 \theta^3\frac{(x-x_2)^2}{a_2}V^2 +s\theta^{3/2}|\eta \psi_2|V^2+\frac{1}{s\theta}V_t^2\Big)e^{2s\varphi_2}\,dx\,dt\\ & \leq C\Big(\int_{Q_{t_0}^T}\chi^2f^2e^{-2s\Phi_1} dx\,dt+\int_{t_0}^T\int_{\overline{\omega}}(s^2\theta^2u^2+f)e^{-2s\Phi_1}dx\,dt\\ &\quad +\int_{t_0}^T\int_{\overline{\omega}}s^2 \theta^2v^2e^{-2s\Phi_2}dx\,dt\Big). \end{align*} By the definitions of $U$ and $V$, we obtain \begin{align} &\int_{t_0}^T\int_{\beta_2}^1 \Big(s\theta a_1u_x^2 +s^3 \theta^3\frac{(x-x_1)^2}{a_1}u^2+s\theta^{3/2}|\eta \psi_1|u^2 +\frac{1}{s\theta}u_t^2\Big)e^{2s\varphi_1}\,dx\,dt \nonumber\\ &+\int_{t_0}^T\int_{\beta_2}^1 \Big(s\theta a_2v_x^2 +s^3 \theta^3\frac{(x-x_2)^2}{a_2}v^2+s\theta^{3/2}|\eta \psi_2|v^2 +\frac{1}{s\theta}v_t^2\Big)e^{2s\varphi_2}\,dx\,dt \nonumber\\ &=\int_{t_0}^T\int_{\beta_2}^1 \Big(s\theta a_1U_x^2 +s^3 \theta^3\frac{(x-x_1)^2}{a_1}U^2+s\theta^{3/2}|\eta \psi_1|U^2 +\frac{1}{s\theta}U_t^2\Big)e^{2s\varphi_1}\,dx\,dt \nonumber\\ &\quad+ \int_{t_0}^T\int_{\beta_2}^1 \Big(s\theta a_2V_x^2 +s^3 \theta^3\frac{(x-x_2)^2}{a_2}V^2+s\theta^{3/2}|\eta \psi_2|V^2 +\frac{1}{s\theta}V_t^2\Big)e^{2s\varphi_2}\,dx\,dt \nonumber\\ &\leq\int_{Q_{t_0}^T} \Big(s\theta a_1U_x^2+s^3 \theta^3\frac{(x-x_1)^2}{a_1}U^2 +s\theta^{3/2}|\eta \psi_1|U^2+\frac{1}{s\theta}U_t^2\Big)e^{2s\varphi_1}\,dx\,dt \nonumber\\ &\quad +\int_{Q_{t_0}^T} \Big(s\theta a_2V_x^2+s^3 \theta^3\frac{(x-x_2)^2}{a_2}V^2 +s\theta^{3/2}|\eta \psi_2|V^2+\frac{1}{s\theta}V_t^2\Big)e^{2s\varphi_2}\,dx\,dt \nonumber\\ & \leq C\Big(\int_{Q_{t_0}^T}\chi^2f^2e^{-2s\Phi_1}dx\,dt +\int_{t_0}^T\int_{\overline{\omega}}(s^2\theta^2u^2+f)e^{-2s\Phi_1}dx\,dt \nonumber\\ &\quad +\int_{t_0}^T\int_{\overline{\omega}}s^2 \theta^2v^2e^{-2s\Phi_2}dx\,dt\Big). \label{II} \end{align} To complete the proof it is sufficient to prove a similar inequality on the interval $[0,\lambda_1]$. To this aim define the functions $$ W(t,x):=\begin{cases} u(t,x), & x\in [0,1],\\ -u(t,-x), & x\in [-1,0], \end{cases},\quad Z(t,x):= \begin{cases} v(t,x), & x\in [0,1],\\ -v(t,-x), & x\in [-1,0], \end{cases} $$ where $(u,v)$ solves \eqref{system}, and $$ \tilde{f}(t,x):=\begin{cases} f(t,x), & x\in [0,1],\\ -f(t,-x), & x\in [-1,0], \end{cases},\quad \tilde{b}_{ij}(x):= \begin{cases} b_{ij}(x), & x\in [0,1],\\ b_{ij}(-x), & x\in [-1,0]. \end{cases} $$ Therefore, $(W,Z)$ solves \begin{equation} \label{sysWZ} \begin{gathered} W_t-(\tilde{a}_1W_x)_x+\tilde{b}_{11}W=\tilde{f}-\tilde{b}_{12}Z, \quad x\in (-1,1),\; t\in (0,T),\\ Z_t-(\tilde{a}_2Z_x)_x+\tilde{b}_{22}Z=0, \quad x\in (-1,1),\; t\in (0,T),\\ W(t,-1)=W(t,1)=Z(t,-1)=Z(t,1)=0, \quad t \in (0,T). \end{gathered} \end{equation} Consider a cut-off function $\rho:[-1,1]\to \mathbb{R}$ such that \begin{gather*} 0\leq \rho(x)\leq1, \quad x\in[-1,1],\\ \rho(x)=1, \quad x\in[-\lambda_1,\lambda_1],\\ \rho(x)=0, \quad x\in [-1,-\frac{\lambda_1+2\beta_1}{3}] \cup[\frac{\lambda_1+2\beta_1}{3},1]. \end{gather*} The functions $p=\rho W$ and $q=\rho Z$, where $(W,Z)$ is the solution of \eqref{sysWZ}, satisfy \begin{gather*}%\label{syspq} p_t-(\tilde{a}_1p_x)_x+\tilde{b}_{11}p=\rho\tilde{f} -\tilde{b}_{12}q-(\tilde{a}_1\rho_x W)_x-\rho_x\tilde{a}_1W_x, \quad x\in (-1,1),\; t\in (0,T),\\ q_t-(\tilde{a}_2q_x)_x+\tilde{b}_{22}q=-(\tilde{a}_2\rho_x Z)_x-\rho_x\tilde{a}_2Z_x, \quad x\in (-1,1),\; t\in (0,T),\\ p(t,-1)=p(t,1)=q(t,-1)=q(t,1)=0, \quad t \in (0,T). \end{gather*} Applying \eqref{carclassic} for the first component $p$ with $A=-\beta_1$, $B=\beta_1$ and proceeding as in \eqref{dis}-\eqref{w_t}, we obtain \begin{align*} & \int_{t_0}^T\int_{-\beta_1}^{\beta_1}(s\theta e^{r_1\zeta_1}p_x^2 +s^3\theta^3e^{3r_1\zeta_1}p^2+\frac{1}{s\theta}p_t^2)e^{-2s\Phi_1}\,dx\,dt\\ & \leq C\int_{t_0}^T\int_{-\beta_1}^{\beta_1}\rho^2\tilde{f}^2e^{-2s\Phi_1}dx\,dt +\tilde{C}\int_{t_0}^T\int_{-\beta_1}^{\beta_1}q^2e^{-2s\Phi_1}dx\,dt\\ &\quad +C\int_{t_0}^T\int_{\lambda_1}^{\frac{\lambda_1+2\beta_1}{3}}(W^2+W_x^2)e^{-2s\Phi_1}dx\,dt \\ &\quad +C\int_{t_0}^T\int_{-\frac{\lambda_1+2\beta_1}{3}}^{-\lambda_1}(W^2+W_x^2)e^{-2s\Phi_1}dx\,dt. \end{align*} Using the definition of $W$, $-\Phi_1\leq-\Phi_2$ and $e^{-2s\Phi_2(t,x)}\leq e^{-2s\Phi_2(t,-x)}$, a.e. $x\in [0,\beta_1]$, it follows that \begin{align*} & \int_{t_0}^T\int_{-\beta_1}^{\beta_1}(s\theta e^{r_1\zeta_1}p_x^2 +s^3\theta^3e^{3r_1\zeta_1}p^2+\frac{1}{s\theta}p_t^2)e^{-2s\Phi_1}\,dx\,dt\\ & \leq C\int_{t_0}^T\int_{0}^{\beta_1}\rho^2f^2e^{-2s\Phi_2(t,-x)}dx\,dt +\tilde{C}\int_{t_0}^T\int_{-\beta_1}^{\beta_1}q^2e^{-2s\Phi_1}dx\,dt\\ &\quad +C\int_{t_0}^T\int_{\lambda_1}^{\frac{\lambda_1+2\beta_1}{3}}(u^2+u_x^2) e^{-2s\Phi_1(t,-x)}dx\,dt. \end{align*} Similarly, for the second component $q$, we obtain \begin{align*} &\int_{t_0}^T\int_{-\beta_1}^{\beta_1}(s\theta e^{r_2\zeta_2}q_x^2 +s^3\theta^3e^{3r_2\zeta_2}q^2+\frac{1}{s\theta}q_t^2)e^{-2s\Phi_2}\,dx\,dt\\ &\leq C\int_{t_0}^T\int_{\lambda_1}^{\frac{\lambda_1+2\beta_1}{3}}(v^2+v_x^2) e^{-2s\Phi_2(t,-x)}dx\,dt. \end{align*} Thus it follows from the last two inequalities that \begin{align*} & \int_{t_0}^T\int_{-\beta_1}^{\beta_1}(s\theta e^{r_1\zeta_1}p_x^2 +s^3\theta^3e^{3r_1\zeta_1}p^2+\frac{1}{s\theta}p_t^2)e^{-2s\Phi_1}\,dx\,dt\\ &+\int_{t_0}^T\int_{-\beta_1}^{\beta_1}(s\theta e^{r_2\zeta_2}q_x^2 +s^3\theta^3e^{3r_2\zeta_2}q^2+\frac{1}{s\theta}q_t^2)e^{-2s\Phi_2}\,dx\,dt \\ & \leq C\int_{t_0}^T\int_{0}^{\beta_1}\rho^2f^2e^{-2s\Phi_2(t,-x)}dx\,dt+\tilde{C}\int_{t_0}^T\int_{-\beta_1}^{\beta_1}q^2e^{-2s\Phi_1}dx\,dt \\ &\quad +C\int_{t_0}^T\int_{\lambda_1}^{\frac{\lambda_1+2\beta_1}{3}}(v^2+v_x^2) e^{-2s\Phi_2(t,-x)}dx\,dt\\ &\quad +C\int_{t_0}^T \int_{\lambda_1}^{\frac{\lambda_1+2\beta_1}{3}}(u^2+u_x^2) e^{-2s\Phi_1(t,-x)}dx\,dt. \end{align*} Taking $s$ such that $\tilde{C}\leq \frac12 s^3\theta^3e^{3r_2\zeta_2}$, using $-\Phi_1\leq-\Phi_2$ and Cacciopoli inequality \eqref{cacciopoli}, we obtain \begin{equation} \label{estimpq} \begin{aligned} & \int_{t_0}^T\int_{-\beta_1}^{\beta_1}(s\theta e^{r_1\zeta_1}p_x^2 +s^3\theta^3e^{3r_1\zeta_1}p^2+\frac{1}{s\theta}p_t^2)e^{-2s\Phi_1}\,dx\,dt\\ &+\int_{t_0}^T\int_{-\beta_1}^{\beta_1}(s\theta e^{r_2\zeta_2}q_x^2 +\frac{1}{2}s^3\theta^3e^{3r_2\zeta_2}q^2 +\frac{1}{s\theta}q_t^2)e^{-2s\Phi_2}\,dx\,dt \\ & \leq C\int_{t_0}^T\int_{0}^{\beta_1}\rho^2f^2e^{-2s\Phi_2(t,-x)}dx\,dt +C\int_{t_0}^T\int_{\tilde{\omega}}(s^2\theta^2u^2+f)e^{-2s\Phi_1(t,-x)}dx\,dt\\ &\quad +C\int_{t_0}^T\int_{\tilde{\omega}}s^2\theta^2v^2e^{-2s\Phi_2(t,-x)}dx\,dt. \end{aligned} \end{equation} Clearly, one can obtain the same estimates \eqref{3.44} in $[0,T]\times [0,\beta_1]$. Hence, by \eqref{3.24}, \eqref{estimpq}, by the definitions of $W$, $Z$, $p$ and $q$, and proceeding as in \eqref{tag}, we obtain \begin{align} &\int_{t_0}^T\int_{0}^{\lambda_1} \Big(s\theta a_1u_x^2 +s^3 \theta^3\frac{(x-x_1)^2}{a_1}u^2+s\theta^{3/2}|\eta \psi_1|u^2 +\frac{1}{s\theta}u_t^2\Big)e^{2s\varphi_1}\,dx\,dt \nonumber\\ &+\int_{t_0}^T\int_{0}^{\lambda_1} \Big(s\theta a_2v_x^2 +s^3 \theta^3\frac{(x-x_2)^2}{a_2}v^2+s\theta^{3/2}|\eta \psi_2|v^2 +\frac{1}{s\theta}v_t^2\Big)e^{2s\varphi_2}\,dx\,dt \nonumber\\ &=\int_{t_0}^T\int_{0}^{\lambda_1} \Big(s\theta a_1W_x^2 +s^3 \theta^3\frac{(x-x_1)^2}{a_1}W^2+s\theta^{3/2}|\eta \psi_1|W^2 +\frac{1}{s\theta}W_t^2\Big)e^{2s\varphi_1}\,dx\,dt \nonumber\\ &\quad +\int_{t_0}^T\int_{0}^{\lambda_1} \Big(s\theta a_2Z_x^2 +s^3 \theta^3\frac{(x-x_1)^2}{a_2}Z^2+s\theta^{3/2}|\eta \psi_2|Z^2 +\frac{1}{s\theta}Z_t^2\Big)e^{2s\varphi_2}\,dx\,dt \nonumber\\ &=\int_{t_0}^T\int_{0}^{\lambda_1} \Big(s\theta a_1p_x^2 +s^3 \theta^3\frac{(x-x_1)^2}{a_1}p^2+s\theta^{3/2}|\eta \psi_1|p^2 +\frac{1}{s\theta}p_t^2\Big)e^{2s\varphi_1}\,dx\,dt \nonumber\\ &\quad +\int_{t_0}^T\int_{0}^{\lambda_1} \Big(s\theta a_2q_x^2 +s^3 \theta^3\frac{(x-x_2)^2}{a_2}q^2+s\theta^{3/2}|\eta \psi_2|q^2 +\frac{1}{s\theta}q_t^2\Big)e^{2s\varphi_2}\,dx\,dt \nonumber\\ &\leq C\int_{t_0}^T\int_{-\beta_1}^{\beta_1}(s\theta e^{r_1\zeta_1}p_x^2 +s^3\theta^3e^{3r_1\zeta_1}p^2+\frac{1}{s\theta}p_t^2)e^{-2s\Phi_1}\,dx\,dt \nonumber\\ &\quad +C\int_{t_0}^T\int_{-\beta_1}^{\beta_1}(s\theta e^{r_2\zeta_2}q_x^2 +s^3\theta^3e^{3r_2\zeta_2}q^2+\frac{1}{s\theta}q_t^2)e^{-2s\Phi_2}\,dx\,dt \nonumber\\ & \leq C\int_{t_0}^T\int_{0}^{\beta_1}\rho^2f^2e^{-2s\Phi_2(t,-x)}dx\,dt +C\int_{t_0}^T\int_{\tilde{\omega}}(s^2\theta^2u^2+f)e^{-2s\Phi_1(t,-x)}dx\,dt \nonumber\\ &\quad +C\int_{t_0}^T\int_{\tilde{\omega}}s^2\theta^2v^2e^{-2s\Phi_2(t,-x)}dx\,dt. \label{III} \end{align} Finally adding up \eqref{I}, \eqref{II} and \eqref{III}, the proof is complete. \end{proof} To estimate the term source with only the first component of solutions of \eqref{system}, we need to show a Carleman estimate with one force. \begin{theorem} \label{caroneforce} Let $T>0$. Moreover, assume that \begin{align*}%\label{hypb12} b_{12}\geqslant \mu>0 \quad \text{on } \omega'. \end{align*} There exist two positive constants $C$ and $s_0$ such that, for every $(u_0,v_0)\in \mathbb{H}$ and for all $s\geq s_0$, the solution $(u,v)$ of \eqref{system} satisfies \begin{equation} \label{Carineq2oneforce} \begin{aligned} I(u,v)&:=\int_{Q_{t_0}^T} \Big(s\theta a_1u_x^2+s^3 \theta^3 \frac{(x-x_1)^2}{a_1}u^2+s\theta^{3/2}|\eta \psi_1|u^2 +\frac{1}{s\theta}u_t^2\Big)e^{2s\varphi_1}\,dx\,dt\\ &+\int_{Q_{t_0}^T} \Big(s\theta a_2v_x^2+s^3 \theta^3\frac{(x-x_2)^2}{a_2}v^2 +s\theta^{3/2}|\eta \psi_2|v^2+\frac{1}{s\theta}v_t^2\Big)e^{2s\varphi_2}\,dx\,dt\\ & \leq C\int_{Q_{t_0}^T}f^2e^{-2s\Phi_2(t,-x)}dx\,dt +C\int_{t_0}^T\int_{\omega}u^2dx\,dt:=I(f,u). \end{aligned} \end{equation} \end{theorem} The above theorem is a consequence of Theorem \ref{theofun} and of the following lemma. \begin{lemma} Let $\omega_2\Subset \omega_1$ such that $x_1,\,x_2 \notin\omega_1$. Moreover, assume that \[ b_{12}\geqslant \mu>0 \quad \text{on } \omega_1. \] There exists $C>0$ such that \[ \int_{t_0}^T\int_{\omega_2}s^2\theta^2v^2e^{-2s\Phi_2(t,-x)}dx\,dt \leq\varepsilon J(v)+C \int_{Q_{t_0}^T}f^2e^{2s\varphi_2}\,dx\,dt +C\int_{t_0}^T\int_{\omega} u^2\,dx\,dt, \] where $\varepsilon>0$ is small enough, $s$ is large enough and $$ J(v)=\int_{Q_{t_0}^T} \Big(s\theta a_2v_x^2 +s^3 \theta^3\frac{(x-x_2)^2}{a_2}v^2\Big)e^{2s\varphi_2}\,dx\,dt. $$ \end{lemma} \begin{proof} The choice of the weight functions given in Lemma \ref{fcweiineq} will play a crucial role. We will adapt the technique used in \cite{hajjaj}. Let $\chi\in C^\infty(0,1)$, such that $\operatorname{supp}(\chi)\subset\omega_1$ and $\chi\equiv1$ on $\omega_2$. Multiplying the first equation of \eqref{system} by $s^2\theta^2\chi e^{-2s\theta(t)\Psi_2(-x)}v$ and integrating over $Q_{t_0}^T$, we obtain \begin{equation} \label{step40} \begin{aligned} &\int_{Q_{t_0}^T}s^2\theta^2b_{12}\chi e^{-2s\theta(t)\Psi_2(-x)}v^2\,dx\,dt \\ &= \int_{Q_{t_0}^T}s^2\theta^2\chi e^{-2s\theta(t)\Psi_2(-x)}fv\,dx\,dt -\int_{Q_{t_0}^T}s^2\theta^2\chi e^{-2s\theta(t)\Psi_2(-x)}u_tv\,dx\,dt\\ &\quad +\int_{Q_{t_0}^T}s^2\theta^2\chi e^{-2s\theta(t)\Psi_2(-x)}(a_1u_x)_xv\,dx\,dt\\ &\quad -\int_{Q_{t_0}^T}s^2\theta^2b_{11}\chi e^{-2s\theta(t)\Psi_2(-x)}uv\,dx\,dt. \end{aligned} \end{equation} Integrating by parts and using the second equation in \eqref{system}, we obtain \begin{equation} \label{step41} \begin{aligned} &\int_{Q_{t_0}^T}s^2\theta^2\chi e^{-2s\theta(t)\Psi_2(-x)}vu_t\,dx\,dt\\ &= \int_{Q_{t_0}^T}s^2\theta^2a_2\chi e^{-2s\theta(t)\Psi_2(-x)}u_xv_x\,dx\,dt +\int_{Q_{t_0}^T}s^2\theta^2a_2(\chi e^{-2s\theta(t)\Psi_2(-x)})_xuv_x\,dx\,dt\\ &\quad + \int_{Q_{t_0}^T}(s^2\theta^2b_{22}+2s^3\theta^2\dot{\theta}\Psi_2(-x) -2s^2\theta\dot{\theta})\chi e^{-2s\theta(t)\Psi_2(-x)}vu\,dx\,dt, \end{aligned} \end{equation} and \begin{equation} \label{step42} \begin{aligned} &\int_{Q_{t_0}^T}s^2\theta^2\chi e^{-2s\theta(t)\Psi_2(-x)}(a_1u_x)_xv\,dx\,dt \\ & = -\int_{Q_{t_0}^T}s^2\theta^2a_1\chi e^{-2s\theta(t)\Psi_2(-x)}v_xu_x\,dx\,dt\\ &\quad +\int_{Q_{t_0}^T}s^2\theta^2a_1(\chi e^{-2s\theta(t)\Psi_2(-x)})_xv_xu\,dx\,dt\\ &\quad + \int_{Q_{t_0}^T}s^2\theta^2(a_1(\chi e^{-2s\theta(t)\Psi_2(-x)})_x)_x vu\,dx\,dt. \end{aligned} \end{equation} Combining \eqref{step40}-\eqref{step42}, we obtain \[ \int_{Q_{t_0}^T}s^2\theta^2b_{12}\chi e^{-2s\theta(t)\Psi_2(-x)}v^2\,dx\,dt =I_1+I_2+I_3+I_4, \] where \begin{gather*} I_1= \int_{Q_{t_0}^T}s^2\theta^2\chi e^{-2s\theta(t)\Psi_2(-x)}vf\,dx\,dt,\\ I_2=-\int_{Q_{t_0}^T}s^2\theta^2(a_1+a_2)\chi e^{-2s\theta(t)\Psi_2(-x)}u_xv_x\,dx\,dt,\\ \begin{aligned} I_3&=\int_{Q_{t_0}^T}s^2\theta^2(a_1-a_2)(\chi e^{-2s\theta(t)\Psi_2(-x)})_x uv_x\,dx\,dt \\ &=\int_{Q_{t_0}^T}(s^2\theta^2\chi'+2s^3\theta^3\Psi_{2,x}(-x)\chi)(a_1-a_2) e^{-2s\theta(t)\Psi_2(-x)}uv_x\,dx\,dt, \end{aligned}\\ \begin{aligned} I_4&=\int_{Q_{t_0}^T}(2s^2\theta\dot{\theta}-s^2\theta^2(b_{11}+b_{22}) -2s^3\theta^2\dot{\theta}\Psi_2(-x))\chi e^{-2s\theta(t)\Psi_2(-x)}uv\,dx\,dt\\ &\quad+\int_{Q_{t_0}^T}s^2\theta^2(a_1(\chi e^{-2s\theta(t)\Psi_2(-x)})_x)_x uv\,dx\,dt. \end{aligned} \end{gather*} For $\varepsilon>0$, we have \begin{gather*} \begin{aligned} |I_1| &= \int_{Q_{t_0}^T}(fe^{s\varphi_2})(s^2\theta^2\chi e^{-s(2\theta(t)\Psi_2(-x)+\varphi_2)}v)\,dx\,dt\\ & \leq \frac12\int_{Q_{t_0}^T}f^2e^{2s\varphi_2}\,dx\,dt +C\int_{t_0}^T\int_{\omega_1}s^4\theta^4e^{-2s(2\theta(t)\Psi_2(-x) +\varphi_2)}v^2\,dx\,dt, \end{aligned}\\ \begin{aligned} |I_2| & =\int_{Q_{t_0}^T}(\sqrt{s\theta a_2} e^{s\varphi_2}v_x)((s\theta)^{3/2}(a_2)^{-\frac12}(a_1+a_2)\chi e^{-s(2\theta(t)\Psi_2(-x)+\varphi_2)}u_x)\,dx\,dt\\ & \leq \varepsilon\int_{Q_{t_0}^T}s\theta a_2 e^{2s\varphi_2}v_x^2\,dx\,dt\\ &\quad + \frac{1}{\varepsilon}\underbrace{\int_{Q_{t_0}^T}s^3\theta^3 \frac{(a_1^2+a_2^2)}{a_2}\chi^2 e^{-2s(2\theta(t)\Psi_2(-x)+\varphi_2)}u_x^2 \,dx\,dt}_{L}. \end{aligned} \end{gather*} The integral $L$ should be estimated by an integral in $u^2$. For this, we multiply the first equation in \eqref{system} by $s^3\theta^3\frac{(a_1^2+a_2^2)}{a_1a_2}\chi^2e^{-2s(2\theta(t)\Psi_2(-x)+\varphi_2)}u$ and we integrate by parts, obtaining $$ L=L_1+L_2+L_3+L_4+L_5, $$ where \begin{gather*} L_1= \int_{Q_{t_0}^T}s^3\theta^3\frac{(a_1^2+a_2^2)}{a_1a_2}\chi^2 e^{-2s(2\theta(t)\Psi_2(-x)+\varphi_2)}uf\,dx\,dt,\\ \begin{aligned} L_2&=\frac12\int_{Q_{t_0}^T}s^3(3\theta^2-2s\theta^3(2\Psi_2(-x) +\psi_2))\dot{\theta}\frac{(a_1^2+a_2^2)}{a_1a_2}\chi^2\\ &\quad\times e^{-2s(2\theta(t)\Psi_2(-x)+\varphi_2)}u^2\,dx\,dt, \end{aligned}\\ L_3=\frac12\int_{Q_{t_0}^T}s^3\theta^3(a_1(\frac{(a_1^2+a_2^2)}{a_1a_2}\chi^2 e^{-2s(2\theta(t)\Psi_2(-x)+\varphi_2)})_x)_xu^2\,dx\,dt,\\ L_4=-\int_{Q_{t_0}^T}s^3\theta^3\frac{(a_1^2+a_2^2)}{a_1a_2}\chi^2b_{11} e^{-2s(2\theta(t)\Psi_2(-x)+\varphi_2)}u^2\,dx\,dt,\\ L_5=-\int_{Q_{t_0}^T}s^3\theta^3\frac{(a_1^2+a_2^2)}{a_1a_2}\chi^2b_{12} e^{-2s(2\theta(t)\Psi_2(-x)+\varphi_2)}uv\,dx\,dt. \end{gather*} Since $|\dot{\theta}|\leq C\theta^2$ and $\operatorname{supp}(\chi)\subset\omega_1$, we obtain \begin{gather*} |L_1|\leq\frac12\int_{Q_{t_0}^T}f^2e^{2s\varphi_2}\,dx\,dt +C\int_{t_0}^T\int_{\omega_1}s^6\theta^6 e^{-2s(4\theta(t)\Psi_2(-x) +3\varphi_2)}u^2\,dx\,dt,\\ |L_2|\leq C\int_{t_0}^T\int_{\omega_1}s^4\theta^5 e^{-2s(2\theta(t)\Psi_2(-x) +\varphi_2)}u^2\,dx\,dt,\\ |L_3|\leq C\int_{t_0}^T\int_{\omega_1}s^5\theta^5 e^{-2s(2\theta(t)\Psi_2(-x) +\varphi_2)}u^2\,dx\,dt,\\ |L_4|\leq C\int_{t_0}^T\int_{\omega_1}s^3\theta^3 e^{-2s(2\theta(t)\Psi_2(-x) +\varphi_2)}u^2\,dx\,dt,\\ \begin{aligned} |L_5|&\leq \varepsilon\int_{Q_{t_0}^T}s^3\theta^3\frac{(x-x_2)^2}{a_2} e^{2s\varphi_2}v^2\,dx\,dt\\ &\quad +\frac{C}{\varepsilon}\int_{t_0}^T\int_{\omega_1}s^3\theta^3 e^{-2s(4\theta(t)\Psi_2(-x)+3\varphi_2)}u^2\,dx\,dt. \end{aligned} \end{gather*} Hence, \begin{align*} |L|&\leq C \int_{Q_{t_0}^T}f^2e^{2s\varphi_2}\,dx\,dt +C_{\varepsilon}\int_{t_0}^T\int_{\omega_1}s^6\theta^3 e^{-2s(4\theta(t)\Psi_2(-x) +3\varphi_2)}u^2\,dx\,dt\\ &\quad +\varepsilon\int_{Q_{t_0}^T}s^3\theta^3\frac{(x-x_2)^2}{a_2} e^{2s\varphi_2}v^2\,dx\,dt. \end{align*} Furthermore, \[ |I_2|\leq C \int_{Q_{t_0}^T}f^2e^{2s\varphi_2}\,dx\,dt +C_{\varepsilon}\int_{t_0}^T\int_{\omega_1}s^6\theta^6 e^{-2s(4\theta(t)\Psi_2(-x) +3\varphi_2)}u^2\,dx\,dt+\varepsilon J(v). \] Using the fact that $\chi'$ and $\chi$ are supported in $\omega'$ and $x_2 \not \in \omega'$, proceeding as before, one has \begin{align*} |I_3|&\leq C\int_{Q_{t_0}^T}s^3\theta^3(\chi'+\chi)e^{-2s\theta(t) \Psi_2(-x)}uv_x\,dx\,dt\\ &=C\int_{Q_{t_0}^T}(\sqrt{s\theta a_2}e^{s\varphi_2}v_x)((s\theta)^{5/2} (a_2)^{-\frac12}(\chi'+\chi)e^{-s(2\theta(t)\Psi_2(-x)+\varphi_2)}u)\,dx\,dt\\ &\leq\varepsilon\int_{Q_{t_0}^T}s\theta a_2v_x^2e^{2s\varphi_2}\,dx\,dt +\frac{C}{\varepsilon}\int_{t_0}^T\int_{\omega_1} (s^5\theta^5 e^{-2s(2\theta(t)\Psi_2(-x)+\varphi_2)}u^2\,dx\,dt, \end{align*} and \begin{align*} I_4 &\leq C\int_{Q_{t_0}^T}s^4\theta^4(\chi''+\chi'+\chi) e^{-2s\theta(t)\Psi_2(-x)}uv\,dx\,dt\\ &=C\int_{Q_{t_0}^T}(s^{3/2}\theta^{3/2} \frac{x-x_2}{\sqrt{a_2}} e^{s\varphi_2}v)((s\theta)^{5/2}\frac{\sqrt{a_2}}{x-x_2}(\chi''+\chi'+\chi)\\ &\quad\times e^{-s(2\theta(t)\Psi_2(-x)+\varphi_2)}u)\,dx\,dt\\ &\leq\varepsilon\int_{Q_{t_0}^T}s^3\theta^3\frac{(x-x_2)^2}{a_2} v^2e^{2s\varphi_2}\,dx\,dt \\ &\quad +\frac{C}{\varepsilon}\int_{t_0}^T\int_{\omega_1} (s^5\theta^5e^{-2s(2\theta(t)\Psi_2(-x)+\varphi_2)}u^2\,dx\,dt, \end{align*} So, thanks to Lemma \ref{fcweiineq}, we have \begin{gather*} e^{-2s(2\theta(t)\Psi_2(-x)+\varphi_2)}\leq e^{-2s(4\theta(t)\Psi_2(-x)+3\varphi_2)},\\ \sup_{(t,x)\in Q} s^r\theta^r(t)e^{-2s(4\theta(t)\Psi_2(-x)+3\varphi_2)} <\infty,\quad r\in \mathbb{R}. \end{gather*} Then, for $\varepsilon$ small enough and $s$ large enough, we have \begin{align*} &|\int_{Q_{t_0}^T}s^2\theta^2b_{12}\chi e^{-2s\theta(t)\Psi_2(-x)}v^2\,dx\,dt|\\ &\leq C \int_{Q_{t_0}^T}f^2e^{2s\varphi_2}\,dx\,dt +C\int_{t_0}^T\int_{\omega} u^2\,dx\,dt+\varepsilon J(v). \end{align*} Finally, the definition of $\chi$, \eqref{assump} and the previous inequality give \begin{align*} &\mu \int_{t_0}^T\int_{\omega_2}s^2\theta^2 e^{-2s\theta(t)\Psi_2(-x)}v^2\,dx\,dt \\ & \leq |\int_{t_0}^T\int_{\omega_2}s^2\theta^2b_{12} e^{-2s\theta(t)\Psi_2(-x)} v^2\,dx\,dt|\\ & \leq \int_{Q_{t_0}^T} |s^2\theta^2b_{12}\chi e^{-2s\theta(t)\Psi_2(-x)}v^2| \,dx\,dt\\ &\leq C \int_{Q_{t_0}^T}f^2e^{2s\varphi_2}\,dx\,dt+C\int_{t_0}^T\int_{\omega} u^2\,dx\,dt+\varepsilon J(v). \end{align*} This completes the proof. \end{proof} \section{The Lipschitz stability result} The object of this section is to recover a source term $f$ from the knowledge of $(a_1u_x)_x(T',\cdot)$ and some additional observations of the component $u$. The main result of this paper reads as follows. \begin{theorem} \label{invprob} Let $C_0>0$. Then, there exists $C=C(T,t_0,x_1,x_2,C_0)>0$ such that, for all $f \in S(C_0)$ and $u_0\in L^2(0,1)$, \begin{equation} \label{stability} \begin{aligned} \|f\|_{L^2(Q_{t_0}^T)}^2 &\leq C \Big( \|u\|_{L^2(\omega_{t_0}^T)}^2+\|u_t\|_{L^2(\omega_{t_0}^T)}^2+ \|u(T',\cdot)\|_{L^2(0,1)}^2\\ &\quad +\|(a_1u_x)_x(T',\cdot)\|_{L^2(0,1)}^2\Big), \end{aligned} \end{equation} where $\omega_{t_0}^T:= (t_0,T) \times \omega$. \end{theorem} \begin{proof} The functions $y=u_t$ and $z=v_t$, where $(u,v)$ is the solution of \eqref{system}, are solutions of the system \begin{gather*}%\label{sysyz} y_t-(a_1y_x)_x+b_{11}y+b_{12}z=f_t , \quad (t,x)\in Q,\\ z_t-(a_2z_x)_x+b_{22}z=0, \quad (t,x)\in Q,\\ y(t,0)=y(t,1)=z(t,0)=z(t,1)=0, \quad t \in (0,T). \end{gather*} When we apply Carleman estimate \eqref{Carineq2oneforce} to $(y,z)$, we obtain \begin{equation} \label{Carineq2oneforcet} \begin{aligned} I(y,z)&:=\int_{Q_{t_0}^T} \Big(s\theta a_1y_x^2+s^3 \theta^3 \frac{(x-x_1)^2}{a_1}y^2+s\theta^{3/2}|\eta \psi_1|y^2 +\frac{1}{s\theta}y_t^2\Big)e^{2s\varphi_1}\,dx\,dt\\ &\quad +\int_{Q_{t_0}^T} \Big(s\theta a_2z_x^2+s^3 \theta^3\frac{(x-x_2)^2}{a_2}z^2 +s\theta^{3/2}|\eta \psi_2|z^2+\frac{1}{s\theta}z_t^2\Big)e^{2s\varphi_2}\,dx\,dt\\ & \leq C\int_{Q_{t_0}^T}f_t^2e^{-2s\Phi_2(t,-x)}dx\,dt +C\int_{t_0}^T\int_{\omega}u_t^2dx\,dt\\ &:=I(f_t,y). \end{aligned} \end{equation} The terms appearing in \eqref{stability} are well defined, indeed, by Proposition \ref{estimsemigroup}, we have $y\in L^2\left(t_0,T;D(A_1)\right) \cap H^1\left(t_0,T;L^2(0,1)\right)$. As in \cite{BukhgeimKlibanov}, we divide the proof into three steps. \smallskip \noindent\textbf{Step 1.} We show first that there exists a constant $C>0$ such that \begin{equation}\label{step1} \begin{aligned} &I(f,u)+I(f_t,y)\\ &\leq C\left(\frac{1}{\sqrt{s}}\int_0^1f^2(T',x)e^{-2s\Phi_2(T',-x)}dx +\|u\|_{L^2(\omega_{t_0}^T)}^2+\|u_t\|_{L^2(\omega_{t_0}^T)}^2\right), \end{aligned} \end{equation} where, we recall, $T'= (T+t_0)/2$. To obtain \eqref{step1}, it remains to prove that $$ \int_{Q_{t_0}^T} (f^2+f_t^2) e^{-2s\Phi_2 (t,-x)}\,dx\,dt \leq \frac{C}{\sqrt{s}}\int_0^1f^2(T',x)e^{-2s\Phi_2(T',-x)}dx. $$ Since $\Phi_{1,t}(T')=0$ and $\Phi_{1,tt}(t)\geq \mu_0>0$, then Taylor's formula provides $$ -\Phi_2(t,-x)\leq-\Phi_2(T',-x)-\frac{\mu_0 }{2}(t-T')^2, $$ and then $$ \int_{t_0}^Te^{-2s\Phi_2(t,-x)}dt\leq \frac{1}{\sqrt{\mu_0s}} e^{-2s\Phi_2(T',-x)}\int_{-\infty}^\infty e^{-l^2} dl \leq \frac{C}{\sqrt{s}}e^{-2s\Phi_2(T',-x)}. $$ So, $$ \int_{Q_{t_0}^T}f^2(T',x)e^{-2s\Phi_2(t,-x)}dx\,dt \leq \frac{C}{\sqrt{s}}\int_0^1f^2(T',x)e^{-2s\Phi_2(T',-x)}dx. $$ For $f\in S(C_0)$, one has \begin{equation} \label{estimF} |f(t,x)| \leq |f(T',x)|+\int_{T'}^t|f_t(s,x)|ds \leq C|f(T',x)|. \end{equation} Thus \[ \int_{Q_{t_0}^T}(f^2+f_t^2)(t,x)e^{-2s\Phi_2(t,-x)}dx\,dt \leq \frac{C}{\sqrt{s}}\int_0^1f^2(T',x)e^{-2s\Phi_2(T',-x)}dx. \] The purpose of the first step is acomplished. \smallskip \noindent\textbf{Step 2.} Now, let us show that there exists a constant $C>0$ such that \begin{equation} \label{step2} \int_0^1(y(T',x)+b_{12}v(T',x))^2e^{2s\varphi_1(T',x)}dx\leq C(I(y,z)+I(u,v)). \end{equation} Since, for a.e. $x\in(0,1)$, $$ \lim_{t\to t_0} (y(t,x)+b_{12}v(t,x))^2e^{2s\varphi_1(t,x)}=0. $$ Hence \begin{equation} \label{step21} \begin{aligned} &\int_0^1(y(T',x)+b_{12}v(T',x))^2e^{2s\varphi_1(T',x)}dx\\ & = \int_0^1\int_{t_0}^{T'}\frac{\partial}{\partial t} \big((y+b_{12}v)^2e^{2s\varphi_1(t,x)}\big) \,dt\,dx \\ &= \int_{t_0}^{T'}\int_0^1(2(y+b_{12}v)(y_t+b_{12}z) +2s\varphi_{1,t}(y+b_{12}v)^2)e^{2s\varphi_1(t,x)}dx\,dt. \end{aligned} \end{equation} Using Young inequality, for $s$ large enough, we obtain \begin{equation} \label{step22} \begin{aligned} &|\int_{t_0}^{T'}\int_0^1 2(y+b_{12}v)(y_t+b_{12}z)e^{2s\varphi_1}dx\,dt|\\ &\leq C\int_{Q_{t_0}^T}\big(s\theta y^2+s\theta z^2+s\theta v^2 +\frac{1}{s\theta}y_t^2\big)e^{2s\varphi_1}dx\,dt \end{aligned} \end{equation} and, by the Hardy inequality, \begin{align*} &\int_{Q_{t_0}^T}s\theta y^2e^{2s\varphi_1}dx\,dt \\ &= s \Big|\int_{Q_{t_0}^T} \Big( \theta\frac{a_1^{1/3}}{|x-x_1|^{2/3}}y^2 e^{2s\varphi_1}\Big)^{3/4}\Big( \theta\frac{|x-x_1|^2}{a_1}y^2 e^{2s\varphi_1}\Big)^{1/4}\,dx\,dt\Big|\\ & \leq s \frac32 \int_{Q_{t_0}^T} \theta\frac{a_1^{1/3}}{|x-x_1|^{2/3}}y^2 e^{2s\varphi_1}\,dx\,dt + \frac{s}{2} \int_{Q_{t_0}^T} \theta\frac{|x-x_1|^2}{a_1}y^2e^{2s\varphi_1} \,dx\,dt. \end{align*} Moreover, by the Hardy-Poincar\'e inequality applied to $ye^{s\varphi_1}$, one has \begin{align*} \int_{Q_{t_0}^T}s\theta y^2e^{2s\varphi_1}dx\,dt &\leq C \int_{Q_{t_0}^T} \Big(s\theta a_1[y_x+2s\varphi_{1,x}y]^2 +s^3\theta^3\frac{(x-x_1)^2}{a_1}y^2\,\Big)e^{2s\varphi_1}dx\,dt\\ &\leq C \int_{Q_{t_0}^T} \Big(s\theta a_1y_x^2 +s^3\theta^3\frac{(x-x_1)^2}{a_1}y^2\,\Big)e^{2s\varphi_1}dx\,dt. \end{align*} Similarly, by $\varphi_1<\varphi_2$, we have \begin{equation} \label{step24} \begin{aligned} &\int_{Q_{t_0}^T}s\theta(z^2+v^2)e^{2s\varphi_1}dx\,dt\\ &\leq C \int_{Q_{t_0}^T} \Big(s\theta a_2(z_x^2+v_x^2)+s^3\theta^3 \frac{(x-x_2)^2}{a_2}(z^2+v^2)\,\Big)e^{2s\varphi_2}dx\,dt. \end{aligned} \end{equation} On the other hand, since $|\varphi_{1,t}|\leq C|\eta\psi_1|\theta^{3/2}$, we have \begin{equation} \label{step25} \begin{aligned} &\int_{t_0}^{T'}\int_0^1 s\varphi_{1,t}(y+b_{12}v)^2e^{2s\varphi}\\ &\leq C \int_{Q_{t_0}^T} s\theta^{3/2}|\eta \psi_1|y^2e^{2s\varphi_1} +s\theta^{3/2}|\eta \psi_2|v^2e^{2s\varphi_2}dx\,dt. \end{aligned} \end{equation} Thus, \eqref{step21}-\eqref{step25} yield the estimate \eqref{step2}. \smallskip \noindent\textbf{Step 3.} Combining \eqref{Carineq2oneforce}, \eqref{Carineq2oneforcet}, \eqref{step1} and \eqref{step2}, we deduce \begin{equation} \label{step31} \begin{aligned} &\int_0^1(y(T',x)+b_{12}v(T',x))^2e^{2s\varphi_1(T',x)}dx \\ & \leq C \Big(\frac{1}{\sqrt{s}}\int_0^1f^2(T',x)e^{-2s\Phi_2(T',-x)}dx +\|u\|_{L^2(\omega_{t_0}^T)}^2+\|u_t\|_{L^2(\omega_{t_0}^T)}^2\Big). \end{aligned} \end{equation} Since $y+b_{12}v$ satisfies \[ y(T',x)+b_{12}v(T',x)=(a_1u_x)_x(T',x)-b_{11}u(T',x)+f(T',x), \] it follows that \begin{equation} \label{step32} \begin{aligned} \int_0^1f^2(T',x)e^{2s\varphi_1(T',x)}dx &\leq C\Big(\int_0^1(y(T',x)+b_{12}v(T',x))^2e^{2s\varphi_1(T',x)}dx\\ &\quad + \|(a_1u_x)_x(T')\|_{L^2(0,1)}^2+ \|u(T')\|_{L^2(0,1)}^2\Big). \end{aligned} \end{equation} Hence, by \eqref{step31} and \eqref{step32} we obtain, for $s$ large enough, \begin{align*} \int_0^1f^2(T',x)dx &\leq C\Big( \|u\|_{L^2(\omega_{t_0}^T)}^2+\|u_t\|_{L^2(\omega_{t_0}^T)}^2+ \|u(T')\|_{L^2(0,1)}^2 \\ &\quad +\|(au_x)_x(T')\|_{L^2(0,1)}^2\Big), \end{align*} which, together with \eqref{estimF}, give the thesis. \end{proof} \section{Appendix} In this section, we show a Cacciopoli's inequality for inhomogenous degenerate parabolic equations. This inequality is different from the one shown in \cite{Fra2} for homogenous case. \begin{proposition} Let $\omega''\subset\omega'\Subset\omega\subset(0,1)$ and $x_0\notin \overline{\omega'}$. Let $s\geq s_0>0$, then there exists a positive constant $C=C(s_0,T,\inf_{\omega''}a(x),\|c\|_{L^\infty(Q)})$ such that every solution $u$ of \eqref{problem} satisfies \begin{equation} \label{cacciopoli} \int_{t_0}^T\int_{\omega''}u_x^2e^{2s\varphi}\,dx\,dt \leq C\int_{t_0}^T\int_{\omega'} (s^2\theta^2u^2+h^2)e^{2s\varphi}\,dx\,dt. \end{equation} \end{proposition} \begin{proof} Define a smooth cut-off function $\xi\in C^\infty([0,1])$ such that $\xi\equiv 1$ in $\omega''$ and $\operatorname{supp}(\xi)\subset \omega'$. Since $u$ solves \eqref{problem}, we have \begin{align*} 0&=\int_{t_0}^T\frac{d}{dt}\Big(\int_0^1\xi^2e^{2s\varphi}u^2\,dx\Big)\,dt=\int_{t_0}^T\int_0^1\Big(2s\xi^2\varphi_te^{2s\varphi}u^2+2\xi^2e^{2s\varphi}uu_t\Big)\,dx\,dt\\ & = \int_{t_0}^T\int_0^1[2s\xi^2\varphi_te^{2s\varphi}u^2+2\xi^2e^{2s\varphi}u((au_x)_x+h-cu)]\,dx\,dt\\ & = \int_{t_0}^T\int_0^1[2\xi^2(s\varphi_t-c)e^{2s\varphi}u^2+2\xi^2e^{2s\varphi}uh-2(\xi^2e^{2s\varphi})_xauu_x-2\xi^2e^{2s\varphi}au_x^2]\,dx\,dt\\ & = -2\int_{t_0}^T\int_{\omega'} \xi^2e^{2s\varphi}au_x^2\,dx\,dt\\ &\quad +2\int_{t_0}^T\int_{\omega'} [\xi^2(s\varphi_t-c)e^{2s\varphi}u^2+\xi^2e^{2s\varphi}uh-(\xi^2e^{2s\varphi})_xauu_x]\,dx\,dt. \end{align*} Then, integrating by parts and using the Young inequality, we obtain \begin{align*} &2\int_{t_0}^T\int_{\omega'} \xi^2e^{2s\varphi}au_x^2\,dx\,dt \\ & =2\int_{t_0}^T\int_{\omega'} [\xi^2(s\varphi_t-c)e^{2s\varphi}u^2 +\xi^2e^{2s\varphi}uh-(\xi^2e^{2s\varphi})_xauu_x]\,dx\,dt\\ & \leq\int_{t_0}^T\int_{\omega'} \Big[\Big(2\xi^2(s\varphi_t-c)e^{2s\varphi} +\xi^2e^{2s\varphi}+\Big(\sqrt{a}\frac{(\xi^2e^{2s\varphi})_x}{\xi e^{s\varphi}} \Big)^2\Big)u^2+\xi^2e^{2s\varphi}h^2\Big]\,dx\,dt\\ &\quad +\int_{t_0}^T\int_{\omega'} \Big(\sqrt{a}\xi e^{s\varphi}\Big)^2u_x^2\,dx\,dt. \end{align*} Hence, for $s$ large enough, \begin{align*} &\int_{t_0}^T\int_{\omega'} \xi^2e^{2s\varphi}au_x^2\,dx\,dt\\ &\leq \int_{t_0}^T\int_{\omega'} \Big[\Big(2\xi^2(s\varphi_t-c)e^{2s\varphi}+\xi^2e^{2s\varphi}+\Big(\sqrt{a}\frac{(\xi^2e^{2s\varphi})_x}{\xi e^{s\varphi}}\Big)^2\Big)u^2+\xi^2e^{2s\varphi}h^2\Big]\,dx\,dt\\ & \leq C\int_{t_0}^T\int_{\omega'} (s^2\theta^2u^2+h^2)e^{2s\varphi}\,dx\,dt. \end{align*} Since $x_0\notin \overline{\omega'}$, \begin{align*} \inf_{\omega''}a(x) \int_{t_0}^T\int_{\omega''} e^{2s\varphi}u_x^2\,dx\,dt &\leq \int_{t_0}^T\int_{\omega'} \xi^2e^{2s\varphi}au_x^2\,dx\,dt\\ &\leq C\int_{t_0}^T\int_{\omega'} (s^2\theta^2u^2+h^2)e^{2s\varphi}\,dx\,dt, \end{align*} and the proof is complete. \end{proof} \subsection*{Acknowledgments} Genni Fragnelli was partially supported by the GNAMPA, project Equazioni di evoluzione degeneri e singolari: controllo e applicazioni. \begin{thebibliography}{99} \bibitem{bahm} E. M. Ait Ben Hassi, F. Ammar Khodja, A. Hajjaj, L. Maniar; \emph{Null controllability of degenerate parabolic cascade systems}, Port. Math., \textbf{68}, (2011) 345-367. \bibitem{hajjaj} E. M. Ait Ben Hassi, F. Ammar Khodja, A. Hajjaj, L. Maniar; \emph{Carleman estimate and null controllability of degenerate parabolic systems}, Evol. Equ. Control Theory, \textbf{2}, (2013) 441-454. \bibitem{Ammar2} F. Ammar Khodja, A. Benabdellah, C. Dupaix; \emph{Null-controllability for some reaction-diffusion systems with one control force}, J. Math. Anal. Appl., \textbf{320}, (2006) 928-943. \bibitem{Ammar4} F. Ammar Khodja, A. Benabdallah, C. Dupaix, I. Kostin; \emph{Null-controllability of some systems of parabolic type by one control force}, ESAIM Control Optim. Calc. Var., \textbf{11}, (2005) 426-448. \bibitem{Ben} A. Benabdallah, M. Cristofol, P. Gaitan, M. Yamamoto; \emph{Inverse problem for a parabolic system with two components by measurements of one component}, Appl. Anal., \textbf{88}, (2009) 683-709. \bibitem{BCrGT} A. Benabdallah, M. Cristofol, P. Gaitan, L. De Teresa; \emph{A new Carleman inequality for parabolic systems with a single observation and applications}, C. R. Math. Acad. Sci. Paris, \textbf{348}, (2010) 25-29. \bibitem{Bou} I. Boutaayamou, A. Hajjaj, L. Maniar; \emph{Lipschitz stability for degenerate parabolic systems}, Electron. J. Differential Equations, \textbf{149}, (2014) 1-15. \bibitem{BukhgeimKlibanov} A. L. Bukhgeim, M. V. Klibanov; \emph{Uniqueness in the large of a class of multidimensional inverse problems}, Soviet Math. Dokl., \textbf{17}, (1981) 244-247. \bibitem{cmp} M. Campiti, G. Metafune, D. Pallara; \emph{Degenerate self-adjoint evolution equations on the unit interval}, Semigroup Forum, \textbf{57}, (1998) 1-36. \bibitem{Tort} P. Cannarsa, J. Tort, M. Yamamoto; \emph{Determination of source terms in a degenerate parabolic equation}, Inverse Problems, \textbf{26}, (2010) 105003 (20pp). \bibitem{CanTer} P. Cannarsa,L. De Teresa; \emph{Controllability of 1-d coupled degenerate parabolic equations}, Electron. J. Differential Equations, \textbf{73}, (2009) 1-21. \bibitem{Can1} P. Cannarsa, P. Martinez, J. Vancostenoble; \emph{Null controllability of degenerate heat equations}, Adv. Differential Equations, \textbf{10}, (2005) 153-190. \bibitem{Can2} P. Cannarsa, G. Fragnelli; \emph{Null controllability of semilinear degenerate parabolic equations in bounded domains}, Electron. J. Differential Equations, \textbf{136}, (2006) 1-20. \bibitem{Can3} P. Cannarsa, P. Martinez, J. Vancostenoble; \emph{Carleman estimates for a class of degenerate parabolic operators}, SIAM J. Control Optim., \textbf{47}, (2008) 1-19. \bibitem{CrGR} M. Cristofol, P. Gaitan, H. Ramoul; \emph{Inverse problems for a $2\times2$ reaction-diffusion system using a Carleman estimate with one observation}, Inverse Problems, \textbf{22}, (2006) 1561-1573. \bibitem{CrGRY} M. Cristofol, P. Gaitan, H. Ramoul, M. Yamamoto; \emph{Identification of two independent coefficients with one observation for a nonlinear parabolic system, Appl. Anal.}, \textbf{91}, (2012) 2073-2081. \bibitem{FG} E. Fern\'andez-Cara, S. Guerrero; \emph{Global Carleman inequalities for parabolic systems and applications to controllability}, SIAM J. Control Optim., \textbf{45}, (2006) 1399-1446. \bibitem{FGPY} E. Fern\'andez-Cara, M. Gonz\'alez-Burgos, S. Guerrero, J. P. Puel; \emph{Null controllability of the heat equation with boundary Fourier conditions : the linear case}, ESAIM Control Optim. Calc. Var., \textbf{12}, (2006) 442-465. \bibitem{Fra1} G. Fragnelli, G. R. Goldstein, J. A. Goldstein, S. Romanelli; \emph{Generators with interior degeneracy on spaces of $L^2$ type}, Electron. J. Differential Equations, \textbf{189}, (2012) 1-30. \bibitem{Fra2} G. Fragnelli, D. Mugnai; \emph{Carleman estimates and observability inequalities for parabolic equations with interior degeneracy}, Advances in Nonlinear Analysis \textbf{2}, (2013), 339--378. \bibitem{fm} G. Fragnelli, D. Mugnai; \emph{Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations}, Mem. Amer. Math. Soc., to appear. \bibitem{Fursikov} A. V. Fursikov, O. Y. Imanuvilov; \emph{Controllability of evolution equations}, (Lectures notes series) \textbf{34}, (1996), (Seoul: National University Research Center, Korea). \bibitem{Gu} S. Guerrero; \emph{Null controllability of some systems of two parabolic equations with one control force}, SIAM J. Control Optim., \textbf{46}, (2007) 379-394. \bibitem{Yam} O. Y. Imanuvilov, M. Yamamoto; \emph{Lipschitz stability in inverse parabolic problem by Carleman estimates}, Inverse Problems, \textbf{14}, (1998) 1229-1245. \bibitem{LR} G. Lebeau, L. Robbiano; \emph{Contr\^ole exact de l'\'equation de la chaleur}, Comm. Partial Differential Equations, \textbf{20}, (1995) 335-356. \bibitem{Liu} X. Liu, H. Gao, P. Lin; \emph{Null controllability of a cascade system of degenerate parabolic equations}, Acta Math. Sci. Ser. A Chin. Ed., \textbf{28}, (2008) 985-996. \bibitem{21} P. Martinez, J. Vancostenoble; \emph{Carleman estimates for one-dimensional degenerate heat equations}, J. Evol. Equ., \textbf{6}, (2006) 325-362. \bibitem{RqCr1} L. Roques, M. Cristofol; \emph{On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation}, Nonlinearity, \textbf{23}, (2010) 675-686. \bibitem{RqCr2} L. Roques, M. Cristofol; \emph{The inverse problem of determining several coefficients in a nonlinear Lotka-Volterra system}, Inverse Problems, \textbf{28}, (2012), Issue 7, Article number075007, doi: 10.1088/0266-5611/28/7/075007. \bibitem{Rus} D. L. Russell \emph{A unified boundary controllability theory for hyperbolic and parabolic partial differential equations}, Stud. Appl. Math., \textbf{52}, (1973) 189-221. \bibitem{Tort2} J. Tort, J. Vancostenoble; \emph{Determination of the insolation function in the nonlinear Sellers climate model}, Ann. Henri Poincar\'e, \textbf{29}, (2012) 638-713. \bibitem{Tort1} J. Tort; \emph{Determination of source terms in a degenerate parabolic equation from a locally distributed observation}, C. R. Math. Acad. Sci. Paris, \textbf{348}, (2010) 1287-1291. \bibitem{Tort3} J. Tort; \emph{An inverse diffusion problem in a degenerate parabolic equation}, Monografias, Real Academia de Ciencias de Zaragoza, \textbf{38}, (2012) 137-145. \end{thebibliography} \end{document}