\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 17, pp. 1--22.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/17\hfil Existence of multiple solutions] {Existence of multiple solutions for quasilinear elliptic equations in $\mathbb{R}^N$} \author[H. Yin, Z. Yang \hfil EJDE-2014/17\hfilneg] {Honghui Yin, Zuodong Yang} % in alphabetical order \address{Honghui Yin \newline Institute of Mathematics, School of Mathematical Sciences \\ Nanjing Normal University, Jiangsu Nanjing 210023, China.\newline School of Mathematical Sciences\\ Huaiyin Normal University, Jiangsu Huaian 223001, China} \email{yinhh771109@163.com} \address{Zuodong Yang \newline Institute of Mathematics, School of Mathematical Sciences \\ Nanjing Normal University, Jiangsu Nanjing 210023, China.\newline School of Teacher Education\\ Nanjing Normal University, Jiangsu Nanjing 210097, China} \email{zdyang\_jin@263.net} \thanks{Submitted August 4, 2013. Published January 10, 2014.} \subjclass[2000]{35J62, 35J50, 35J92} \keywords{Nehari manifold; quasilinear; positive solution; (PS)-sequence} \begin{abstract} In this article, we establish the multiplicity of positive weak solution for the quasilinear elliptic equation \begin{gather*} -\Delta_p u+\lambda|u|^{p-2}u=f(x) |u|^{s-2 }u+h(x)|u|^{r-2}u\quad x\in \mathbb{R}^N,\\ u>0\quad x\in \mathbb{R}^N,\\ u\in W^{1,p}(\mathbb{R}^N) \end{gather*} We show how the shape of the graph of $f$ affects the number of positive solutions. Our results extend the corresponding results in \cite{w1}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} %\newtheorem{corollary}[theorem]{Corollary} %\newtheorem{definition}[theorem]{Definition} %\newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article we consider the existence of solutions for the nonlinear quasilinear problem \begin{equation} \begin{gathered} -\Delta_p u+\lambda|u|^{p-2}u=f(x) |u|^{s-2 }u+h(x)|u|^{r-2}u\quad x\in \mathbb{R}^N,\\ u>0\quad x\in \mathbb{R}^N\\ u\in W^{1,p}(\mathbb{R}^N) \end{gathered} \label{El} \end{equation} where $1\leq r0$ is a parameter, $h\in L^{\frac{p}{p-r}}(\mathbb{R}^N)\backslash\{0\}$ is nonnegative. For the function $f$, we assume the following conditions: \begin{itemize} \item[(C1)] $f\in C(\mathbb{R}^N)$ and is nonnegative in $\mathbb{R}^N$; \item[(C2)] $f^\infty=\lim_{|x|\to\infty}f(x)>0$; \item[(C3)] There exist some points $x^1,x^2,\dots,x^k$ in $\mathbb{R}^N$ such that $f(x^i)$ are some strict maxima and satisfy $$ f^\infty0\quad x\in \mathbb{R}^N,\\ u\in H^1(\mathbb{R}^N). \end{gathered} \label{e1.1} \end{equation} It is known that the existence of positive solutions of \eqref{e1.1} is affected by the shape of the graph of $f(x)$. This has been the focus of a great deal of research by several authors \cite{b1,b2,c1,l3}. Specially, if $f$ is a positive constant, then \eqref{e1.1} has a unique positive solution \cite{k1} Adachi and Tanaka \cite{a1} showed that there exist at least four positive solutions of the equation \begin{equation} \begin{gathered} -\Delta u+\lambda u=f(x) |u|^{s-2 }u+h(x)\quad x\in \mathbb{R}^N,\\ u>0\quad x\in \mathbb{R}^N,\\ u\in H^1(\mathbb{R}^N) \end{gathered} \label{e1.2} \end{equation} under the assumptions $00\quad x\in \mathbb{R}^N,\\ u\in H^1(\mathbb{R}^N) \end{gathered} \label{e1.3} \end{equation} where $f(x,u)$ and $h(x)$ satisfy some suitable conditions. They showed the existence of at least two positive solutions when $\|h\|_{H^{-1}}$ is sufficiently small, see \cite{a2,c2,j1}. Wu \cite{w1} considered the problem \eqref{El} with $p=2$, under some suitable assumptions on $f(x),h(x)$. The author obtained the existence of multiple positive solution by variational methods. Several publications \cite{b3,b4,c3,y1} show results about the quasilinear elliptic equation \begin{equation} \begin{gathered} -\Delta_p u+\lambda |u|^{p-2}u=f(x,u)\quad x\in \Omega,\\ u\in W_0^{1,p}(\Omega),\;u\neq0 \end{gathered} \label{e1.4} \end{equation} where $10$ such that for all $\lambda>\lambda_0$, Equation \eqref{El} has at least $k+1$ positive solutions. \end{theorem} The rest of this article is organized as follows. In Section 2, we give some preliminaries and some properties of Nehri manifold. In Section 3, we prove the main result, Theorem \ref{thm1.1}. \section{Preliminaries} Throughout the paper, $C,c$ will denote various positive constants, their values may vary from place to anther. By the change of variables $\eta=\lambda^{-1/p}$, $v(x)=\eta^{p/(s-p)}u(\eta x)$, Equation \eqref{El} can be transformed into \begin{equation} \begin{gathered} -\Delta_p v+|v|^{p-2}v=f_\eta|v|^{s-2 } v+\eta^{\frac{p(s-r)}{s-p}}h_\eta|v|^{r-2}v\quad x\in \mathbb{R}^N,\\ v>0\quad x\in \mathbb{R}^N,\\ v\in W^{1,p}(\mathbb{R}^N) \end{gathered} \label{Ee} \end{equation} where $f_\eta=f(\eta x),h_\eta=h(\eta x)$. For $u\in W^{1,p}(\mathbb{R}^N)$, $c\in R$, $a\in C(\mathbb{R}^N)$ nonnegative and bounded, and $b\in L^{\frac{p}{p-r}}(\mathbb{R}^N)$ non-negative, we define \begin{gather*} I_{a,b}(u)=\frac{1}{p}\|u\|^p-\frac{1}{s}\int_{\mathbb{R}^N}a |u|^{s}dx-\eta^{\frac{p(s-r)}{s-p}}\frac{1}{r}\int_{\mathbb{R}^N}b |u|^{r}dx; \\ M_{a,b}(c)=\{u\in W^{1,p}(\mathbb{R}^N)\backslash\{0\}|\langle I'_{a,b}(u),u\rangle=c\}; \\ \alpha_{a,b}(c)=\inf\{I_{a,b}(u)|u\in M_{a,b}(c)\}, \end{gather*} where $\|u\|=(\int_\Omega|\nabla u|^p+|u|^pdx)^{1/p}$ is a standard norm in $W^{1,p}(\mathbb{R}^N)$ and $I_{a,b}'$ denote the Fr\'{e}chet derivative of $I_{a,b}$. We shall write $M_{a,b}(0),\alpha_{a,b}(0)$ as $M_{a,b},\alpha_{a,b}$ respectively. Then, we have the following results. \begin{lemma} \label{lem2.1} Suppose $a$ is a continuous bounded and nonnegative function on $\mathbb{R}^N$, then $\alpha_{a,0}(c)=\frac{c}{p}$ for $c>0$ and $$ \alpha_{a,0}\leq \alpha_{a,0}(c)+\alpha_{a,0}(-c) -\frac{s-p}{sp}|c|\quad \text{for all }c\in\mathbb{R}. $$ \end{lemma} \begin{proof} The case $p=2$ was proved by Cao-Noussair \cite[Lemma 2.2]{c1}. By a modification of the method given in \cite{c1}, we obtain our result. For the readers convenience, we give a sketch here. For any $c>0$, let $u\in M_{a,0}(c)$. Then $$ \|u\|^p=\int_{\mathbb{R}^N}a|u|^sdx+c\geq c. $$ Thus \[ I_{a,0}(u)=\frac{1}{p}\|u\|^p-\frac{1}{s}\int_{{\bf R^N}}a|u|^sdx =(\frac{1}{p}-\frac{1}{s})\|u\|^p+\frac{c}{s} \\ \geq \frac{c}{p}. \] To show that the equality holds, choose $v\in W^{1,p}{(\mathbb{R}^N})$ with $\int_{{\mathbb{R}^N}}|\nabla v|^pdx=c$, for any $\sigma>0$, define $$ u_\sigma(x)=\sigma^{\frac{N-p}{p}}v(\sigma x),\quad w_\sigma(x)=(1+\theta)u_\sigma $$ where $\theta>0$ being selected so that $w_\sigma\in M_{a,0}(c)$. It is easy to see that \begin{gather*} \int_{{\mathbb{R}^N}}|\nabla u_\sigma|^pdx=c, \\ \int_{{\mathbb{R}^N}}|u_\sigma|^qdx =\sigma^{\frac{(N-p)q}{p}-N}\int_{{\mathbb{R}^N}}|v|^qdx\to0 \quad\text{as }\sigma\to\infty \end{gather*} for $q0$ and $u\in M_{a,0}(-c)$. Then $$ \|u\|^p=\int_{{\mathbb{R}^N}}a|u|^sdx-c<\int_{{\mathbb{R}^N}}a|u|^sdx. $$ It is easy to see that there exist unique $t\in(0,1)$ such that $v=tu\in M_{a,0}$. Then we have \begin{align*} I_{a,0}(v) &=(\frac{1}{p}-\frac{1}{s})\|v\|^p \\ &=(\frac{1}{p}-\frac{1}{s})t^p\|u\|^p \\ &<(\frac{1}{p}-\frac{1}{s})\|u\|^p+\frac{c}{s}-\frac{c}{s} \\ &= I_{a,0}(u)+\frac{c}{p}+(\frac{1}{s}-\frac{1}{p})c \\ &\leq I_{a,0}(u)+\alpha_{a,0}(c)-\frac{s-p}{sp}c. \end{align*} The required inequality then follows by taking the infimum over $M_{a,0}(-c)$. \end{proof} Define $$ \psi(u)=\langle I'_{f_\eta,h_\eta}(u),u\rangle=\|u\|^p-\int_{\mathbb{R}^N}f_\eta |u|^{s}dx-\eta^{\frac{p(s-r)}{s-p}}\int_{\mathbb{R}^N}h_\eta |u|^{r}dx. $$ Then for $u\in M_{f_\eta,h_\eta}$, we have \begin{align*} \langle\psi'(u),u\rangle &= p\|u\|^p-s\int_{\mathbb{R}^N}f_\eta |u|^{s}dx-r\eta^{\frac{p(s-r)}{s-p}}\int_{\mathbb{R}^N}h_\eta |u|^{r}dx \\ &= (p-r)\|u\|^p-(s-r)\int_{\mathbb{R}^N}f_\eta |u|^{s}dx. \end{align*} Using the same methods as \cite{t1}, we split $ M_{f_\eta,h_\eta}$ into three parts: \begin{align*} M^+_{f_\eta,h_\eta} =\{u\in M_{f_\eta,h_\eta}|(p-r)\|u\|^p-(s-r)\int_{\mathbb{R}^N}f_\eta |u|^{s}dx>0\}; \\ M^0_{f_\eta,h_\eta} = \{u\in M_{f_\eta,h_\eta}|(p-r)\|u\|^p-(s-r)\int_{\mathbb{R}^N}f_\eta |u|^{s}dx=0\}; \\ M^-_{f_\eta,h_\eta} =\{u\in M_{f_\eta,h_\eta}|(p-r)\|u\|^p-(s-r)\int_{\mathbb{R}^N}f_\eta |u|^{s}dx<0\}. \end{align*} Then we have the following result. \begin{lemma} \label{lem2.2} There exists $\eta_1>0$ such that for all $\eta\in(0,\eta_1)$, we have $M^0_{f_\eta,h_\eta}={\emptyset}$. \end{lemma} \begin{proof} Assume the contrary, that is $M^0_{f_\eta,h_\eta}\neq{\emptyset}$ for all $\eta>0$. Then for $u\in M^0_{f_\eta,h_\eta}$, we have \begin{gather} \|u\|^p=\frac{s-r}{p-r}\int_{\mathbb{R}^N}f_\eta |u|^{s}dx\label{e2.1} \\ \eta^{\frac{p(s-r)}{s-p}}\int_{\mathbb{R}^N}h_\eta |u|^{r}dx=\|u\|^p-\int_{\mathbb{R}^N}f_\eta |u|^{s}dx=\frac{s-p}{p-r}\int_{\mathbb{R}^N}f_\eta |u|^{s}dx.\label{e2.2} \end{gather} Moreover, \begin{align*} \frac{s-p}{s-r}\|u\|^p &= \|u\|^p-\int_{\mathbb{R}^N}f_\eta |u|^{s}dx\leq\eta^{\frac{p(s-r)}{s-p}}\|h_\eta\|_{L^{\frac{p}{p-r}}}\|u\|^r \\ &= \eta^\beta\|h\|_{L^{\frac{p}{p-r}}}\|u\|^r, \end{align*} where $\beta=\frac{p(s-r)}{s-p}-\frac{p-r}{p}N$. Also we have \begin{equation} \|u\|\leq[\frac{s-r}{s-p}\eta^\beta\|h\|_{L^{\frac{p}{p-r}}}]^{\frac{1}{p-r}}. \label{e2.3} \end{equation} Let $K:M_{f_\eta,h_\eta}\to R$ be given by $$ K(u)=c(s,r)(\frac{\|u\|^{p\frac{s-1}{p-1}}}{\int_{\mathbb{R}^N}f_\eta |u|^{s}dx})^{\frac{p-1}{s-p}}-\eta^{\frac{p(s-r)}{s-p}} \int_{\mathbb{R}^N}h_\eta |u|^{r}dx, $$ where $c(s,r)=(\frac{s-r}{p-r})^{\frac{1-s}{s-p}}\frac{s-p}{p-r}$. Then $K(u)=0$ for all $\eta>0$ and $u\in M^0_{f_\eta,h_\eta}$. From \eqref{e2.1} and \eqref{e2.2}, it follows that for $u\in M^0_{f_\eta,h_\eta}$, and \begin{equation} K(u)=c(s,r)[\frac{(\frac{s-r}{p-r}\int_{\mathbb{R}^N}f_\eta |u|^{s}dx)^{\frac{s-1}{p-1}}}{\int_{\mathbb{R}^N}f_\eta |u|^{s}dx}]^{\frac{p-1}{s-p}}-\frac{s-p}{p-r} \int_{\mathbb{R}^N}f_\eta |u|^{s}dx=0.\label{e2.4} \end{equation} However, by \eqref{e2.3}, the H\"{o}lder and Sobolev inequalities and $$ (\frac{\|u\|^{s}}{\int_{\mathbb{R}^N}f_{\rm max} |u|^{s}dx})^{\frac{p-1}{s-p}}>(\frac{S^s}{f_{\rm max}})^{\frac{p-1}{s-p}}\quad \text{for all } u\in M_{f_\eta,h_\eta}, $$ where $S=\inf_{u\in W^{1,p}{(\mathbb{R}^N})\backslash \{0\}} \frac{\|u\|}{\|u\|_{L^s}}$ is the best Sobolev constant. Also we have \begin{align*} K(u)&\geq c(s,r)(\frac{\|u\|^{p\frac{s-1}{p-1}}}{\int_{\mathbb{R}^N}f_\eta |u|^{s}dx})^{\frac{p-1}{s-p}}-\eta^\beta\|h\|_{L^{\frac{p}{p-r}}}\|u\|^r \\ &\geq \|u\|^r[c(s,r)(\frac{S^s}{f_{\rm max}})^{\frac{p-1}{s-p}}\|u\|^{1-r} -\eta^\beta\|h\|_{L^{\frac{p}{p-r}}}] \\ &\geq \|u\|^r[c(s,r)(\frac{S^s}{f_{\rm max}})^{\frac{p-1}{s-p}} (\eta^\beta\frac{s-r}{s-p}\|h\|_{L^{\frac{p}{p-r}}})^{\frac{1-r}{p-r}} -\eta^\beta\|h\|_{L^{\frac{p}{p-r}}}] \end{align*} for all $u\in M^0_{f_\eta,h_\eta}$, where $\beta=\frac{p(s-r)}{s-p}-\frac{p-r}{p}N>0$ (see Lemma \ref{lemA}). Since $\frac{1-r}{p-r}\leq0$, there exists $\eta_1>0$ such that for each $\eta\in(0,\eta_1)$ and $u\in M^0_{f_\eta,h_\eta}$, we have $K(u)>0$, this contradicts to \eqref{e2.4}. We can conclude that $ M^0_{f_\eta,h_\eta}={\emptyset}$ for all $\eta\in(0,\eta_1)$. \end{proof} By Lemma \ref{lem2.2} for $\eta\in(0,\eta_1)$ we write $M_{f_\eta,h_\eta}=M^+_{f_\eta,h_\eta}\cup M^-_{f_\eta,h_\eta}$ and define $$ \alpha^+_{f_\eta,h_\eta}=\inf_{u\in M^+_{f_\eta,h_\eta}}I_{f_\eta,h_\eta},\quad \alpha^-_{f_\eta,h_\eta}=\inf_{u\in M^-_{f_\eta,h_\eta}}I_{f_\eta,h_\eta}. $$ The following Lemma shows that the minimizers on $M_{f_\eta,h_\eta}$ are ``usually'' critical points for $I_{f_\eta,h_\eta}$. \begin{lemma} \label{lem2.3} For $\eta\in(0,\eta_1)$, if $u_0$ is a local minimizer for $I_{f_\eta,h_\eta}$ on $M_{f_\eta,h_\eta}$, then $I'_{f_\eta,h_\eta}(u_0)=0$ in $W^{-1}(\mathbb{R}^N)$, where $W^{-1}(\mathbb{R}^N)$ is the dual space of $W^{1,p}(\mathbb{R}^N)$. \end{lemma} \begin{proof} If $u_0$ is a local minimizer for $I_{f_\eta,h_\eta}$ on $M_{f_\eta,h_\eta}$, then $u_0$ is a solution of the optimization problem $$ \text{minimize $I_{f_\eta,h_\eta}(u)$ subject to $\psi(u)=0$}. $$ Hence, by the theory of Lagrange multipliers, there exists $\theta\in \mathbb{R}$ such that $$ I'_{f_\eta,h_\eta}(u_0)=\theta\psi'(u_0)\quad\text{in }W^{-1}(\mathbb{R}^N). $$ This implies $$ \langle I'_{f_\eta,h_\eta}(u_0),u_0\rangle=\theta\langle \psi'(u_0),u_0\rangle. $$ Since $u_0\in M_{f_\eta,h_\eta}$ and by Lemma \ref{lem2.2}, $M^0_{f_\eta,h_\eta}=\emptyset$ when $\eta\in(0,\eta_1)$, we have $$ \langle I'_{f_\eta,h_\eta}(u_0),u_0\rangle=0\;\text{and}\;\langle \psi'(u_0),u_0\rangle\neq0. $$ So we obtain $\theta=0$. This completes the proof. \end{proof} For each $u\in W^{1,p}(\mathbb{R}^N)\backslash\{0\}$, we define $$ t_{\rm max}=(\frac{p-r}{s-r}\frac{\|u\|^{p}}{\int_{\mathbb{R}^N}f_\eta |u|^{s}dx})^{\frac{1}{s-p}}>0. $$ Then we have the following Lemma. \begin{lemma} \label{lem2.4} There exists $\eta_2>0$ such that for each $u\in W^{1,p}(\mathbb{R}^N)\backslash\{0\}$ and $\eta\in(0,\eta_2)$, we have (i) there is a unique $t^-=t^-(u)>t_{\rm max}>0$ such that $t^-u\in M^-_{f_\eta,h_\eta}$ and $I_{f_\eta,h_\eta}(t^-u)=\max_{t\geq t_{\max}}I_{f_\eta,h_\eta}(tu)$; (ii) if $\int_{\mathbb{R}^N}h_\eta |u|^{r}dx>0$, then there is a unique $00$, $$ 0\leq\eta^{\frac{p(s-r)}{s-p}}\int_{\mathbb{R}^N}h_\eta |u|^{r}dx\leq\eta^\beta\|h\|_{L^{\frac{p}{p-r}}}\|u\|^r $$ and $\beta>0$, there exists $\eta_2>0$, such that for any $\eta\in(0,\eta_2)$, we have $$ m(t_{\rm max})>\eta^{\frac{p(s-r)}{s-p}}\int_{{R}^N}h_\eta |u|^{r}dx. $$ Case (a): $\int_{{R}^N}h_\eta |u|^{r}dx=0$. Then there is unique $t^->t_{\max}$ such that $m(t^-)=0$ and $m'(t^-)<0$. Now \[ \langle\psi'(t^-u),t^-u\rangle = (p-r)\|t^-u\|^p-(s-r)\int_{\mathbb{R}^N}f_\eta |t^-u|^{s}dx = (t^-)^{r+1}m'(t^-)<0 \] and \begin{align*} \langle I'_{f_\eta,h_\eta}(t^-u),t^-u\rangle &= \|t^-u\|^p-\int_{\mathbb{R}^N}f_\eta |t^-u|^{s}dx-\eta^{\frac{p(s-r)}{s-p}}\int_{\mathbb{R}^N}h_\eta |t^-u|^{r}dx \\ &= (t^-)^r[(t^-)^{p-r}\|u\|^p-(t^-)^{s-r}\int_{\mathbb{R}^N}f_\eta |u|^{s}dx] \\ &= (t^-)^rm(t^-)=0 . \end{align*} Thus, $t^-u\in M^-_{f_\eta,h_\eta}$. Moreover, we have $$ \frac{d}{dt}I_{f_\eta,h_\eta}(tu)=0,\quad \frac{d^2}{dt^2}I_{f_\eta,h_\eta}(tu)<0,\quad \text{for }t=t^-. $$ Then we have $I_{f_\eta,h_\eta}(t^-u)=\max_{t\geq t_{\max}}I_{f_\eta,h_\eta}(tu)$. Case (b): $\int_{\mathbb{R}^N}h_\eta |u|^{r}dx>0$. There are unique $t^+$ and $t^-$ such that $00>m'(t^-)$. Similar to the argument in Case a, we have $t^\pm u\in M^\pm_{f_\eta,h_\eta}$, and $I_{f_\eta,h_\eta}(t^-u)\geq I_{f_\eta,h_\eta}(tu)\geq I_{f_\eta,h_\eta}(t^+u)$ for each $t\in[t^+,t^-]$, and $I_{f_\eta,h_\eta}(tu)\geq I_{f_\eta,h_\eta}(t^+u)$ for each $t\in[0,t^+]$. (ii) By case (b) it follows part (i) \end{proof} To establish the existence of a local minimum for $I_{f_\eta,h_\eta}$ on $M_{f_\eta,h_\eta}$, we need the following results. \begin{lemma} \label{lem2.5} (i) For each $u\in M^+_{f_\eta,h_\eta}$, we have $\int_{\mathbb{R}^N}h_\eta |u|^{r}dx>0$ and $I_{f_\eta,h_\eta}(u)<0$. In particular $\alpha_{f_\eta,h_\eta}\leq\alpha^+_{f_\eta,h_\eta}<0$. (ii) $I_{f_\eta,h_\eta}$ is coercive and bounded below on $M_{f_\eta,h_\eta}$ for all $\eta\in (0,(\frac{s-p}{s-r})^{\frac{1}{\beta}})$. Moreover, $\alpha_{f_\eta,h_\eta}\to0$ as $\eta\to0$. \end{lemma} \begin{proof} (i) For each $u\in M^+_{f_\eta,h_\eta}$, we have \begin{gather*} (p-r)\|u\|^p-(s-r)\int_{\mathbb{R}^N}f_\eta |u|^{s}dx>0, \\ \|u\|^p=\int_{\mathbb{R}^N}f_\eta |u|^{s}dx+\eta^{\frac{p(s-r)}{s-p}}\int_{\mathbb{R}^N}h_\eta |u|^{r}dx. \end{gather*} By (C1), we have $$ \eta^{\frac{p(s-r)}{s-p}}\int_{\mathbb{R}^N}h_\eta |u|^{r}dx =\|u\|^p-\int_{\mathbb{R}^N}f_\eta |u|^{s}dx>\frac{s-p}{p-r}\int_{\mathbb{R}^N}f_\eta |u|^{s}dx\geq0 $$ and \begin{align*} I_{f_\eta,h_\eta}(u) &= (\frac{1}{p}-\frac{1}{s})\int_{\mathbb{R}^N}f_\eta |u|^{s}dx+(\frac{1}{p}-\frac{1}{r})\eta^{\frac{p(s-r)}{s-p}}\int_{\mathbb{R}^N}h_\eta |u|^{r}dx \\ &< (\frac{1}{p}-\frac{1}{s})\int_{\mathbb{R}^N}f_\eta |u|^{s}dx+(\frac{1}{p}-\frac{1}{r})\frac{s-p}{p-r}\int_{\mathbb{R}^N}f_\eta |u|^{s}dx \\ &= (s-p)(\frac{1}{ps}-\frac{1}{pr})\int_{\mathbb{R}^N}f_\eta |u|^{s}dx\leq0 \end{align*} (ii) For each $u\in M_{f_\eta,h_\eta}$, we have $\|u\|^p=\int_{\mathbb{R}^N}f_\eta |u|^{s}dx+\eta^{\frac{p(s-r)}{s-p}}\int_{\mathbb{R}^N}h_\eta |u|^{r}dx$. Then by the H\"{o}lder and Young inequalities, \begin{align*} I_{f_\eta,h_\eta}(u) &\geq \frac{s-p}{ps}\|u\|^p-\frac{s-r}{rs}\eta^\beta \|h\|_{L^{\frac{p}{p-r}}}\|u\|^r \\ &\geq (\frac{s-p}{ps}-\frac{s-r}{ps}\eta^\beta)\|u\|^p- \eta^{\beta}\frac{(p-r)(s-r)}{prs}\|h\|^{\frac{p}{p-r}}_{L^{\frac{p}{p-r}}}. \end{align*} Thus, $I_{f_\eta,h_\eta}$ is coercive and bounded below on $M_{f_\eta,h_\eta}$ for all $\eta\in (0,(\frac{s-p}{s-r})^{\frac{1}{\beta}})$ and $\alpha_{f_\eta,h_\eta}\to0$ as $\eta\to0$, where $\beta=\frac{p(s-r)}{s-p}-\frac{p-r}{p}N>0$ as above. \end{proof} \section{Proofs of main results} Now, we use the graph of the coefficient $f$ to find some Palais-Smale sequences which are used to prove Theorem \ref{thm1.1}. For $a>0$, let $C_a(x^i)$ denote the hypercube $\Pi^N_{j=1}(x_j^i-a,x_j^i+a)$ centered at $x^i=(x_1^i,x_2^i,\dots,x_N^i)$ for $i=1,2,\dots,k$. Let $\overline{C_a(x^i)}$ and $\partial C_a(x^i)$ denote the closure and the boundary of $C_a(x^i)$ respectively. By the conditions (C1) and (C3), we can choose numbers $K,l>0$ such that $C_l(x^i)$ are disjoint, $f(x)\frac{2K}{\eta},\\ t & -\frac{2K}{\eta}\leq t\leq\frac{2K}{\eta},\\ -\frac{2K}{\eta}& t<-\frac{2K}{\eta}. \end{cases} \\ g_\eta^j(u)=\frac{\int_{\mathbb{R}^N}\phi_\eta(x_j)|u|^sdx} {\int_{\mathbb{R}^N}|u|^sdx}\quad \text{for }j=1,2,\dots,N \\ g_\eta(u)=(g^1_\eta(u),g^2_\eta(u),\dots,g^N_\eta(u))\in \mathbb{R}^N. \end{gather*} Let $C_{l/\eta}^i\equiv C_{l/\eta}(x^i/\eta)$, \begin{gather*} N_\eta^i=\{u\in M^-_{f_\eta,h_\eta}" u\geq0 \text{ and } g_\eta(u)\in C_{l/\eta}^i\},\\ \partial N_\eta^i=\{u\in M^-_{f_\eta,h_\eta}:u\geq0 \text{ and } g_\eta(u)\in\partial C_{l/\eta}^i\} \end{gather*} for $i=1,2,\dots,k$. It is easy to verify that $N_\eta^i$ and $\partial N_\eta^i$ are nonempty sets for all $i=1,2,\dots,k$. Consider the minimization problems in $N_\eta^i$ and $\partial N_\eta^i$ for $I_{f_\eta,h_\eta}$, $$ \gamma_\eta^i=\inf_{u\in N_\eta^i}I_{f_\eta,h_\eta}(u),\quad \overline{\gamma}_\eta^i=\inf_{u\in\partial N_\eta^i}I_{f_\eta,h_\eta}(u). $$ Using the results in \cite{s1}, we can assume $w$ be a unique positive radial solution of \begin{gather*} -\Delta_p u+|u|^{p-2}u=f_{\rm max} |u|^{s-2 }u\quad x\in \mathbb{R}^N,\\ u>0\; \;x\in \mathbb{R}^N,\\ u\in W^{1,p}(\mathbb{R}^N) \end{gather*} and that $I_{f_{\rm max},0}(w)=\alpha_{f_{\rm max},0}$. By (C3) and the routine computations, we have $$ \alpha_{f_{\rm max},0}<\alpha_{f^\infty,0}. $$ For small $\eta>0$ satisfying $2\sqrt{\eta}<1$, we define a function $\psi_\eta\in C^1(\mathbb{R}^N,[0,1])$ such that \[ \psi_\eta(x)= \begin{cases} 1 & |x|<\frac{1}{2\sqrt{\eta}}-1,\\ 0 & |x|>\frac{1}{2\sqrt{\eta}}, \end{cases} \] and $|\nabla\psi_\eta|\leq2$ in $\mathbb{R}^N$. Let $x^\eta=\frac{1}{2\sqrt{\eta}}(1,1,\dots,1)\in \mathbb{R}^N$ and $$ w_\eta(x)=t_\eta^-w(x-\frac{x^i}{\eta}+x^\eta) \psi_\eta(x-\frac{x^i}{\eta}+x^\eta), $$ where $t_\eta^->0$ are selected such that $w_\eta\in M^-_{f_\eta,h_\eta}$. Then we have the following results. \begin{lemma} \label{lem3.1} As $\eta\to0$, we have \begin{itemize} \item[(i)] $\eta^{\frac{p(s-r)}{s-p}}\int_{\mathbb{R}^N}h_\eta w^{r}(x-\frac{x^i}{\eta}+x^\eta)\psi_\eta^r(x-\frac{x^i}{\eta}+x^\eta)dx\to0$; \item[(ii)] $t^-_\eta\to1$. \end{itemize} \end{lemma} \begin{proof} (i) Since $\beta=\frac{p(s-r)}{s-p}-\frac{p-r}{p}N>0$ and $h_\eta(x)\geq0$, we have \begin{align*} 0&\leq\ eta^{\frac{p(s-r)}{s-p}}\int_{\mathbb{R}^N}h_\eta w^{r}(x-\frac{x^i}{\eta}+x^\eta)\psi_\eta^r(x-\frac{x^i}{\eta}+x^\eta)dx \\ &\leq \eta^\beta \|h\|_{L^{\frac{p}{p-r}}} \|w(x-\frac{x^i}{\eta}+x^\eta)\psi_\eta(x-\frac{x^i}{\eta}+x^\eta)\|^r \end{align*} and $$ \|w(x-\frac{x^i}{\eta}+x^\eta)\psi_\eta(x-\frac{x^i}{\eta} +x^\eta)\|^p\to\frac{sp}{s-p}\alpha_{f_{\rm max},0}. $$ Thus (i) holds. (ii) Since $w_\eta\in M^-_{f_\eta,h_\eta}$, we have \begin{align*} &(t^-_\eta)^p[\int_{\mathbb{R}^N}|\nabla (w(x-\frac{x^i}{\eta}+x^\eta)\psi_\eta(x-\frac{x^i}{\eta}+x^\eta))|^p\\ &+(w(x-\frac{x^i}{\eta}+x^\eta)\psi_\eta(x-\frac{x^i}{\eta}+x^\eta))^p] \\ &= (t^-_\eta)^s\int_{\mathbb{R}^N}f_\eta w^s(x-\frac{x^i}{\eta}+x^\eta)\psi^s_\eta(x-\frac{x^i}{\eta}+x^\eta)dx \\ &\quad +\eta^{\frac{p(s-r)}{s-p}}(t^-_\eta)^r\int_{\mathbb{R}^N}h_\eta w^r(x-\frac{x^i}{\eta}+x^\eta)\psi^r_\eta(x-\frac{x^i}{\eta}+x^\eta)dx. \end{align*} When $\eta\to0$, from part (i) it follows that \begin{align*} (t^-_\eta)^p(\|w\|^p+o(\eta)) &= (t^-_\eta)^p\|w(x-\frac{x^i}{\eta}+x^\eta)\psi_\eta(x-\frac{x^i}{\eta} +x^\eta)\|^p+o(\eta) \\ &= (t^-_\eta)^s\int_{\mathbb{R}^N}f_\eta w^s(x-\frac{x^i}{\eta}+x^\eta)\psi^s_\eta(x-\frac{x^i}{\eta}+x^\eta)dx+o(\eta) \\ &= (t^-_\eta)^s\int_{\mathbb{R}^N}f(\eta x+x^i-\eta x^\eta)w^sdx+o(\eta). \end{align*} Moreover, $\eta x^\eta\to0$ as $\eta\to0$, and from $\|w\|^p=\int_{\mathbb{R}^N}f_{\rm max}w^sdx$, we have \begin{align*} t^-_\eta &> t_{\rm max}=(\frac{p-r}{s-r}\frac{\|w(x-\frac{x^i}{\eta}+x^\eta)\psi_\eta(x-\frac{x^i}{\eta}+x^\eta)\|^{p}}{\int_{\mathbb{R}^N}f_\eta |w(x-\frac{x^i}{\eta}+x^\eta)\psi_\eta(x-\frac{x^i}{\eta}+x^\eta)|^{s}dx})^{\frac{1}{s-p}} \\ &\to (\frac{p-r}{s-r})^{\frac{1}{s-p}}>0. \end{align*} Thus, $t^-_\eta\to1$ as $\eta\to0$ and (ii) holds. \end{proof} Let $\eta_*=\min\{\eta_1,\eta_2,(\frac{s-p}{s-r})^{\frac{1}{\beta}}\}$, then we have the following result. \begin{lemma} \label{lem3.2} For each $\varepsilon>0$, there exists $\eta_\varepsilon\in(0,\eta_*] $ such that $$ \alpha^-_{f_\eta,h_\eta}\leq\gamma_\eta^i<\min\{\alpha_{f_{\rm max},0} +\varepsilon, \alpha_{f_\eta,h_\eta}+\alpha_{f^\infty,0}\},\quad i=1,2,\dots,k,\;\eta\in(0,\eta_\varepsilon). $$ \end{lemma} \begin{proof} For $i=1,2,\dots,k$, obviously we have $\alpha^-_{f_\eta,h_\eta}\leq\gamma_\eta^i$. Now we show the second inequality hold. First, we prove that $g_\eta(w_\eta)\in C^i_{l/\eta}$. For $j=1,2,\dots,N$, since $$ g^j_\eta(w_\eta)=\frac{\int_{\mathbb{R}^N}\phi_\eta(x_j) w^s(x-\frac{x^i}{\eta}+x^\eta)\psi^s_\eta(x-\frac{x^i}{\eta}+x^\eta)dx} {\int_{\mathbb{R}^N}w^s(x-\frac{x^i}{\eta}+x^\eta) \psi^s_\eta(x-\frac{x^i}{\eta}+x^\eta)dx} $$ and $$ \psi_\eta(x-\frac{x^i}{\eta}+x^\eta)=0\quad \text{if }|x_j-\frac{x_j^i}{\eta}|>\frac{1}{\sqrt{\eta}}. $$ By the definition of $\psi_\eta$, we have $$ g^j_\eta(w_\eta)=\frac{\int_{C^i_{l/\eta}}\phi_\eta(x_j)w^s (x-\frac{x^i}{\eta}+x^\eta)\psi^s_\eta(x-\frac{x^i}{\eta}+x^\eta)dx} {\int_{C^i_{l/\eta}}w^s(x-\frac{x^i}{\eta}+x^\eta) \psi^s_\eta(x-\frac{x^i}{\eta}+x^\eta)dx} $$ provided $\frac{1}{\sqrt{\eta}}<\frac{l}{\eta}$. From the definition of $\phi_\eta$ and $g_\eta$ we conclude that $g_\eta(w_\eta)\in C^i_{l/\eta}$. Thus, $w_\eta\in N^i_\eta$. Moreover, by Lemma \ref{lem3.1}, we obtain \begin{align*} I_{f_\eta,h_\eta}(w_\eta) &= \frac{(t^-_\eta)^p}{p}[\int_{\mathbb{R}^N}|\nabla (w(x-\frac{x^i}{\eta}+x^\eta)\psi_\eta(x-\frac{x^i}{\eta}+x^\eta))|^pdx \\ &\quad +\int_{\mathbb{R}^N}|w(x-\frac{x^i}{\eta}+x^\eta) \psi_\eta(x-\frac{x^i}{\eta}+x^\eta)|^pdx] \\ &\quad -\frac{(t^-_\eta)^s}{s}\int_{\mathbb{R}^N}f_\eta w^s(x-\frac{x^i}{\eta}+x^\eta)\psi^s_\eta(x-\frac{x^i}{\eta}+x^\eta)dx \\ &\quad -\eta^{\frac{p(s-r)}{s-p}}\frac{(t^-_\eta)^r}{r} \int_{\mathbb{R}^N}h_\eta w^r(x-\frac{x^i}{\eta}+x^\eta)\psi^r_\eta(x-\frac{x^i}{\eta}+x^\eta)dx \\ &= \frac{1}{p}\int_{\mathbb{R}^N}|\nabla w|^p+|w|^pdx-\frac{1}{s}\int_{\mathbb{R}^N}f(\eta x+x^i-\eta x^\eta)w^sdx+o(\eta). \end{align*} Since $\eta x^\eta\to0$ as $\eta\to0$ and from the above, we have $$ I_{f_\eta,h_\eta}(w_\eta)=I_{f_{\rm max},0}(w)+o(\eta) =\alpha_{f_{\rm max},0}+o(\eta). $$ Therefore, for any $\varepsilon>0$ there exists $\eta_3>0$ such that $$ \gamma^i_\eta<\alpha_{f_{\rm max},0}+\varepsilon,\;i=1,2,\dots,k,\;\eta\in (0,\eta_3). $$ Moreover, $\alpha_{f_{\rm max},0}<\alpha_{f^\infty,0}$ and $\alpha_{f_\eta,h_\eta}\to0$ as $\eta\to0$, then there exists $\eta_4>0$ such that $$ \gamma^i_\eta<\alpha_{f_\eta,h_\eta}+\alpha_{f^\infty,0},\quad i=1,2,\dots,k,\;\eta\in (0,\eta_4). $$ We take $\eta_\varepsilon=\min\{\eta_3,\eta_4\}$, this implies $$ \gamma^i_\eta<\min\{\alpha_{f_{\rm max},0}+\varepsilon, \alpha_{f_\eta,h_\eta}+\alpha_{f^\infty,0}\}, $$ for $i=1,2,\dots,k$ and $\eta\in (0,\eta_\varepsilon)$. This completes the proof. \end{proof} Since $W^{1,p}(\mathbb{R}^N)$ is not a Hilbert space in general, even if the $(PS)$ sequence $\{u_n\}$ of $I_\lambda(u)$ is bounded, hence there exists $u\in W^{1,p}(\mathbb{R}^N)$ such that $$ u_n\rightharpoonup u\quad\text{in } W^{1,p}(\mathbb{R}^N), $$ we can not ensure $$ |\nabla u_{n_k}|^{p-2}\nabla u_{n_k}\rightharpoonup |\nabla u|^{p-2}\nabla u \;\;\text{in} \;\;L^{\frac{p}{p-1}}(\mathbb{R}^N) $$ for some subsequence $\{u_{n_k}\}$ of $\{u_n\}$, so we can not use Brezis-Lieb lemma \cite{t1} directly. We use the following results. \begin{lemma} \label{lem3.3} If $\{u_n\}\subset W^{1,p}(\mathbb{R}^N)$ is a $(PS)_c$ sequence of $I_{f_\eta,h_\eta}$, then there exists a subsequence $\{u_k\}$ such that $u_k\rightharpoonup u_0$ in $W^{1,p}(\mathbb{R}^N)$ for some $u_0\in W^{1,p}(\mathbb{R}^N)$, and $I'(u_0)=0$, $\nabla u_k\to\nabla u_0$ a.e. in $\mathbb{R}^N$. \end{lemma} The proof of the above lemma was given in \cite[Lemma 2.1]{c5}, also in \cite{l2}. We omit it here. \begin{lemma} \label{lem3.4} There are positive numbers $\delta$ and $\eta_\delta\in (0,\eta_*]$ such that for $i=1,2,\dots,k$, we have $$ \widetilde{\gamma_\eta^i}>\alpha_{f_{\rm max},0}+\delta\quad \text{for all }\eta\in(0,\eta_\delta). $$ \end{lemma} \begin{proof} Fix $i\in\{1,2,\dots,k\}$. Suppose the contrary that there exists a sequence $\{\eta_n\}$ with $\eta_n\to0$ as $n\to\infty$ such that $\widetilde{\gamma_{\eta_n}^i}\to c\leq\alpha_{f_{\rm max},0}$. Consequently, there exists a sequence $\{u_n\}\subset\partial N^i_{\eta_n}$ such that $g_{\eta_n}(u_n)\in\partial C^i_{\frac{l}{\eta_n}}$ and \begin{gather*} \langle I'_{f_{\eta_n},h_{\eta_n}}(u_n),u_n\rangle=0, \\ I_{f_{\eta_n},h_{\eta_n}}(u_n)\to c\leq\alpha_{f_{\rm max},0}. \end{gather*} By Lemma \ref{lem2.5}, $\{u_n\}$ is uniformly bounded in $W^{1,p}(\mathbb{R}^N)$. For $u_n\in M^-_{f_{\eta_n},h_{\eta_n}}$, we deduce from the Sobolev imbedding theorem that there exists a constant $\nu>0$ such that $\|u_n\|>\nu$ for all $n$. Applying the concentration-compactness principle of Lions \cite{l1} to $|u_n|^s$, there are positive constants $R,\mu$ and $\{y_n\}\subset \mathbb{R}^N$ such that $$ \int_{B^N(y_n,R)}|u_n|^sdx\geq\mu\quad \text{for all }n, $$ where $B^N(y_n,R)=\{x\in\mathbb{R}^N||x-y_n|0$. \noindent\textbf{Case (A):} From condition (C3) we can choose a positive constant $\delta$ such that $$ f(x)\alpha_{f_{\rm max},0}. $$ Consider the sequence $\{\eta_ny_n\}$. By passing to a subsequence if necessary, we may assume that one of the following cases occur: \begin{itemize} \item[(A1)] $\{\eta_ny_n\}\subset\overline{C}^i_{l+\delta}\backslash C^i_{l-\delta}$, \item[(A2)] $\{\eta_ny_n\}\subset\overline{C}^i_{l-\delta}$, \item[(A3)] $\{\eta_ny_n\}\subset\mathbb{R}^N\backslash C^i_{l+\delta}$ and $\{\eta_ny_n\}$ is bounded; \item[(A4)] $\{\eta_ny_n\}$ is unbounded. \end{itemize} Let $\epsilon>0$ and $R_\epsilon>0$ be such that \begin{equation} \frac{\int_{|x|\geq R_\epsilon}|\widetilde{u}_n|^sdx}{\int_{\mathbb{R}^N} |\widetilde{u}_n|^sdx}\leq\epsilon.\label{e3.6} \end{equation} In case (A1), we assume $\eta_ny_n\to \widetilde{y}\in \overline{C}^i_{l+\delta}\backslash C^i_{l-\delta}$ and $f(\widetilde{y})\alpha_{f_{\max},0}, \end{align*} we also have $$ \|u_0\|^p-\int_{\mathbb{R}^N}f(\widetilde{y})|u_0|^sdx=0, $$ which is a contradiction. In case (A2), \begin{align*} g_{\eta_n}^j(u_n) &= \frac{\int_{\mathbb{R}^N}\phi_{\eta_n}(x_j+(y_n)_j) |\widetilde{u}_n|^sdx}{\int_{\mathbb{R}^N}|\widetilde{u}_n|^sdx} \\ &= \frac{\int_{|x|\leq R_\epsilon}\phi_{\eta_n}(x_j+(y_n)_j)|\widetilde{u}_n|^sdx +\int_{|x|\geq R_\epsilon}\phi_{\eta_n}(x_j+(y_n)_j)|\widetilde{u}_n|^sdx} {\int_{\mathbb{R}^N}|\widetilde{u}_n|^sdx}. \end{align*} In the region $|x|\leq R_\epsilon$, when $n$ is sufficiently large, we have \[ x_j+(y_n)_j\in(\frac{x^i_j-(l-\delta)}{\eta_n}-R_\epsilon, \frac{x^i_j+(l-\delta)}{\eta_n}+R_\epsilon) \subset (-\frac{2K}{\eta_n},\frac{2K}{\eta_n}). \] It follows from \eqref{e3.6} and the definition of $\phi_{\eta_n}$ that \begin{gather*} g_{\eta_n}^j(u_n)>(\frac{x^i_j-(l-\delta)}{\eta_n}-R_\epsilon)(1-\epsilon) -\frac{2K}{\eta_n}\epsilon,\\ g_{\eta_n}^j(u_n)<(\frac{x^i_j+(l-\delta)}{\eta_n} +R_\epsilon)(1-\epsilon)+\frac{2K}{\eta_n}\epsilon. \end{gather*} It is clear from the above inequalities that we can choose $\epsilon>0$, $\delta>\epsilon$ sufficiently small such that $$ g_{\eta_n}^j(u_n)\in(\frac{x^i_j-l}{\eta_n},\frac{x^i_j+l}{\eta_n}) $$ for $n$ large enough, which contradicts $g_{\eta_n}(u_n)\in \partial C^i_{l/\eta_n}$. In case (A3), we assume that $\eta_ny_n\to \widetilde{y} \not\in C^i_{l+\delta}$ as $n\to\infty$, then for some $j\in\{1,2,\dots,N\}$, we have $\widetilde{y}_j\geq x_j^i+(l+\delta)$ or $\widetilde{y}_j\leq x_j^i-(l+\delta)$. First, we assume $\widetilde{y}_j\geq x_j^i+(l+\delta)$ occurs, then $(y_n)_j>\frac{x^i_j+(l+\frac{\delta}{2})}{\eta_n}$ for all $n$. When $|x_j|\leq R_\epsilon$, we have $$ x_j+(y_n)_j>\frac{x^i_j+(l+\frac{\delta}{2})}{\eta_n}-R_\epsilon $$ and $$ g_{\eta_n}^j(u_n)>(\frac{x^i_j+(l+\frac{\delta}{2})}{\eta_n}-R_\epsilon) (1-\epsilon)-\frac{2K}{\eta_n}\epsilon>\frac{x^i_j+l}{\eta_n}, $$ for sufficiently small $\epsilon>0$, $\delta>\epsilon$ and $n$ large enough. This contradicts to $g_{\eta_n}(u_n)\in \partial C^i_{\frac{l}{\eta_n}}$. When $\widetilde{y}_j\leq x_j^i-(l+\delta)$, the argument is similar. In case (A4), we assume $\eta_ny_n\to\infty$ as $n\to\infty$, using a similar argument to case (A1) and condition (C3), we can also obtain a contradiction. \noindent\textbf{Case (B):} Set $$ \|u_0\|^p-\int_{\mathbb{R}^N}\widetilde{f}_{\eta_n}|u_{0}|^sdx=A+o(1), $$ then by \eqref{e3.5}, $$ \|w_n\|^p-\int_{\mathbb{R}^N}\widetilde{f}_{\eta_n}|w_{n}|^sdx=-A+o(1). $$ Without loss of generality, we may assume that $A>0$($A<0$ can be considered similarly). We can choose a sequence $\{t_n\}$ with $t_n\to1$ as $n\to\infty$ such that $v_n=t_nw_n$ satisfies $$ \|v_n\|^p-\int_{\mathbb{R}^N}\widetilde{f}_{\eta_n}|v_{n}|^sdx=-A. $$ Since $u_0\in M_{\widetilde{f}_{\eta_n},0}(A+o(1))$, by \eqref{e3.2}-\eqref{e3.4} and Lemma \ref{lem2.1} we have \begin{align*} I_{f_{\eta_n},h_{\eta_n}}(u_n) &= \frac{1}{p}\|u_0\|^p-\frac{1}{s}\int_{\mathbb{R}^N}\widetilde{f}_{\eta_n}(x) |u_0|^sdx \\ &\quad +\frac{1}{p}\|w_n\|^p-\frac{1}{s} \int_{\mathbb{R}^N}\widetilde{f}_{\eta_n}(x)|w_n|^sdx+o(1) \\ &\geq \frac{A+o(1)}{p}+\frac{1}{p}\|v_n\|^p-\frac{1}{s} \int_{\mathbb{R}^N}\widetilde{f}_{\eta_n}(x)|v_n|^sdx+o(1) \\ &\geq \alpha_{\widetilde{f}_{\eta_n},0}(A) +\alpha_{\widetilde{f}_{\eta_n},0}(-A)+o(1) \\ &> \alpha_{\widetilde{f}_{\eta_n},0}+\frac{s-p}{2sp}A+o(1) \\ &\geq \alpha_{f_{\max},0}+\frac{s-p}{2sp}A+o(1), \end{align*} which is a contradiction. If $A=0$, we can find two sequences $\{t_n\}$ and $\{s_n\}$ with $t_n\to1$, $s_n\to1$ as $n\to\infty$ such that $\overline{w}_n=t_nw_n,\;\overline{v}_n=s_nu_0$ satisfy \begin{gather*} \|\overline{w}_n\|^p-\int_{\mathbb{R}^N}\widetilde{f}_{\eta_n}| \overline{w}_{n}|^sdx=0,\\ \|\overline{v}_n\|^p-\int_{\mathbb{R}^N}\widetilde{f}_{\eta_n} |\overline{v}_{n}|^sdx=0. \end{gather*} Thus \begin{align*} &\lim_{n\to\infty}I_{f_{\eta_n},h_{\eta_n}}(u_n)\\ &= \lim_{n\to\infty}\Big[\frac{1}{p}\|\overline{w}_n\|^p-\frac{1}{s} \int_{\mathbb{R}^N}\widetilde{f}_{\eta_n}|\overline{w}_{n}|^sdx +\frac{1}{p}\|\overline{v}_n\|^p-\frac{1}{s} \int_{\mathbb{R}^N}\widetilde{f}_{\eta_n}|\overline{v}_{n}|^sdx\Big] \\ &>\alpha_{f_{\max},0}, \end{align*} which is a contradiction. This completes the proof. \end{proof} From now on, taking $\delta>0$ as in Lemma \ref{lem3.4}, and fixing $\varepsilon>0$ such that $\varepsilon\leq \delta$, consider $\eta_\varepsilon$ as in Lemma \ref{lem3.2}, $\eta_\delta$ as in Lemma \ref{lem3.4}, and denote $\eta_0=\min\{\eta_\varepsilon,\eta_\delta\}$. \begin{lemma} \label{lem3.5} If $\eta\in (0,\eta_0)$, then for each $u\in M_{f_\eta,h_\eta}$, there exist $\varepsilon_u>0$ and a differentiable function $\xi_u:B(0,\varepsilon_u)\subset W^{1,p}(\mathbb{R}^N)\to R^+$ such that $\xi_u(0)=1,\;\xi_u(v)(u-v)\in M_{f_\eta,h_\eta}$, and \begin{align*} \langle\xi_u'(0),v\rangle &=\Big[p\int_{\mathbb{R}^N}|\nabla u|^{p-2}\nabla u\nabla v +|u|^{p-2}uvdx\\ &\quad -s\int_{\mathbb{R}^N}f_\eta|u|^{s-2}uvdx -\eta^{\frac{p(s-r)}{s-p}}r\int_{\mathbb{R}^N}h_\eta|u|^{r-2}uvdx\Big]\\ &\quad\div\Big[(p-r)\|u\|^p-(s-r)\int_{\mathbb{R}^N}f_\eta|u|^sdx\Big] \end{align*} for all $v\in W^{1,p}(\mathbb{R}^N)$. \end{lemma} \begin{proof} For $u\in M_{f_\eta,h_\eta}$, define a function $F:R\times W^{1,p}(\mathbb{R}^N)\to R$ by \begin{align*} F_u(\xi_u,w) &= \langle I'_{f_\eta,h_\eta}(\xi_u(u-w)),\xi_u(u-w)\rangle \\ &= \xi_u^p\int_{\mathbb{R}^N}|\nabla(u-w)|^p+|u-w|^pdx -\xi_u^s\int_{\mathbb{R}^N}f_\eta|u-w|^sdx \\ &\quad -\eta^{\frac{p(s-r)}{s-p}}\xi_u^r\int_{\mathbb{R}^N}h_\eta|u-w|^rdx. \end{align*} Then $F_u(1,0)=\langle I'_{f_\eta,h_\eta}(u),u\rangle=0$ and \begin{align*} \frac{d}{d\xi_u}F_u(1,0) &= p\|u\|^p-s\int_{\mathbb{R}^N}f_\eta|u|^sdx -\eta^{\frac{p(s-r)}{s-p}}r\int_{\mathbb{R}^N}h_\eta|u|^rdx \\ &= (p-r)\|u\|^p-(s-r)\int_{\mathbb{R}^N}f_\eta|u|^sdx\neq 0. \end{align*} According to the implicit function theorem, there exist $\varepsilon_u>0$ and a differentiable function $\xi_u:B(0,\varepsilon_u)\subset W^{1,p}(\mathbb{R}^N)\to R^+$ such that $\xi_u(0)=1$, and \begin{align*} \langle\xi_u'(0),v\rangle &=\Big[p\int_{\mathbb{R}^N}|\nabla u|^{p-2}\nabla u\nabla v+|u|^{p-2}uvdx\\ &\quad -s\int_{\mathbb{R}^N}f_\eta|u|^{s-2}uvdx -\eta^{\frac{p(s-r)}{s-p}}r\int_{\mathbb{R}^N}h_\eta|u|^{r-2}uvdx\Big]\\ &\quad \div \Big[(p-r)\|u\|^p-(s-r)\int_{\mathbb{R}^N}f_\eta|u|^sdx\Big], \end{align*} and $F_u(\xi_u(v),v)=0$ for all $v\in B(0,\varepsilon_u)$, which is equivalent to $$ \langle I'_{f_\eta,h_\eta}(\xi_u(v)(u-w)),\xi_u(v)(u-w)\rangle=0,\quad \forall v\in B(0,\varepsilon_u). $$ That is, $\xi_u(v)(u-v)\in M_{f_\eta,h_\eta}$. \end{proof} \begin{lemma} \label{lem3.6} If $\eta\in (0,\eta_0)$, then for each $u\in N^i_{\eta}$, there exist $\varepsilon_u>0$ and a differentiable function $\xi_u^-:B(0,\varepsilon_u)\subset W^{1,p}(\mathbb{R}^N)\to R^+$ such that $\xi_u^-(0)=1,\;\xi_u^-(v)(u-v)\in N^i_{\eta}$ for all $v\in B(0,\varepsilon_u)$, and \begin{align*} \langle(\xi_u^-)'(0),v\rangle &=\Big[p\int_{\mathbb{R}^N}| \nabla u|^{p-2}\nabla u\nabla v+|u|^{p-2}uvdx\\ &\quad -s\int_{\mathbb{R}^N}f_\eta|u|^{s-2}uvdx -\eta^{\frac{p(s-r)}{s-p}}r\int_{\mathbb{R}^N}h_\eta|u|^{r-2}uvdx\Big]\\ &\quad\div \Big[(p-r)\|u\|^p-(s-r)\int_{\mathbb{R}^N}f_\eta|u|^sdx\Big] \end{align*} for all $v\in W^{1,p}(R^N)$. \end{lemma} \begin{proof} Similar to the argument in Lemma \ref{lem3.5}, there exist $\varepsilon_u>0$ and a differentiable function $\xi_u^-:B(0,\varepsilon_u)\subset W^{1,p}(\mathbb{R}^N)\to R^+$ such that $\xi_u^-(0)=1$, $\xi_u^-(v)(u-v)\in M_{f_\eta,h_\eta}$ for all $v\in B(0,\varepsilon_u)$, Since $$ (p-r)\|u\|^p-(s-r)\int_{\mathbb{R}^N}f_\eta |u|^{s}dx<0, $$ thus, if $\varepsilon_u$ small enough, by the continuity of the functions $\xi_u^-$ and $g_\eta$, we have \begin{align*} &\langle\psi'(\xi_u^-(v)(u-v))),\xi_u^-(v)(u-v)\rangle \\ &= (p-r)\|\xi_u^-(v)(u-v)\|^p-(s-r)\int_{\mathbb{R}^N}f_\eta |\xi_u^-(v)(u-v)|^{s}dx <0. \end{align*} and $g_\eta(\xi_u^-(v)(u-v))\in C^i_{l/\eta}$. \end{proof} \begin{proposition} \label{prop3.7} (i) If $\eta\in (0,\eta_0)$, then there exists a $(PS)_{\alpha_{f_\eta,h_\eta}}$ sequence $\{u_n\}\subset M_{f_\eta,h_\eta}$ in $W^{1,p}(\mathbb{R}^N)$ for $I_{f_\eta,h_\eta}$. (ii) If $\eta\in (0,\eta_0)$, then there exists a $(PS)_{\gamma_\eta^i}$ sequence $\{u_n\}\subset N_\eta^i$ in $W^{1,p}(\mathbb{R}^N)$ for $I_{f_\eta,h_\eta}$, $i=1,2,\dots,k$. \end{proposition} \begin{proof} Since the proof of (i) is similar to that of (ii), but simpler, we only prove (ii) here. We denote by $\overline{N_\eta^i}$ the closure of $N_\eta^i$, then we note that $$ \overline{N_\eta^i}=N_\eta^i\cup\partial N_\eta^i,\quad \text{for each }i=1,2,\dots,k. $$ From Lemma \ref{lem3.2} and Lemma \ref{lem3.4}, we obtain \begin{equation} \gamma_\eta^i<\min\{\alpha_{f_\eta,h_\eta} +\alpha_{f^\infty,0},\widetilde{\gamma_\eta^i}\},\quad i=1,2,\dots,k,\;\eta\in(0,\eta_0).\label{e3.7} \end{equation} Hence $$ \gamma_\eta^i=\inf\{I_{f_\eta,h_\eta}(u):u\in \overline{N_\eta^i}\} \quad\text{for }i=1,2,\dots,k. $$ Fix some $i\in\{1,2,\dots,k\}$. Applying the Ekeland variational principle \cite{l2} there exists a minimizing sequence $\{u_n\}\subset\overline{N_\eta^i}$ such that \begin{gather} I_{f_\eta,h_\eta}(u_n)<\gamma_\eta^i+\frac{1}{n},\label{e3.8} \\ I_{f_\eta,h_\eta}(u_n)0$ such that $\xi^-_{u_n}(w)(u_n-w)\in N^i_{\eta}$. Choose $0<\rho<\varepsilon_{u_n}$ and $u\in W^{1,p}(\mathbb{R}^N)$ with $u\not\equiv0$. Set $w_\rho=\frac{\rho u}{\|u\|}$ and $z^n_\rho=\xi^-_{u_n}(w_\rho)(u_n-w_\rho)$. Since $z^n_\rho\in N^i_{\eta}$, we deduce from \eqref{e3.9} that $$ I_{f_\eta,h_\eta}(z^n_\rho)-I_{f_\eta,h_\eta}(u_n) \geq-\frac{1}{n}\|z^n_\rho-u_n\|. $$ By the mean value theorem, we have $$ \langle I'_{f_\eta,h_\eta}(u_n),z^n_\rho-u_n\rangle+o(\|z^n_\rho-u_n\|) \geq-\frac{1}{n}\|z^n_\rho-u_n\|. $$ Thus, \begin{equation} \langle I'_{f_\eta,h_\eta}(u_n),-w_\rho\rangle+(\xi^-_{u_n}(w_\rho)-1)\langle I'_{f_\eta,h_\eta}(u_n),u_n-w_\rho\rangle \geq-\frac{1}{n}\|z^n_\rho-u_n\|+o(\|z^n_\rho-u_n\|).\label{e3.10} \end{equation} Since $\xi^-_{u_n}(w_\rho)(u_n-w_\rho)\in N^i_{\eta}$ and consequently from \eqref{e3.10} we obtain \begin{align*} &-\rho\langle I'_{f_\eta,h_\eta}(u_n),\frac{u}{\|u\|}\rangle +(\xi^-_{u_n}(w_\rho)-1)\langle I'_{f_\eta,h_\eta}(u_n)-I'_{f_\eta,h_\eta}(z^n_\rho),u_n-w_\rho\rangle \\ &\geq -\frac{1}{n}\|z^n_\rho-u_n\|+o(\|z^n_\rho-u_n\|). \end{align*} Thus, \begin{equation} \begin{aligned} \langle I'_{f_\eta,h_\eta}(u_n),\frac{u}{\|u\|}\rangle &\leq\frac{(\xi^-_{u_n}(w_\rho)-1)}{\rho}\langle I'_{f_\eta,h_\eta}(u_n)-I'_{f_\eta,h_\eta}(z^n_\rho),u_n-w_\rho\rangle\\ &\quad +\frac{\|z^n_\rho-u_n\|}{n\rho}+\frac{o(\|z^n_\rho-u_n\|)}{\rho}. \end{aligned}\label{e3.11} \end{equation} Since $$ \|z^n_\rho-u_n\|\leq\rho|\xi^-_{u_n}(w_\rho)|+|\xi^-_{u_n}(w_\rho)-1|\|u_n\| $$ and $$ \lim_{\rho\to0}\frac{|\xi^-_{u_n}(w_\rho)-1|}{\rho}\leq\|(\xi^-_{u_n})'(0)\|, $$ if we let $\rho\to0$ in \eqref{e3.11} for a fixed $n$, and by Lemma \ref{lem2.5} (ii) we can find a constant $C>0$, independent of $\rho$, such that $$ \langle I'_{f_\eta,h_\eta}(u_n),\frac{u}{\|u\|}\rangle \leq\frac{C}{n}(1+\|(\xi^-_{u_n})'(0)\|). $$ We are done once we show that $\|(\xi^-_{u_n})'(0)\|$ is uniformly bounded in $n$. By Lemma \ref{lem2.5} (ii), Lemma \ref{lem3.6} and the H\"{o}lder inequality, we have $$ \langle{(\xi^-_{u_n})}'(0),v\rangle\leq\frac{b\|v\|} {|(p-r)\|u_n\|^p-(s-r)\int_{\mathbb{R}^N}f_\eta|u_n|^sdx|}\quad \text{for some }b>0. $$ We only need to show that $$ |(p-r)\|u_n\|^p-(s-r)\int_{\mathbb{R}^N}f_\eta|u_n|^sdx|>C $$ for some $C>0$ and $n$ large. We argue by way of contradiction. Assume that there exists a subsequence $\{u_n\}$ satisfy \begin{equation} (p-r)\|u_n\|^p-(s-r)\int_{\mathbb{R}^N}f_\eta|u_n|^sdx=o(1).\label{e3.12} \end{equation} By the fact that $u_n\in M^-_{f_\eta,h_\eta}(u_n)$ and \eqref{e3.12}, we obtain that $$ \int_{\mathbb{R}^N}f_\eta|u_n|^sdx>0. $$ So we have \begin{gather} \|u_n\|\leq[\frac{s-r}{s-p}\eta^\beta\|h\|_{L^{\frac{p}{p-r}}}]^{\frac{1}{p-r}} +o(1)\label{e3.13} \\ \|u_n\|>(\frac{p-r}{s-r}\frac{S^s}{f_{\max}})^{\frac{1}{s-p}}+o(1).\label{e3.14} \end{gather} Then \begin{equation} \begin{aligned} K(u_n)&=c(s,r)\Big[\frac{(\frac{s-r}{p-r}\int_{\mathbb{R}^N}f_\eta |u_n|^{s}dx+o(1))^{\frac{s-1}{p-1}}}{\int_{\mathbb{R}^N}f_\eta |u_n|^{s}dx}\Big]^{\frac{p-1}{s-p}} -\frac{s-p}{p-r} \int_{\mathbb{R}^N}f_\eta |u_n|^{s}dx\\ &=o(1). \end{aligned}\label{e3.15} \end{equation} However, by \eqref{e3.13}-\eqref{e3.14}, the H\"{o}lder and Sobolev inequalities, combining with $\beta>0$ and $\eta\in (0,\eta_0)$, we have \begin{align*} K(u_n) &\geq c(s,r)(\frac{\|u_n\|^{p\frac{s-1}{p-1}}}{\int_{\mathbb{R}^N}f_\eta |u_n|^{s}dx})^{\frac{p-1}{s-p}}-\eta^\beta\|h\|_{L^{\frac{p}{p-r}}}\|u_n\|^r+o(1) \\ &\geq \|u_n\|^r[c(s,r)(\frac{S^s}{f_{\rm max}})^{\frac{p-1}{s-p}}\|u_n\|^{1-r}-\eta^\beta\|h\|_{L^{\frac{p}{p-r}}}]+o(1) \\ &\geq \|u_n\|^r[c(s,r)(\frac{S^s}{f_{\rm max}})^{\frac{p-1}{s-p}}(\eta^\beta\frac{s-r}{s-p}\|h\|_{L^{\frac{p}{p-r}}})^{\frac{1-r}{p-r}}-\eta^\beta\|h\|_{L^{\frac{p}{p-r}}}]+o(1) \\ &\geq d \end{align*} for some $d>0$ and $n$ large enough. This is a contradiction to \eqref{e3.15}. So we have $$ I_{f_\eta,h_\eta}(u_n)=\gamma_\eta^i+o(1) $$ and $I'_{f_\eta,h_\eta}(u_n)=0\;\text{in}\;W^{-1}(\mathbb{R}^N)$. Thus we complete the proof of (ii). \end{proof} \begin{theorem} \label{thm3.8} For each $\eta\in(0,\eta_0)$, Equation \eqref{Ee} has a positive solution $u_\eta\in M^+_{f_\eta,h_\eta}$ such that $I_{f_\eta,h_\eta}(u_\eta)=\alpha_{f_\eta,h_\eta}=\alpha^+_{f_\eta,h_\eta}$. \end{theorem} \begin{proof} By Proposition \ref{prop3.7} (i), there exists a $(PS)_{\alpha_{f_\eta,h_\eta}}$ sequence $\{u_n\}\subset M_{f_\eta,h_\eta}$, by Lemma \ref{lem2.5} (ii) and Lemma \ref{lem3.3}, there exist a subsequence $\{u_n\}$ and $u_\eta$ in $W^{1,p}(\mathbb{R}^N)$ such that \begin{gather*} u_n\rightharpoonup u_\eta\quad \text{weakly in } W^{1,p}(\mathbb{R}^N), \\ u_n\to u_\eta\quad\text{a.e. in }\mathbb{R}^N, \\ u_n\to u_\eta\quad \text{in $L^q(\mathbb{R}^N)$ for} 1\leq q\leq p^*, \\ \nabla u_n\to\nabla u_\eta \quad\text{a.e. in }\mathbb{R}^N, \\ |\nabla u_{n}|^{p-2}\nabla u_{n}\rightharpoonup |\nabla u_\eta|^{p-2}\nabla u_\eta \quad\text{in }L^{\frac{p}{p-1}}(\mathbb{R}^N), \end{gather*} It is easy to see that $u_\eta$ is a solution of \eqref{Ee} Moreover, by the Egorov theorem and the H\"{o}lder inequality and condition $h\in L^{\frac{p}{p-r}}(\mathbb{R}^N)$, we obtain $$ \int_{\mathbb{R}^N}h_\eta|u_n|^rdx\to\int_{\mathbb{R}^N}h_\eta|u_\eta|^rdx. $$ We claim that $\int_{\mathbb{R}^N}h_\eta|u_\eta|^rdx\neq0$. If not, $$ \|u_n\|^p=\int_{\mathbb{R}^N}f_\eta|u_n|^sdx+o(1), $$ and \begin{align*} &(\frac{1}{p}-\frac{1}{s})\int_{\mathbb{R}^N}f_\eta|u_n|^sdx\\ &= \frac{1}{p}\|u_n\|^p-\frac{1}{s}\int_{\mathbb{R}^N}f_\eta |u_n|^{s}dx-\eta^{\frac{p(s-r)}{s-p}}\frac{1}{r}\int_{\mathbb{R}^N}h_\eta |u_n|^{r}dx+o(1) \\ &= \alpha_{f_\eta,h_\eta}+o(1), \end{align*} this contradicts $\alpha_{f_\eta,h_\eta}<0$. Thus, $u_\eta$ is a nontrivial solution of \eqref{Ee}. Now we show that $u_n\to u_\eta$ strongly in $W^{1,p}(\mathbb{R}^N)$. If not, $\|u_\eta\|<\liminf_{n\to\infty}\|u_n\|$, so we have \begin{align*} \alpha_{f_\eta,h_\eta} &\leq I_{f_\eta,h_\eta}(u_\eta) =(\frac{1}{p}-\frac{1}{s})\|u_\eta\|^p-(\frac{1}{r}-\frac{1}{s}) \eta^{\frac{p(s-r)}{s-p}}\int_{\mathbb{R}^N}h_\eta |u_\eta|^{r}dx \\ &< \lim_{n\to\infty}I_{f_\eta,h_\eta}(u_n)=\alpha_{f_\eta,h_\eta}, \end{align*} this is a contradiction. Thus $I_{f_\eta,h_\eta}(u_\eta)=\alpha_{f_\eta,h_\eta}$. At last, we show $u_\eta\in M^+_{f_\eta,h_\eta}$. If not, by Lemma \ref{lem2.2}, we know that $u_\eta\in M^-_{f_\eta,h_\eta}$, by Lemma \ref{lem2.4}, there exist unique $t_0^+$ and $t_0^-$ such that $t_0^+u_\eta\in M^+_{f_\eta,h_\eta}$ and $t_0^-u_\eta\in M^-_{f_\eta,h_\eta}$, and $t_0^+0, $$ there exists $\widetilde{t}\in (t_0^+,t_0^-]$ such that $I_{f_\eta,h_\eta}(t_0^+u_\eta)C\quad \text{for some }C>0, \;n=1,2,\dots. $$ which contradicts to \eqref{e3.16}. Thus, by Lemma \ref{lem3.3}, $u_0$ is a nontrivial solution of \eqref{Ee} and $I_{f_\eta,h_\eta}(u_0)\geq\alpha_{f_\eta,h_\eta}$. We write $u_n=u_0+v_n$ with $v_n\rightharpoonup0$ weakly in $W^{1,p}(\mathbb{R}^N)$. By the Brezis-Lieb lemma \cite{l1}, we have \begin{align*} \int_{\mathbb{R}^N}f_\eta|u_n|^pdx &= \int_{\mathbb{R}^N}f_\eta|u_0|^pdx+\int_{\mathbb{R}^N}f_\eta|v_n|^pdx+o(1) \\ &= \int_{\mathbb{R}^N}f_\eta|u_0|^pdx+\int_{\mathbb{R}^N}f^\infty|v_n|^pdx+o(1). \end{align*} Since $\{u_n\}$ is a bounded sequence in $W^{1,p}(\mathbb{R}^N)$, we have $\{v_n\}$ is also a bounded sequence in $W^{1,p}(\mathbb{R}^N)$. Moreover, by $h\in L^{\frac{p}{p-r}}(\mathbb{R}^N)$, the Egorov theorem and the H\"{o}lder inequality, we have $$ \int_{\mathbb{R}^N}h_\eta|v_n|^rdx =\int_{\mathbb{R}^N}h_\eta|u_n|^rdx-\int_{\mathbb{R}^N}h_\eta|u_0|^rdx+o(1)=o(1). $$ Hence, for $n$ large enough, we can conclude that \begin{align*} \alpha_{f_\eta,h_\eta}+\alpha_{f^\infty,0} &> I_{f_\eta,h_\eta}(u_0+v_n) \\ &\geq I_{f_\eta,h_\eta}(u_0)+\frac{1}{p}\|v_n\|^p -\frac{1}{s} \int_{\mathbb{R}^N}f^\infty|v_n|^sdx+o(1) \\ &\geq \alpha_{f_\eta,h_\eta}+\frac{1}{p}\|v_n\|^p -\frac{1}{s}\int_{\mathbb{R}^N}f^\infty|v_n|^sdx+o(1), \end{align*} we obtain \begin{equation} \frac{1}{p}\|v_n\|^p-\frac{1}{s}\int_{\mathbb{R}^N}f^\infty|v_n|^sdx <\alpha_{f^\infty,0}+o(1).\label{e3.17} \end{equation} Also from $I'_{f_\eta,h_\eta}(u_n)=o(1)$ in $W^{-1}(\mathbb{R}^N)$, $\{u_n\}$ is uniformly bounded and $u_0$ is a solution of \eqref{Ee}, we obtain \begin{equation} \langle I'_{f_\eta,h_\eta}(u_n),u_n\rangle =\|v_n\|^p-\int_{\mathbb{R}^N}f^\infty|v_n|^sdx+o(1)=o(1).\label{e3.18} \end{equation} We claim that \eqref{e3.17} and \eqref{e3.18} can be hold simultaneously only if $\{v_n\}$ admits a subsequence which converges strongly to zero. If not, then $\|v_n\|$ is bounded away from zero; that is, $$ \|v_n\|\geq C \quad \text{for some }C>0. $$ From \eqref{e3.18}, it follows that $$ \int_{\mathbb{R}^N}f^\infty|v_n|^sdx \geq\frac{sp}{s-p}\alpha_{f^\infty,0}+o(1). $$ By \eqref{e3.17} and \eqref{e3.18}, for $n$ large enough \begin{align*} \alpha_{f^\infty,0} &\leq (\frac{1}{p}-\frac{1}{s})\int_{\mathbb{R}^N}f^\infty|v_n|^sdx+o(1) \\ &= \frac{1}{p}\|v_n\|^p-\frac{1}{s}\int_{\mathbb{R}^N}f^\infty|v_n|^sdx+o(1) < \alpha_{f^\infty,0}, \end{align*} which is a contradiction. Therefore, $u_n\to u_0$ strongly in $W^{1,p}(R^N)$ and $I_{f_\eta,h_\eta}(u_0)=c$. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.1}] By Lemma \ref{lem3.2}, Proposition \ref{prop3.7} and Proposition \ref{prop3.9}, for each $\eta\in(0,\eta_0)$ and $i\in \{1,2,\dots,k\}$, there exist a sequence $\{u^i_n\}\subset N^i_\eta$ and $u^i_0\in W^{1,p}(\mathbb{R}^N)\backslash\{0\}$ such that \begin{gather*} I_{f_\eta,h_\eta}(u^i_n)=\gamma_\eta^i+o(1),\\ I'_{f_\eta,h_\eta}(u^i_n)=o(1) \end{gather*} and $u_n^i\to u_0^i$ strongly in $W^{1,p}(\mathbb{R}^N)$. Obviously, the function $u_0^i$ is a solution of the equation \eqref{Ee} and $I_{f_\eta,h_\eta}(u^i_0)=\gamma_\eta^i$. Similar to the argument in Theorem \ref{thm3.8}, we have $u_0^i$ is positive. Since $g^i_\eta(u_0^i)\in \overline{C_{l/\eta}(x^i)}$, $u_\eta\in M^+_{f_\eta,h_\eta}$ and $u_0^i\in M^-_{f_\eta,h_\eta}$, where $u_\eta$ is a positive solution of Eq.\eqref{Ee} as in Theorem \ref{thm3.8}. This implies $u_\eta$, $u_0^i$ and $u_0^j$ are different for $i\neq j$. Letting $\lambda_0=\eta_0^{-p}$, $U_\lambda(x)=\lambda^{\frac{1}{s-p}}u_\eta(\lambda^{1/p}x)$ and $U_i(x)=\lambda^{\frac{1}{s-p}}u_0^i(\lambda^{1/p}x)$. We obtain $U_\lambda$ and $U_i$ are positive solutions of the \eqref{El} with $i=1,2,\dots,k$. This completes the proof. \end{proof} \begin{remark} \label{rmk3.10} \rm It is easy to see from the proof of Theorem \ref{thm1.1} that the solutions $U_\lambda,\;U_i(i=1,2,\dots,k)$ satisfy \begin{enumerate} \item $\|U_\lambda\|_{L^\infty(\mathbb{R}^N)}, \; \|U_i\|_{L^\infty(\mathbb{R}^N)}\to\infty$ as $\lambda\to\infty$; \item $\|U_\lambda\|_{L^p(\mathbb{R}^N)},\; \|U_i\|_{L^p(\mathbb{R}^N)}\to\infty$ as $\lambda\to\infty$ if $p0$. \end{lemma} \begin{proof} When $N\leq p$ and $1\leq r0. $$ We consider only the case $N>p$. Set $$ L(s)=p^2(s-r)-(p-r)N(s-p),\quad s\in(p,p^*). $$ Then it is easy to see that $$ L(s)\geq\min\{L(p),L(p^*)\}=\min\{p^2(p-r),\frac{p^3r}{N-p}\}>0. $$ This completes the proof. \end{proof} \subsection*{Acknowledgements} The authors wish to thank the anonymous reviewers and the editor for their helpful comments. We would like to thank Professot D. M. Cao and T. F. Wu for their help and advice for completing this article. This research was supported by the National Natural Science Foundation of China (No. 11171092); the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 08KJB110005); the Natural Science Foundation of Jiangsu Education Office (No. 12KJB110002) \begin{thebibliography}{00} \bibitem{a1} S. Adachi, K. Tanaka; \emph{Multiple positive solutions for nonhomogeneous equations}, Nonlinear Analysis 47 (2001), 3787-3793. \bibitem{a2} S. Adachi, K. Tanaka; \emph{Four positive solutions for the semilinear elliptic equation $-\Delta u+u=a(x)u^p+f(x)$ in $\mathbb{R}^N$}, Calc. Var. 11 (2000), 63-95. \bibitem{b1} A. Bahri, P. L. Lions; \emph{On the existence of positive solutions of semilinear elliptic equations in unbounded domains}, Ann. Inst. H. Poincar\'{e} Anal. Non Lin\'{e}aire 14 (3) (1997), 365-443. \bibitem{b2} A.Bahri, Y. Y. Li; \emph{On the min-max procedure for the existence of a position solution for certain scalar field equations in $\mathbb{R}^N$}, Rev. Mat. Iberoamericana 6 (1990), 1-15. \bibitem{b3} H. Berestycki, P. L. Lions; \emph{Nonlinear scalar field equations-I:existence of a ground state, Archive for Rational Mechanics and Analysis} 82 (4) (1983), 313-345. \bibitem{b4} H. Berestycki, P. L. Lions; \emph{Nonlinear scalar field equations-II:existence of infinitely many solutions}, Archive for Rational Mechanics and Analysis 82 (4) (1983), 347-375. \bibitem{b5} H. Brezis, E. Lieb; \emph{A relation between pointwise convergence of functions and convergence of functionals}, Proc. Amer. Math. Soc. 88(1983), 486-490. \bibitem{c1} D. Cao, E. S. Noussair; \emph{Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb{R}^N$}, Ann. Inst. H. Poincar\'{e} Anal. Non Lin\'{e}aire, 13 (5) (1996), 567-588. \bibitem{c2} D. M. Cao, H. S. Zhou; \emph{Multiple positive solutions of nonhomogeneous semilinear elliptic equations in $\mathbb{R}^N$}, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 443-463. \bibitem{c3} G. Citti, F. Uguzzoni; \emph{Positive solutions of $-\Delta_p u+u^{p-1}=q(x)u^\alpha$ in $\mathbb{R}^N$}, Nonlinear Differential Equations and Applications 9 (1) (2002), 1-14. \bibitem{c4} G. Citti; \emph{A uniqueness theorem for radial ground states of the equation $\Delta_p u+f(u)=0$}, Boll. Un. Mat. Ital. (7) 7-B (1993), 283-310. \bibitem{c5} D. M. Cao, G. B. Li, H. S. Zhou; \emph{The existence of two solutions to quasilinear elliptic equations on $\mathbb{R}^N$}, Chinese J. Contemp. Math. 17 (3) (1996), 277-285. \bibitem{e1} I. Ekeland; \emph{On the variational principle}, J. Math. Anal. Appl. 17 (1974), 324-353. \bibitem{j1} L. Jeanjean; \emph{Two positive solutions for a class of nonhomogeneous elliptic equations}, Differential and Integral Equations 10 (1997), 609-624. \bibitem{k1} M. K. Kwong; \emph{Uniqueness of positive solution of $\Delta u-u+u^p=0$ in $\mathbb{R}^N$}, Arch. Ra. Math. Anal. 105 (1989), 243-266. \bibitem{l1} P. L. Lions; \emph{The concentration-compactness principle in the calculus of variations. The locally compact case. I, II}, Ann. Inst. H. Poincar\'{e} Anal. Non Lin\'{e}aire 1 (1984), 109-145, 223-283. \bibitem{l2} G. B. Li; \emph{The existence of a weak solution of quasilinear elliptic equation with critical Sobolev exponent on unbounded domains}, Acta. Math. Scientia 14 (1) (1994), 64-74. \bibitem{l3} Y. Li; \emph{Remarks on a semilinear elliptic equation on $\mathbb{R}^N$}, J. Differential Equations 74 (1988), 34-49. \bibitem{s1} C. A. Swanson, L. S. Yu; \emph{Critical p-Laplacian Problems in $\mathbb{R}^N$}, Annali di Matematica pura ed applicata (IV), vol. CLXIX (1995), 233-250. \bibitem{t1} G.T arantello; \emph{On nonhomogenous elliptic equations involving the critical Sobolev exponent}, Ann. Inst. H. Poincar\'{e} Anal. Non Lin\'{e}aire 9 (3) (1992), 281-304. \bibitem{w1} T. F. Wu; \emph{Multiplicity of positive solutions for semilinear elliptic equations in $\mathbb{R}^N$}, Proc. Roy. Soc. Edinburgh, Sect. A 138 (2008), 647-670. \bibitem{y1} J. Yang, X. Zhu; \emph{On the existence of nontrivial solution of a quasilinear elliptic boundary value problem for unbounded domains}, Acta Mathematica Scientia 7 (3) (1987), 341-359. \end{thebibliography} \end{document}