\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 169, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{8mm}} \begin{document} \title[\hfilneg EJDE-2014/169\hfil Almost periodic solutions] {Almost periodic solutions of anisotropic elliptic-parabolic equations with variable exponents of nonlinearity} \author[M. Bokalo\hfil EJDE-2014/169\hfilneg] {Mykola Bokalo} % in alphabetical order \address{Mykola Bokalo \newline Department of Differential Equations\\ Ivan Franko National University of Lviv\\ Lviv, Ukraine} \email{mm.bokalo@gmail.com} \thanks{Submitted April 17, 2014. Published August 11, 2014.} \subjclass[2000]{35K10, 35K55, 35K92} \keywords{Fourier problem; problem without initial conditions; \hfill\break\indent degenerate implicit equations; elliptic-parabolic equation; periodic solution; \hfill\break\indent almost periodic solution; nonlinear evolution equation} \begin{abstract} We prove the well-posedness of Fourier problems for anisotropic elliptic-parabolic equations with variable exponents of nonlinearity without any restrictions at infinity. We obtain estimates of the weak solutions and conditions for the existence of periodic and almost periodic solutions. In addition, some properties of the weak solutions of the Fourier problem are considered. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction}\label{Sect0} We examine the question of well-posedness of the Fourier problem (the problem without initial conditions) for anisotropic second order elliptic-parabolic equations with variable exponents of nonlinearity. These equations are defined on unbounded cylindrical domains which are the Cartesian products of bounded space domains and the whole time axis. Also the existence conditions of periodic and almost periodic solutions are investigated. Moreover, we examine the conditions on input data that guarantee the specific behavior of the solutions at infinity. The Fourier problem for evolution equations are examined in many papers; see, e.g., \cite{Bokalo_Lorenzi, Bokalo90, Bokalo_Pauchok, Bokalo_Dmytryshyn, Bokalo_Dynam, Lions, Oleinik_Iosifjan, Pankov, Showalter80, Showalter97, Tikhonov_1}. A fairly good survey of results concerning these problems can be found in \cite{Bokalo_Lorenzi}. It is worth to mention that Fourier problem for linear and a plenty of nonlinear evolution equations are correct only under some restrictions on the growth of solutions and input data as the time variable converges to $-\infty$, in addition to boundary conditions \cite{Bokalo_Lorenzi,Lions,Oleinik_Iosifjan,Pankov,Showalter80,Showalter97, Tikhonov_1}. However, there are the nonlinear parabolic equations for which the Fourier problem are uniquely solvable with no conditions at infinity \cite{Bokalo90} -- \cite{Bokalo_Dynam}. This case for anisotropic elliptic-parabolic equations with variable exponents of nonlinearity is considered here. It is known that the problem to find time periodic and almost periodic solutions of evolution equations is close to Fourier problem for this equations \cite{Bokalo_Dmytryshyn,Bor,Hu,Levitan78,Maqbul,Pankov,Ward}. Note that the degenerated parabolic equations, in particular, including elliptic-parabolic are examined in \cite{Bokalo_Dmytryshyn,Bokalo_Dynam,Showalter97,Showalter69,Showalter77} and other. Differential equations with variable exponents of nonlinearity are considered in many papers. Solutions of this equations belong to the generalized Lebesgue and Sobolev spaces. More information on these spaces and its applications can be received from \cite{an-an-zyk-2009, Bokalo_Pauchok, fu-pan-2010, kov-rak, mash-buhr-2011, mih-rar-ter-2011, Ruzicka}. This article can be viewed as a natural continuation of the paper \cite{Bokalo_Dmytryshyn} for the case of equations with variable exponents of nonlinearity. It consists of three parts: in the first part the formulation of problem and main results are presented, the second part encloses the auxiliary statements while the proofs of main results are in the third part. \section{Setting of the problem and main results}\label{Sect1} Let $\Omega$ be a bounded domain in $\mathbb{R}^n$ with the piecewise smooth boundary $\partial \Omega$. Suppose that $\partial \Omega$ is divided into two subsets $\Gamma_0$ and $\Gamma_1$, where $\Gamma_0$ is closed. The cases $\Gamma_0=\emptyset$ and $\Gamma_0=\partial \Omega$ are also possible. We denote by $\nu=(\nu_1,\dots ,\nu_n)$ the unit outward pointing normal vector on $\partial \Omega$. Set $Q:=\Omega\times \mathbb{R}$, $\Sigma_0:=\Gamma_0\times \mathbb{R}$, $\Sigma_1:=\Gamma_1\times \mathbb{R}$, and $Q_{t_1,t_2}:=\Omega\times(t_1,t_2)$ for arbitrary real $t_1$ and $t_2$. Here and subsequently, we assume that $t_10 : \rho_{G,r}(v/\lambda)\leq 1}\} \] \cite[p. 599]{kov-rak}. If $\operatorname{ess\,inf}_{x\in \Omega}r(x)>1$, then the dual space $[L_{r(\cdot)}(G)]'$ can be identified with $L_{r'(\cdot)}(G)$, where $r'$ is the function defined by the equality $\frac{1}{r(x)}+\frac{1}{r'(x)}=1$ for almost each $x\in \Omega$. Let $G=\Omega\times S$, where $S$ is an unbounded interval in $\mathbb{R}$ or $S=\mathbb{R}$. We denote by $L_{r(\cdot),\rm loc}(\overline G)$ the space of measurable functions $g: G\to\mathbb{R}$ such that the restriction of $g$ on $Q_{t_1,t_2}$ belongs to $L_{r(\cdot)}(Q_{t_1,t_2})$ for each $t_1,t_2\in S$. This space is complete locally convex with respect to the family of seminorms $\big\{\|\cdot\|_{L_{r(\cdot)}(Q_{t_1,t_2})}\mid t_1,t_2\in S\big\}$. A sequence $\{g_m\}$ is said to be convergent strongly (resp., weakly) in $L_{r(\cdot),\rm loc}(\overline G)$ provided the sequences of restrictions $\{g_m|_{Q_{t_1,t_2}}\}$ are convergent strongly (resp., weakly) in $L_{r(\cdot)}(Q_{t_1,t_2})$ for all $t_1,t_2\in S$. Similarly we can define the space $L_{\infty,\rm loc}(\overline G)$. Let $B$ be a linear space with a norm or a seminorm $\|\cdot\|_B$. Let us denote by $C(S;B)$ the space of functions $v: S\to B$ such that the restriction of $v$ on any interval $[t_1,t_2]\subset S$ belongs to $C([t_1,t_2];B)$. The space $C(S;B)$ is complete locally convex with respect to the family of seminorms $\big\{\|v\|_{C([t_1,t_2];B)}:= \max_{t\in[t_1,t_2]}\|v(t)\|_{B}\,\big|\,t_1,t_2\in S\big\}$. Therefore a sequence $\{g_m\}$ converges in $C(S;B)$ provided the sequences of restrictions $\{g_m|_{[t_1,t_2]}\}$ converge in $C([t_1,t_2];B)$ for each $t_1,t_2\in S$. Let $p=(p_0,\ldots, p_n):\Omega\to \mathbb{R}^{1+n}$ be a vector-function satisfying the following condition: \begin{itemize} \item[(P)] the function $ p_j:\Omega \to \mathbb{R}$ are measurable for all $j=0,1,\ldots, n$, \begin{gather*} p_0^-:=\operatorname{ess\,inf} _{x\in \Omega}p_0(x)> 2, \quad p_i^-:=\operatorname{ess\,inf} _{x\in \Omega}p_i(x)\geq 2\quad\text{for } i=1,\dots, n,\\ p_j^+:=\operatorname{ess\,sup}_{x\in \Omega}p_j(x)<+\infty\quad\text{for } j=0,1,\dots,n. \end{gather*} \end{itemize} We also denote by $p':=({p_0}',\ldots, {p_n}')$ the vector-function whose components are given by the equalities $1/p_j(x)+1/{p_j}'(x)=1$ for almost each $x\in\Omega$. Let $W^1_{p(\cdot)}(\Omega)$ be the generalized Sobolev space consisting of the functions $v\in L_{p_0(\cdot)}(\Omega)$ such that $v_{x_i}\in L_{p_i(\cdot)}(\Omega)$ for all $i=1,\dots,n$. The space is equipped with the norm \[ \|v\|_{W^1_{p(\cdot)}(\Omega)} :=\|v\|_{L_{p_0(\cdot)}(\Omega)} +\sum_{i=1}^n\|v_{x_i}\|_{L_{p_i(\cdot)}(\Omega)}. \] We denote by $\widetilde{W}^1_{p(\cdot)}(\Omega)$ the closure of the set $\{v\in C^1(\overline\Omega) \;\; | \;\; v|_{\Gamma_0}=0\big\}$ in the space $W^1_{p(\cdot)}(\Omega)$. Next, for arbitrary $t_1,t_2\in\mathbb{R}$, we denote by $W^{1,0}_{p(\cdot)}(Q_{t_1,t_2})$ the set of functions $w\in L_{p_0(\cdot)}(Q_{t_1,t_2})$ such that $w_{x_i}\in L_{p_i(\cdot)}(Q_{t_1,t_2})$ for all $i=1,\dots,n$. We define the norm \[ \|w\|_{W^{1,0}_{p(\cdot)}(Q_{t_1,t_2})} :=\|w\|_{L_{p_0(\cdot)}(Q_{t_1,t_2})}+ \sum_{i=1}^n\|w_{x_i}\|_{L_{p_i(\cdot)}(Q_{t_1,t_2})}. \] We denote by $\widetilde{W}^{1,0}_{p(\cdot)}(Q_{t_1,t_2})$ the subspace of $W^{1,0}_{p(\cdot)}(Q_{t_1,t_2})$ consisting of functions $v$ such that $v(\cdot,t)\in \widetilde{W}^1_{p(\cdot)}(\Omega)$ for a. e. $t\in [t_1,t_2]$. Let $G=\Omega\times S$, where $S$ is either an unbounded $\mathbb{R}$ interval or the $\mathbb{R}$ axis. Let us denote by $\widetilde{W}^{1,0}_{p(\cdot),\rm loc}(\overline G)$ the linear space of measurable functions such that their restrictions on $Q_{t_1,t_2}$ belong to $\widetilde{W}^{1,0}_{p(\cdot)}(Q_{t_1,t_2})$ for all $t_1,t_2\in S$. This space is complete locally convex with respect to the family of seminorms $\big\{\|\cdot\|_{{W}^{1,0}_{p(\cdot)}(Q_{t_1,t_2})}\,\big|\, t_1,t_2\in \mathbb{R}\big\}$. The following assumption on the function $b$ will be needed throughout the paper. \begin{itemize} \item[(B)] $ b:\Omega \to \mathbb{R}$ is measurable and bounded, $b(x)\ge 0$ for a.e. $x\in \Omega$. \end{itemize} For each $x\in\Omega$ we define $\widetilde b(x)=b(x)$ if $b(x)>0$, and $\widetilde b(x)=1$ if $b(x)=0$. We denote by $\widetilde{H}^b (\Omega)$ the linear space of functions of the form $w=\widetilde b^{-1/2}v$, where $v\in L_2(\Omega)$. We introduce a seminorm on $\widetilde{H}^b (\Omega)$ by ${|\!|\!| w|\!|\!|}:=\|b^{1/2}w\|_{L_2(\Omega)}$. It is easy to check that $\widetilde{H}^b (\Omega)$ is the completion of $\widetilde{W}^1_{p(\cdot)}(\Omega)$ with respect to the seminorm $|\!|\!| \cdot |\!|\!|$ (see \cite[III.6, p. 141]{Showalter97}). Set $$\mathbb{V}_p:=\widetilde{W}^1_{p(\cdot)}(\Omega),\quad \mathbb{U}_{p,\rm loc}^{\,b}:= \widetilde{W}^{1,0}_{p(\cdot),\rm loc}(\overline Q) \cap C(\mathbb{R};\widetilde{H}^b (\Omega)). $$ The space $\mathbb{U}_{p,\rm loc}^{\,b}$ is a complete linear local convex space with respect to the family of seminorms \[ \big\{\|w\|_{W^{1,0}_{p(\cdot)}(Q_{t_1,t_2})} +\max_{t\in [t_1,t_2]} \|w(\cdot,t)\|_{L_2(\Omega)}\,\big|\, t_1,t_2\in \mathbb{R}\big\}. \] For an interval $I$ we consider the space $ C^1_0(I)$ of $C^1(I)$-functions of compact support. Let us denote by $\mathbb{A}$ the set of ordered {arrays} of functions $(a_0,a_1,\ldots,a_n)$ satisfying the condition \begin{itemize} \item[(A)] for each $j\in\{0,1,\ldots,n\}$ the function $a_{j}$ belongs to the space $L_{\infty,\rm loc}(\overline Q)$ and the following holds \begin{equation}\label{EJDEajk} a_j(x,t)\geq K_1\quad\textrm{for almost each}\quad (x,t)\in Q \end{equation} with some constant $K_1>0$ being dependent on $(a_0,a_1,\dots ,a_n)$. \end{itemize} \begin{definition}\label{def1}\rm Suppose that $b$, $p$ satisfy conditions (B), (P), respectively, $(a_0,a_1$, $\dots ,a_n)\in \mathbb A$, and $f\in L_{{p_0}'(\cdot),\rm loc}(\overline{Q})$. A function $u$ is called a weak solution of \eqref{EJDEp.4.2.5}, \eqref{EJDEp.4.2.6} provided $u\in \mathbb{U}_{p,\rm loc}^b$ and the following integral identity holds \begin{equation}\label{EJDEtotozh} \iint_Q \Bigl\{\sum_{i=1}^n \big(a_i|u_{x_i}|^{p_i(x)-2}u_{x_i} \psi_{x_i}+a_0|u|^{p_0(x)-2}u\psi\big)\varphi- bu\psi\varphi'\Bigr\}\,dx\,dt = \iint_Q f\psi \varphi\,dx\,dt \end{equation} for all $\psi\in \mathbb{V}_p$, $\varphi\in C^1_0(\mathbb{R})$. \end{definition} We say that the weak solution of \eqref{EJDEp.4.2.5}, \eqref{EJDEp.4.2.6} \textit{continuously depends on input data}, if for each sequence $\{f_k\}_{k=1}^\infty\subset L_{{p_0}'(\cdot),\rm loc}(\overline{Q})$ such that $f_k \to f$ as $k\to\infty$ in $L_{{p_0}'(\cdot),\rm loc}(\overline{Q})$ we have $u_k\to u$ as $k\to\infty$ in $\mathbb{U}_{p,{\rm loc}}^b$. Here $u_k$ and $u$ are weak solutions of \eqref{EJDEp.4.2.5}, \eqref{EJDEp.4.2.6} with the right-hand sides $f_{k}$ and $f$, respectively. \begin{theorem}\label{thm1} Suppose that $b$ and $p$ satisfy conditions {\rm (B)} and {\rm (P)}, respectively, $(a_0,a_1,\dots, a_n)\in \mathbb A$, and $f\in L_{{p_0}'(\cdot),\rm loc}(\overline{Q})$. Then there exists a unique weak solution of \eqref{EJDEp.4.2.5}, \eqref{EJDEp.4.2.6}, and it continuously depends on the input data. In addition, the estimate \begin{equation} \label{EJDEotsin_rozv} \begin{aligned} &\max_{t\in [t_0-R_0,t_0]}\int_{\Omega}b(x)|u(x,t)|^2\,dx + \int_{t_0-R_0}^{t_0}\int_{\Omega} \Bigr[\sum_{i=1}^n |u_{x_i}(x,t)|^{p_i(x)}+ |u(x,t)|^{p_{0}(x)}\Bigr]\,dx\,dt \\ &\leq C_1\Bigl\{R^{-2/(p_0^+-2)} + \int_{t_0-R}^{t_0} \int_{\Omega}|f(x,t)|^{{p_0}'(x)}\,dx\,dt \Bigr\} \end{aligned} \end{equation} holds for each $R$, $R_0$ such that $R\geq 1$, $00$, then the weak solution of \eqref{EJDEp.4.2.5}, \eqref{EJDEp.4.2.6} is also $\sigma$-periodic in time. \end{theorem} A set $X\subset \mathbb{R}$ is called {\it relatively dense}, if there exists a positive $l$ such that the interval $[a,a+l]$ contains at least one element of the set $X$ for any $a \in\mathbb{R}$, i.e. $X\cap[a,a+l]\ne \emptyset$. Let $B$ be a linear space with a norm or a seminorm $\|\cdot\|_B$. A function $v\in C(\mathbb{R};B)$ is {\it Borh almost periodic }, if for each $\varepsilon>0$ the set $ \{\sigma\mid \sup_{t\in \mathbb{R}}\Vert v(t+\sigma)- v(t)\Vert_{B}\leq\varepsilon\}$ is relatively dense. A function $f\in L_{p_0(\cdot),\rm loc}(\overline Q)$ is {\it Stepanov almost periodic} provided the set $\{\sigma\mid \sup_{\tau\in \mathbb{R}} \int^\tau_{\tau-1} \int_{\Omega}|f(x,t+\sigma)-f(x,t)|^{p_{0}(x)}\,dx\,dt\leq \varepsilon\}$ is relatively dense for each positive $\varepsilon$. We say that $w\in \widetilde W^{1,0}_{p(\cdot),\rm loc}(\overline Q)$ is {\it Stepanov almost periodic}, if for each $\varepsilon>0$ the set $\{\sigma:\sup_{\tau\in\mathbb{R}} \int^\tau_{\tau-1}\int_{\Omega} \bigr[\sum_{i=1}^n |w_{x_i}(x,t+\sigma)-w_{x_i}(x,t)|^{p_i(x)}$ $+|w(x,t+\sigma)-w(x,t)|^{p_{0}(x)}\bigr]\,dx\,dt \leq\varepsilon\}$ is relatively dense. We refer to \cite{Bor, Levitan78, Pankov} for the detailed information on the theory of almost periodic functions. \begin{theorem}\label{thm3} Let the hypotheses of Theorem \ref{thm1} hold. In addition, suppose that $a_0,\ldots,a_n$ are Borh almost periodic functions in $C(\mathbb{R};L_\infty(\Omega))$. Assume also that $f$ is Stepanov almost periodic in $L_{p_0(\cdot),\rm loc}(\overline Q)$. Moreover, the set \begin{align*} F_{\varepsilon} := \Big\{&\sigma: \sup_{\tau\in \mathbb{R}} \int^\tau_{\tau-1}\int_{\Omega}|f(x,t+\sigma)-f(x,t)|^{p_{0}'(x)}\,dx\,dt \leq\varepsilon,\\ &\max_{j\in\{0,\ldots,n\}}\sup_{t\in \mathbb{R}} \Vert a_j(\cdot,t+\sigma)-a_j(\cdot,t)\Vert_{L_\infty(\Omega)} \leq \varepsilon \Big\} \end{align*} is relatively dense for each $\varepsilon>0$. Then the (unique) weak solution of \eqref{EJDEp.4.2.5}, \eqref{EJDEp.4.2.6} is Borh almost periodic in $C(\mathbb{R};\widetilde{H}^b (\Omega))$ and Stepanov almost periodic in $\widetilde W^{1,0}_{p(\cdot),\rm loc}(\overline Q)$. \end{theorem} \section{Auxiliary statements}\label{sect2} We start with some auxiliary results, which will be used below. \begin{lemma}\label{lem1} Suppose that $b$, $p$ satisfy conditions {\rm (B), (P)}, respectively. Given $t_1, t_2\in \mathbb{R}$, we assume that a function $ w\in \widetilde W^{1,0}_{p(\cdot)}{(Q_{t_1,t_2})}$ satisfies the equality \begin{equation} \label{EJDEtotlemq} \int_{t_1}^{t_2}\int_{\Omega}\Bigl\{\Bigl(\sum_{i=1}^n g_i\psi_{x_i} + g_0\psi\Bigr)\varphi - bw\psi\varphi'\Bigr\}\,dx\,dt=0, \quad \psi\in \mathbb{V}_p, \;\varphi\in C^1_0(t_1,t_2), \end{equation} for some functions $g_j\in L_{{p_j}'(\cdot)}\big(Q_{t_1,t_2}\big)$ $(j=0,\ldots,n)$. Then $w\in C([t_1,t_2];\widetilde{H}^b (\Omega))$ and the equality \begin{equation}\label{EJDEozhlemq} \begin{aligned} &\theta(t)\int_{\Omega}b(x)|w(x,t)|^2\,dx \Big|_{t=\tau_1}^{t=\tau_2} - \int_{\tau_1}^{\tau_2} \int_{\Omega}b|w|^2\theta'\,dx\,dt \\ &+ 2\int_{\tau_1}^{\tau_2} \int_{\Omega} \Bigl(\sum_{i=1}^n g_iw_{x_i} + g_0w\Bigr)\theta\,dx\,dt =0 \end{aligned} \end{equation} holds for all $\tau_1,\tau_2\in[t_1,t_2]\, (\tau_1<\tau_2)$, $\theta\in C^1([t_1,t_2])$. \end{lemma} This statement can be proved similarly to \cite[Lemma 1]{Bokalo_Pauchok}. \begin{lemma}\label{lem2} Suppose that $b$ and $p$ satisfy conditions {\rm (B)} and {\rm (P)}, respectively. Given $t_1, t_2\in \mathbb{R}$ such that $t_2-t_1\geq 1$ and $a\in \mathbb{A}$, we suppose that functions $u_1$ and $u_2$ from $\widetilde{W}^{1,0}_{p(\cdot)}(Q_{t_1,t_2})\cap C([t_1,t_2];\widetilde{H}^b (\Omega))$ satisfy the equality \begin{equation} \label{EJDEtotozhl} \begin{aligned} &\int_{t_1}^{t_2}\int_{\Omega} \Bigl\{\Bigl(\sum_{i=1}^n a_i|u_{l,x_i}|^{p_i(x)-2}u_{l,x_i}\psi_{x_i} +a_0|u_l|^{p_0(x)-2}u_l\psi\Big)\varphi- bu_l\psi\varphi'\Bigr\}\,dx\,dt \\ &= \int_{t_1}^{t_2}\int_{\Omega} \Bigl(\sum_{i=1}^n f_{i,l}\psi_{x_i}+ f_{0,l}\psi\Bigr)\varphi\,dx\,dt,\quad \psi\in \mathbb{V}_p, \; \varphi\in C^1_0(t_1,t_2) \end{aligned} \end{equation} with the functions $f_{j,l}\in L_{{p_j}'(\cdot)}(Q_{t_1,t_2})$ ($j=0,\ldots,n; l=1,2$), respectively. Then the inequality \begin{equation} \label{rizn_rozv} \begin{aligned} &\max_{t\in [t_0-R_0,t_0]} \int_\Omega b(x)|u_1(x,t)-u_2(x,t)|^2\,dx \\ &\quad + \int_{t_0-R_0}^{t_0}\int_{\Omega} \Big(\sum_{i=1}^n |u_{1,x_i}-u_{2,x_i}|^{p_i(x)}+ |u_1-u_2|^{p_0(x)}\Big)\,dx\,dt \\ &\leq C_{4}\Big\{ R^{-2/(p_0^+-2)} + \int_{t_0-R}^{t_0}\int_{\Omega} \sum_{j=0}^n |f_{j,1}(x,t)-f_{j,2}(x,t)|^{{p_j}'(x)}\,dx\,dt\Big\} \end{aligned} \end{equation} holds for each $R$, $R_0$ and $t_0$ such that $R\geq 1$, $00$ is a constant depending only on $K_1$ and $p_j^+\,(j=0,\ldots,n)$. Further we need the inequality \begin{equation}\label{EJDEYunga_ab} a\,c\leq\varepsilon |a|^{q}+\,{\varepsilon^{-1/(q-1)}}\,|c|^{\,q'},\quad a,c\in \mathbb{R},\; q>1,\; 1/q+1/q'=1,\; \varepsilon>0, \end{equation} which is a corollary from standard Young's inequality: $a\,c\leq {|a|^{q}}/{q}+{|c|^{q'}}/{q'}$. Putting (for almost each $x\in \Omega$) $q=p_0(x)/2$, $q'=p_0(x)/(p_0(x)-2)$, $a=|u_{12}|^{2}\eta^{s/q}$, $c=b\eta^{s/q'-1}$, $\varepsilon=\varepsilon_1>0$, under \eqref{EJDEYunga_ab} we obtain \begin{equation} \label{EJDEeq21} \begin{aligned} &\int_{t_0-R}^{\tau}\int_\Omega b|u_{12}|^{2}\eta^{s-1}dx\,dt\\ &\leq \varepsilon_1 \int_{t_0-R}^{\tau}\int_\Omega |u_{12}|^{p_0(x)}\eta^s\,dx\,dt + \varepsilon_1^{-2/(p_0^--2)} \\ &\quad\times \Big(\operatorname{ess\,sup}_{x\in\Omega} |b(x)|^{p_0(x)/(p_0(x)-2)}\Big) \int_{t_0-R}^{\tau}\int_\Omega \eta^{s-p_0(x)/(p_0(x)-2)}\,dx\,dt, \end{aligned} \end{equation} where $\varepsilon_1\in (0,1)$ is an arbitrary number. Again using inequality \eqref{EJDEYunga_ab}, we obtain \begin{equation} \label{EJDEeq22} \begin{aligned} &\int_{t_0-R}^{\tau}\int_\Omega \Big(\sum_{i=1}^{n}f_{i,12}(u_{12})_{x_i}+ f_{0,12}u_{12}\Big)\eta^sdx\,dt \\ &\leq \varepsilon_{2} \int_{t_0-R}^{\tau}\int_\Omega \Big(\sum_{i=1}^{n}|(u_{12})_{x_i}|^{p_i(x)}+ |u_{12}|^{p_0(x)}\Big)\eta^s\,dx\,dt \\ &\quad+ \int_{t_0-R}^{\tau}\int_\Omega \Big(\sum_{j=0}^{n} \varepsilon_{2}^{-1/(p_j^--1)}|f_{j,12}|^{{p_j}'(x)}\Big) \eta^sdx\,dt, \end{aligned} \end{equation} where $\varepsilon_{2}\in (0,1)$ is an arbitrary number. From \eqref{EJDEeq19z} using \eqref{EJDEeq20}, \eqref{EJDEeq21}, \eqref{EJDEeq22}, if $\varepsilon_1$ and $\varepsilon_2$ are sufficiently small, we obtain \begin{equation} \label{EJDE19} \begin{aligned} &\eta^s(\tau)\int_{\Omega_R}b(x)|u_{12}(x,\tau)|^2\,dx+ \int_{t_0-R}^{\tau}\int_\Omega \Big\{\sum_{i=1}^{n}|(u_{12})_{x_{i}}|^{p_i(x)}+ |u_{12}|^{p_0(x)}\Big\}\eta^s\,dx\,dt \\ &\leq C_{6}\Big[ \int_{t_0-R}^{\tau}\int_\Omega \eta^{s-p_0(x)/(p_0(x)-2)}\,dx\,dt + \int_{t_0-R}^{\tau}\int_\Omega \Big(\sum_{j=0}^{n}|f_{j,12}|^{{p_j}'(x)}\Big)\eta^s\,dx\,dt\Big], \end{aligned} \end{equation} where $C_{6}$ is a positive constant depending only on $K_1$ and $p_j^{\pm}\,(j=0,\ldots,n)$. Note that $ 0\leq \eta(t)\leq R$, if $t\in[t_0-R,t_0]$, and $\eta(t)\geq R-R_0$, if $t\in [t_0-R_0,t_0]$, where $R_0\in(0,R)$ is an arbitrary number. Using this and that $R\geq\max\{1;2R_0\}$ (then, in particular, we have $R/(R-R_0)=1+R_0/(R-R_0)\leq2$), from \eqref{EJDE19} we obtain the required statement. \end{proof} \section{Proof of the main results}\label{sect3} \begin{proof}[Proof of Theorem \ref{thm1}] First we prove that there exists at most one weak solution of problem \eqref{EJDEp.4.2.5}, \eqref{EJDEp.4.2.6}. Assume the contrary. Let $u_1,\,u_2$ be (distinct) weak solutions of this problem. Using Lemma \ref{lem2} we obtain \begin{equation}\label{EJDEyed} \int_{t_0-R_0}^{t_0} \int_\Omega |u_1-u_2|^{p_0(x)}\,dx\,dt \leq C_{4}R^{-2/(p_0^+-2)}, \end{equation} where $R,\, R_0,\,t_0$ are arbitrary numbers such that $R\geq 1$, $00$, $t_0\in \mathbb{R}$, and take the limit when $R\to +\infty$ in \eqref{EJDEyed}. As a result we receive that $u_1=u_2$ almost everywhere on $Q_{t_0-R_0,t_0}$. Since $R_0$ and $t_0$ are arbitrary numbers, we obtain $u_1=u_2$ almost everywhere on $Q$. The obtained contradiction proves our statement. Now we are turn to the proof of the existence of a weak solution of problem \eqref{EJDEp.4.2.5}, \eqref{EJDEp.4.2.6}. For each $m\in \mathbb{N}$ we consider an initial-boundary value problem for equation \eqref{EJDEp.4.2.5} in the domain $Q_m=\Omega \times (-m,+\infty)$ with a homogeneous initial condition and boundary conditions \eqref{EJDEp.4.2.6}, namely: we are searching a function $u_m\in \widetilde{W}^{1,0}_{p(\cdot),loc}(\overline{Q_m})\cap C([-m,+\infty);\widetilde{H}^b (\Omega))$ which satisfies the initial condition: $b^{1/2}u_m|_{t=-m}=0$ and the integral equality \begin{equation} \label{eq18} \begin{aligned} &\iint_{Q_m} \Big\{\big( \sum_{i=1}^n a_i|u_{m,x_i}|^{p_i(x)-2} u_{m,x_i} \psi_{x_i} + a_0|u_m|^{p_0(x)-2}u_m\psi\big)\varphi -bu_m\psi\varphi' \Big\}\, dx\,dt \\ &= \iint_{Q_m} f_m\psi\varphi\,dx\,dt \end{aligned} \end{equation} for each $\psi \in\mathbb{V}_p$, $\varphi \in C_0^1(-m,+\infty)$, where $f_m(x,t):=f(x,t)$ if $(x,t) \in Q_m$, and $f_m(x,t):=0$ if $(x,t) \in Q \setminus Q_m$. The existence and uniqueness of the function $u_m$ follows from a well-known fact (see, for example, \cite{fu-pan-2010}). We extend $u_m$ on $Q$ by zero and this extension is denoted by $u_m$ again. Further we prove that the sequence $\{ u_m \}$ converges in $\mathbb{U}_{p,\rm loc}^b$ to a weak solution of problem \eqref{EJDEp.4.2.5}, \eqref{EJDEp.4.2.6}. Indeed, note that for each $m\in \mathbb{N}$ the fuction $u_m$ is a weak solution of the problem which differs from problem \eqref{EJDEp.4.2.5}, \eqref{EJDEp.4.2.6} in $f_m$ instead of $f$. Using Lemma \ref{lem2} for each natural numbers $m$ and $k$ we have \begin{equation} \label{eq19} \begin{aligned} &\max_{t\in [t_0,t_0-R_0]}\int_{\Omega}b(x)|u_m(x,t) - u_k(x,t)|^2 dx \\ &+\int_{t_0-R_0}^{t_0}\int_{\Omega}\Big[ \sum_{i=1}^n |u_{m,x_i}-u_{k,x_i}|^{p_i(x)} + |u_m - u_k|^{p_0(x)} \Big]\,dx\,dt \\ &\leq C_4\Big\{ R^{-2/(p_0^+-2)}+ \int_{t_0-R}^{t_0}\int_{\Omega} |f_m-f_k|^{p_0(x)} \,dx\,dt \Big\}, \end{aligned} \end{equation} where $R,R_0,t_0$ are arbitrary numbers such that $t_0\in R,\ R\geq 1,\ 00$ be an arbitrary small number. We choose $R\geq \max\{1,2R_0\}$ to be big enough such that the following inequality holds \begin{equation}\label{eq20} C_4 R^{-2/(p_0^+-2)}<\varepsilon. \end{equation} This is possible as $p_0^+-2>0$. Under \eqref{eq20} for arbitrary $m,k\in\mathbb{N}$ such that $\max\{ -m,-k \}\leq t_0 -R$ (then $f_m=f_k$ almost everywhere on $\Omega\times (t_0-R,t_0)$) the right side of inequality \eqref{eq19} is less than $\varepsilon$. From this it follows that the restriction of the terms of the sequence $\{u_m\}$ on $Q_{t_0-R_0,t_0}$ is a Cauchy sequence in $\widetilde{W}^{1,0}_{p(\cdot)}(Q_{t_0-R_0,t_0})\cap C([t_0-R_0,t_0];\widetilde{H}^b (\Omega))$. Therefore, since $t_0$ and $R_0$ are arbitrary, it follows that there exists a function $u\in \mathbb{U}_{p,\rm loc}^b$ such that $u_m\to u$ in $\mathbb{U}_{p,\rm loc}^b$. Assuming that in \eqref{eq18} the integration on $Q_m$ can be replaced by integration on $Q$, we take the limit of this equality for $m\to \infty$. As a result we obtain \eqref{EJDEtotozh} for all $\psi \in\mathbb{V}_p$ and $\varphi \in C_0^1(\mathbb{R})$. It means that the function $u$ is a weak solution of problem \eqref{EJDEp.4.2.5}, \eqref{EJDEp.4.2.6}. Estimate \eqref{EJDEotsin_rozv} directly follows from Lemma \ref{lem2} putting $u_1=u$, $u_2=0$, $f_{0,1}=f$, $f_{i,1}=0$ $(i=1,\ldots,n)$, $f_{j,2}=0$ $(j=0,\ldots,n)$. Continuous dependence of a weak solution of problem \eqref{EJDEp.4.2.5}, \eqref{EJDEp.4.2.6} on input data is easily proved using Lemma \ref{lem2} with $u_k$ and $f_k$ instead of $u_1$ and $f_{0,1}$ respectively, and also $u$ and $f$ instead of $u_2$ and $f_{0,2}$ respectively, putting $f_{i,1}=f_{i,2}=0\, (i=1,\ldots,n)$. \end{proof} The Proofs of Corollaries \ref{coro1}--\ref{coro3} follow from estimate \eqref{EJDEotsin_rozv}. \begin{proof}[Proof of Theorem \ref{thm2}] Let $u$ denote a weak solution of problem \eqref{EJDEp.4.2.5}, \eqref{EJDEp.4.2.6}. Put $u^{(\mu)}(x,t):=u(x,t+\mu)$, $f^{(\mu)}(x,t):=f(x,t+\mu)$, $a_j^{(\mu)}(x,t):=a_j(x,t+\mu)$, $(x,t) \in Q$, where $\mu \in \mathbb{R}$. Replace variable $t$ by $t+\mu$ ($\mu \in \mathbb{R}$ is arbitrary at present) in \eqref{EJDEtotozh}. As a result we obtain an identity which we will write in the form \begin{equation} \label{eq21} \begin{aligned} &\iint_Q\Big\{ \big( \sum_{i=1}^n a_i^{(0)} |u_{x_i}^{(\mu)}|^{p_i(x)-2} u_{x_i}^{(\mu)}\psi_{x_i} + a_0^{(0)} |u^{(\mu)}|^{p_0(x)-2} u^{(\mu)}\psi \big)\varphi \\ &\quad - bu^{(\mu)}\psi\varphi' \Big\}\,dx\,dt \\ &=\iint_Q \Big( \sum_{i=1}^n (a_i^{(0)}-a_i^{(\mu)}) |u_{x_i}^{(\mu)}|^{p_i(x)-2} u_{x_i}^{(\mu)}\psi_{x_i} \\ &\quad +(a_0^{(0)}-a_0^{(\mu)}) |u^{(\mu)}|^{p_0(x)-2} u^{(\mu)}\psi \Big) \varphi \,dx\,dt +\iint_Q f^{(\mu)}\psi\varphi\,dx\,dt \end{aligned} \end{equation} for all $\psi \in\mathbb{V}_p, \ \varphi \in C_0^1(\mathbb{R})$. From this, putting $\mu=\sigma$ and using periodicity of the functions $a_j\,(j=0,\ldots,n)$ and $f$, we obtain that the function $u^{(\sigma)}$ is a weak solution of problem \eqref{EJDEp.4.2.5}, \eqref{EJDEp.4.2.6}. Taking this into consideration and the fact of uniqueness of a weak solution of the problem \eqref{EJDEp.4.2.5}, \eqref{EJDEp.4.2.6}, we get $u^{(0)}=u^{(\sigma)}$ almost everywhere on $Q$. Therefore the statement of Theorem \ref{thm2} is proved. \end{proof} \begin{proof}[Proof of Theorem \ref{thm3}] Similarly as in the proof of Theorem \ref{thm2} we arrive to equality \eqref{eq21}. Let $\delta_*:=\min \{ 1;K_1/2\}$ and $ \sigma \in F_{\delta_*}$, where $F_\varepsilon$ is defined in the formulation of given theorem. We consider the identity \eqref{eq21} at first for $\mu =0$ and afterwards for $\mu=\sigma$. Then using Lemma \ref{lem2} with $u_1 = u^{(0)}$, $u_2 = u^{(\sigma)}$, $a_j = a_j^{(0)}$ $(j=0,\ldots,n)$, $f_{0,1} = f^{(0)}$, $f_{0,2}=(a_0^{(0)} - a_0^{(\sigma)}) | u^{(\sigma)} | ^{p_0(x)-2} u^{(\sigma)} + f^{(\sigma)}$, $f_{i,1} = 0 $, $f_{i,2}=(a_i^{(0)} - a_i^{(\sigma)}) | u_{x_i}^{(\sigma)} | ^{p_i(x)-2} u_{x_i}^{(\sigma)}$, $(i=1,\ldots,n)$, $t_0 =\tau \in \mathbb{R}$, $ R_0=1$, $R=l \in \mathbb{N}$ $(l\geq 2)$, we obtain \begin{equation} \label{eq22} \begin{aligned} &\max_{t\in [\tau-1,\tau]}\int_{\Omega}b(x)|u^{(\sigma)}(x,t) - u^{(0)}(x,t)|^2 dx\\ & + \int_{\tau-1}^{\tau}\int_{\Omega} \Big[ \sum_{i=1}^n |u_{x_i}^{(\sigma)}-u_{x_i}^{(0)}|^{p_i(x)} + |u^{(\sigma)} - u^{(0)}|^{p_0(x)} \Big]\,dx\,dt\\ &\leq C_4 \Big(l^{-2/(p_0^+-2)} + \int_{\tau-l}^{\tau}\int_{\Omega} \Big\{ \big(|f^{(\sigma)}-f^{(0)}| +|a_0^{(\sigma)}-a_0^{(0)}| |u^{(\sigma)}|^{p_0(x)-1}\big)^{{p_0}'(x)}\\ &\quad + \sum_{i=1}^n | a_i^{(\sigma)}-a_i^{(0)} |^{{p_i}'(x)}\cdot |u_{x_i}^{(\sigma)}|^{p_i(x)}\Big\}\,dx\,dt\Big). \end{aligned} \end{equation} From the inequality $ (a+c)^{q}\leq 2^{q-1}(a^{q}+c^{q})$, $a\geq 0$, $c\geq 0$, $q\geq 1$, we have \begin{equation} \label{eq23} \begin{aligned} &\int_{\tau-l}^{\tau}\int_{\Omega} \big(|f^{(\sigma)}-f^{(0)}|+ |a_0^{(\sigma)}-a_0^{(0)}| |u^{(\sigma)}|^{p_0(x)-1}\big)^{{p_0}'(x)}\,dx\,dt \\ &\leq 2^{1/(p_0^- -1)}\int_{\tau-l}^{\tau}\int_{\Omega}\big(|f^{(\sigma)}-f^{(0)}|^{{p_0}'(x)} +|a_0^{(\sigma)}-a_0^{(0)}|^{{p_0}'(x)} |u^{(\sigma)}|^{p_0(x)}\big)\,dx\,dt \\ &\leq 2^{1/(p_0^- -1)}\int_{\tau-l}^{\tau}\int_{\Omega} |f^{(\sigma)}-f^{(0)}|^{{p_0}'(x)}\,dx\,dt \\ &\quad +\Big(\sup_{t\in \mathbb{R}}\, \|a_0^{(\sigma)}(\cdot,t) - a_0^{(0)}(\cdot,t)\|_{L_\infty(\Omega)} \Big)^{(p_0^+)'} \int_{\tau-l}^{\tau}\int_{\Omega} |u^{(\sigma)}|^{p_0(x)}\,dx\,dt, \end{aligned} \end{equation} \begin{equation} \label{eq24} \begin{aligned} &\int_{\tau-l}^{\tau} \int_{\Omega}\Big( \sum_{i=1}^n |a_i^{(\sigma)}-a_i^{(0)}|^{{p_i}'(x)}\cdot |u_{x_i}^{(\sigma)}|^{p_i(x)} \Big)\,dx\,dt \\ &\leq \max _{i\in \{ 1,\dots ,n \}} \Big(\sup_{t\in \mathbb{R}}\, \|a_i^{(\sigma)}(\cdot,t) - a_i^{(0)}(\cdot,t)\|_{L_\infty(\Omega)} \Big)^{(p_i^+)'} \int_{\tau-l}^{\tau}\int_{\Omega} \sum_{i=n}^n |u^{(\sigma)}_{x_i}|^{p_i(x)}\,dx\,dt, \end{aligned} \end{equation} where $(p^{+}_j)':= p^{+}_j/(p^{+}_j -1)$ $(j=0,\ldots,n) $. Since $\sigma\in F_{\delta_*}$ and $f$ is Stepanov almost periodic, it follows that $a^{(\sigma)}(x,t)\geq K_1/2$ $(j=0,\ldots,n)$ for a. e. $(x,t) \in Q$ and $\sup_{s\in \mathbb{R}} \int_{s-1}^{s}\int_{\Omega} |f^{(\sigma)}(x,t)|^{p_0(x)}\,dx\,dt\leq C_6$, where $C_6>0$ is a constant independent on $\sigma$. From this under Corollary \ref{coro2} we have \begin{equation}\label{eq25} \sup_{s\in \mathbb{R}} \int_{s-1}^{s}\int_{\Omega} \Big[ |u^{(\sigma)}|^{p_0(x)} + \sum_{i=1}^{n}|u^{(\sigma)}_{x_i}|^{p_i(x)} \Big]\,dx\,dt \leq C_7, \end{equation} where $C_7>0$ is a constant independent of $\sigma$. Thus, from \eqref{eq22} using \eqref{eq23} and \eqref{eq24}, we obtain \begin{equation} \label{eq26} \begin{aligned} &\int_{\Omega}b(x)|u^{(\sigma)}(x,\tau) - u^{(0)}(x,\tau)|^2 dx \\ &+ \int_{\tau-1}^{\tau}\int_{\Omega}\Big[ \sum_{i=1}^n |u_{x_i}^{(\sigma)}- u_{x_i}^{(0)}|^{p_i(x)} + |u^{(\sigma)} - u^{(0)}|^{p_0(x)} \Big]\,dx\,dt \\ &\leq C_8 \Big\{ l^{-2/(p_0^+-2)} + \sum_{k=1}^l \int_{\tau-k}^{\tau-k+1}\int_{\Omega} |f^{(\sigma)} - f^{(0)}|^{{p_0}'(x)}\,dx\,dt \\ &\quad + \max_{j\in \{ 0,\dots,n \}} \Big( \sup_{t\in \mathbb{R}} || a_j^{(\sigma)} (\cdot,t) - a_j^{(0)} (\cdot,t) ||_{L_{\infty}(\Omega)} \Big)^{(p_j^+)'} \sum_{k=1}^l \int_{\tau-k}^{\tau-k+1} \int_{\Omega}\Big[ |u^{(\sigma)}|^{p_0(x)} \\ &\quad +\sum_{i=1}^n |u_{x_i}^{(\sigma)}|^{p_i(x)} \Big]\,dx\,dt \Big\}, \end{aligned} \end{equation} where $C_8$ is a constant independent of $\tau,\sigma$ and $l$. Let $\varepsilon>0$ be an arbitrary small fixed number. We show that the set \begin{align*} U_{\varepsilon}:= \Big\{& \sigma\in \mathbb{R}: \sup_{t\in \mathbb{R}} \int_{\Omega} b(x)|u(x,t+\sigma) - u(x,t)|^2\,dx \leq \varepsilon, \\ &\sup_{\tau\in\mathbb{R}} \int_{\tau-1}^{\tau}\int_{\Omega} \Big[ \sum_{i=1}^n |u_{x_i}(x,t+\sigma) - u_{x_i}(x,t)|^{p_i(x)} \\ &+ |u(x,t+\sigma) - u(x,t)|^{p_0(x)}| \Big]\,dx\,dt\leq\varepsilon \Big\} \end{align*} contains a set $F_{\delta}$ for some $ \delta \in (0,\delta_*]$ implying the relative density of the set $U_{\varepsilon}$. Indeed, choose big enough $l\in \mathbb{N} \,(l\geq 2)$ satisfying the inequality \begin{equation}\label{eq27} C_8 l^{-2/(p_0^+-2)} \leq \varepsilon/2, \end{equation} and fix this value $l$. Then take $\delta \in (0,\delta_*]$ such that the following inequality remains true \begin{equation}\label{eq28} C_8\Big(\delta+\max_{j\in \{ 0,\dots,n \}}\delta^{(p_j^+)'}C_7 \Big)l \leq \varepsilon/2. \end{equation} Therefore, if $\delta \in F_{\delta}$, then the right side of the inequality \eqref{eq26} is less than or equal to $\varepsilon$. This implies that $F_{\delta}\subset U_{\varepsilon}$, that is the fact we had to prove. \end{proof} \begin{thebibliography}{00} \bibitem{an-an-zyk-2009} Y. Alkhutov, S. Antontsev, V. Zhikov; Parabolic equations with variable order of nonlinearity, \emph{Collection of works of Institute of Mathematics NAS of Ukraine}, \textbf{6}~(2009), 3-50. \bibitem{Bokalo_Lorenzi} Mykola Bokalo and Alfredo Lorenzi; Linear evolution first-order problems without initial conditions, \emph{Milan Journal of Mathematics}, Vol. \textbf{77}~(2009), 437-494. \bibitem{Bokalo90} N. M. Bokalo; Problem without initial conditions for classes of nonlinear parabolic equations, \emph{J. Sov. Math.}, \textbf{51}~(1990), No.~3, 2291-2322. \bibitem{Bokalo_Pauchok} M. M. Bokalo, I. B. Pauchok; On the well-posedness of the Fourier problem for higher-order nonlinear parabolic equations with variable exponents of nonlinearity, \emph{Mat. Stud.}, \textbf{26}~(2006), No. 1, 25-48. \bibitem{Bokalo_Dmytryshyn} Mykola Bokalo, Yuriy Dmytryshyn; Problems without initial conditions for degenerate implicit evolution equations, \emph{Electronic Journal of Differential Equations}, Vol. \textbf{2008}~(2008), No.~4, 1-16. \bibitem{Bokalo_Dynam} Mykola Bokalo; Dynamical problems without initial conditions for elliptic-parabolic equations in spatial unbounded domains, \emph{Electronic Journal of Differential Equations}, Vol. \textbf{2010}~(2010), No.~178, 1-24. \bibitem{Bernis} F. Bernis; Elliptic and parabolic semilinear problems without conditions at infinity, \emph{Arnh. Ration. Mech. and Anal.}, Vol.\textbf{106}~(1989), No.~3, 217-241. \bibitem{Bor} G. Borh; \emph{Almost periodic functions}, M.: 1934. \bibitem{fu-pan-2010} Y. Fu, N. Pan; Existence of solutions for nonlinear parabolic problem with $p(x)$-growth, \emph{Journal of Mathematical Analysis and Applications}, \textbf{362}~(2010), 313-326. \bibitem{Hu} Z. Hu; Boundeness and Stepanov's almost periodicity of solutions, \emph{Electronic Journal of Differential Equations}, Vol.~\textbf{2005}~(2005), No.~35, 1-7. \bibitem{kov-rak} O. Kov\'a\u{c}ik, J. R\'akosn\'ic; On spaces $L^{p(x)}$ and $W^{k,\,p(x)}$, \emph{Czechoslovak Mathematical Journal}, Vol.~\textbf{41}~(1991), No. 116, 592-618. \bibitem{Levitan78} B. M. Levitan , V.~V.~Zhikov; \emph{Almost periodic functions and differential equations}, Cambrige University Press, 1982. \bibitem{Lions} J. L. Lions; \emph{Quelques m\'{e}thodes de r\'{e}solution des probl\`{e}mes aux limites non lin\'{e}aires}, Paris, Dunod, 1969. \bibitem{Maqbul} Md. Maqbul; Almost periodic solutions of neutral functional differential equations with Stepanov-almost periodic terms, \emph{Electronic Journal of Differential Equations}, Vol.~\textbf{2011} (2011), No.~72, 1-9. \bibitem{mash-buhr-2011} R. A. Mashiyev, O. M. Buhrii; Existence of solutions of the parabolic variational inequality with variable exponent of nonlinearity, \emph{Journal of Mathematical Analysis and Applications}, \textbf{377}~(2011), 450-463. \bibitem{mih-rar-ter-2011} M. Mihailescu, V. Radulescu, S. Tersian; Homoclinic solutions of difference equations with variable exponents, \emph{Topological Methods in Nonlinear Analysis}, \textbf{38}~(2011), 277-289. \bibitem{Oleinik_Iosifjan} O. A. Oleinik, G. A. Iosifjan; Analog of Saint-Venant's principle and uniqueness of solutions of the boundary problems in unbounded domain for parabolic equations, \emph{Usp. Mat. Nauk.}, \textbf{31}~(1976), No.~6, 142-166. \bibitem{Pankov} A. A. Pankov; \emph{Bounded and almost periodic solutions of nonlinear operator differential equations}, Kluwer, Dordrecht, 1990. \bibitem{Ruzicka} M. R\.{u}\v{z}i\v{c}ka; \emph{Electrorheological fluids: modeling and mathematical theory}, Lecture Notes in Mathematics, 1748 (Springer-Verlag, Berlin, 2000). \bibitem{Showalter80} R. E. Showalter; Singular nonlinear evolution equations, \emph{Rocky Mountain J. Math.}, \textbf{10}~(1980), No.~3, 499-507. \bibitem{Showalter97} R. E. Showalter; \emph{Monotone operators in Banach space and nonlinear partial differential equations}, Amer. Math. Soc., Vol.~49, Providence, 1997. \bibitem{Showalter69} R. E. Showalter; Partial differential equations of Sobolev-Galpern type, \emph{Pacific J. Math.}, \textbf{31}~(1969), 787--793. \bibitem{Showalter77} R. E. Showalter; \emph{Hilbert space methods for partial differential equations}, Monographs and Studies in Mathematics, Vol. 1, Pitman, London, 1977. \bibitem{Tikhonov_1} A. N. Tihonov; Uniqueness theorems for the heat equation, \emph{Matem. Sbornik}, (1935), No. 2, 199-216. \bibitem{Ward} J. R. Ward, Jr.; Bounded and almost periodic solutions of semi-linear parabolic equations, \emph{Rocky Mountain J. Math.}, \textbf{18}~(1988). \end{thebibliography} \end{document}