\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 171, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/171\hfil Optimal ground state energy] {Optimal ground state energy of two-phase conductors} \author[A. Mohammadi, M. Yousefnezhad \hfil EJDE-2014/171\hfilneg] {Abbasali Mohammadi, Mohsen Yousefnezhad } % in alphabetical order \address{Abbasali Mohammadi (corresponding author)\\ Department of Mathematics, College of Sciences, Yasouj University, Yasouj 75918-74934, Iran} \email{mohammadi@yu.ac.ir} \address{Mohsen Yousefnezhad \newline Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran. \newline School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5746, Iran} \email{yousefnezhad@mehr.sharif.ir} \thanks{Submitted May 5, 2014. Published August 11, 2014.} \subjclass[2000]{49Q10, 35Q93, 35P15, 33C10} \keywords{Eigenvalue optimization; two-phase conductors; \hfill\break\indent rearrangements; Bessel function} \begin{abstract} We consider the problem of distributing two conducting materials in a ball with fixed proportion in order to minimize the first eigenvalue of a Dirichlet operator. It was conjectured that the optimal distribution consists of putting the material with the highest conductivity in a ball around the center. In this paper, we show that the conjecture is false for all dimensions greater than or equal to two. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction}\label{intro} Let $\Omega$ be a bounded domain in $\mathbb{R}^n$ with a smooth boundary which is to be called the design region and consider two conducting materials with conductivities $0<\alpha< \beta$. These materials are distributed in $\Omega$ such that the volume of the region $D$ occupied by the material with conductivity $\beta$ is a fixed number $A$ with $01$, $\rho_{0}\not\equiv 0$, and let $q\in L^s(\Omega)$, $s=r/(r-1)$, $q\not\equiv 0$. If there is a decreasing function $\eta:\mathbb{R}\to \mathbb{R}$ such that $\eta(q)\in \mathcal{P}$, then \[ \int_{\Omega} \rho q dx \geq \int_{\Omega} \eta(q)q dx \quad \forall \rho \in\mathcal{P}, \] and the function $\eta(q)$ is the unique minimizer relative to $\mathcal{P}$. \end{lemma} For a proof of the above lemma see \cite{bu89}. \section{Disproving the conjecture}\label{main result} In this section, we study the conjecture proposed in \cite{Conca2} when $\Omega$ is a ball in $\mathbb{R}^n$ with $n\geq 2$. We show that the conjecture is false for $n=2,3$ and for every $n \geq 4$. Indeed, we will establish that a ball could not be a global minimizer for the optimization problem \eqref{mainopt} when $\alpha$ and $\beta$ are close to each other (low contrast regime) and $A$ is large enough. It should be noted that our method is not as complicated as the approach has been stated in \cite{Conca3} and we deny the conjecture in a simpler way. We hereafter regard $\Omega\subset \mathbb{R} ^n$ as the unit ball centered at the origin. Assume that $\psi$ is the eigenfunction corresponding to the principal eigenvalue of the Laplacian with Dirichlet's boundary condition on $\Omega $. Then, one can consider $\psi=\psi(r)$ as a radial function which satisfies \begin{equation}\label{laplacian} \begin{gathered} r^2\psi''(r)+(n-1)r\psi'(r)+\lambda r^2\psi(r)=0\quad 00$ for $0t^2. \end{cases} \] This yields \[ \eta(|\nabla u_0|^2)=\beta \chi_{D_1}+\alpha \chi_{D_1^c}. \] From lemma \ref{chirho} and \ref{ber}, we deduce \[ \int (\beta\chi_{D_1}+\alpha \chi_{D_1^c}) |\nabla u_0|^2dx \leq\int (\beta\chi_{D_0}+\alpha \chi_{D_0^c}) |\nabla u_0|^2dx, \] and then we have $\lambda(D_1)\leq \lambda(D_0)$ invoking \eqref{lambdavar}. \end{proof} \begin{remark}\label{levelsetofu} \rm In theorem \ref{lurianthem}, if $D_1\neq D_0$, then \[ \int (\beta\chi_{D_1}+\alpha \chi_{D_1^c}) |\nabla u_0|^2dx <\int (\beta\chi_{D_0}+\alpha \chi_{D_0^c}) |\nabla u_0|^2dx, \] applying the uniqueness of the minimizer in lemma \ref{ber}. Thus, we observe that $\lambda(D_1)< \lambda(D_0)$ when $D_1\neq D_0$. \end{remark} \begin{remark}\label{approximant} \rm In \cite{Conca3}, it has been proved that if ${\rho}_*=\beta\chi_{D_*}+\alpha \chi_{D_*^c}$ is the minimizer of \begin{equation}\label{appproblem} \min_{\rho \in\mathcal{P}} \int_{\Omega} \rho |\nabla \psi|^2 dx, \end{equation} then the set $D_*$ is an approximate solution for \eqref{mainopt}, under the assumption of low contrast regime. By arguments similar to those in the proof of theorem \ref{lurianthem}, one can determine the unique minimizer of problem \eqref{appproblem}, ${\rho}_*=\beta\chi_{D_*}+\alpha \chi_{D_*^c}$, using formulas \eqref{tformulap} and \eqref{tformula}. Recall from lemma \ref{maxrho} that $|\psi'(r)|$ has a unique maximum point $\rho_n$ in $(0,1)$ and it is a continuous function on $[0,1]$ with $|\psi'(0)|=0$. Then the unique symmetrical domain $D_*$ which ${\rho}_*=\beta\chi_{D_*}+\alpha \chi_{D_*^c}$ is the solution of \eqref{appproblem} is of two possible types. The set $D_*$ is a ball centered at the origin if $A\leq |\mathcal{B}(0, \rho_n)|$ and it is the union of a ball and an annulus touching the outer boundary of $\Omega$ if $A> |\mathcal{B}(0, \rho_n)|$. This result has been established in \cite{Conca3} for $n=2,3$. \end{remark} Now we are ready to state our main result. We establish that locating the material with the highest conductivity in a ball centered at the origin is not the minimal distribution since we can find another radially symmetric distribution of the materials which has a smaller basic frequency. \begin{theorem}\label{bestresult} Let $D_0=\mathcal{B}(0,\rho)\subset \Omega$ be a ball centered at the origin with $|D_0|=A$. If $\beta$ is sufficiently close to $\alpha$ and $\rho> \rho_n$, then there is a set $D_1\subset \Omega$ with $|D_1|=A$ containing a radially symmetric subset of $D_0^c$ where $\lambda(D_1)<\lambda(D_0)$. \end{theorem} \begin{proof} Suppose $u_0$ is the eigenfunction of \eqref{mainpde} associated with $\lambda=\lambda(D_0)$ such that $\|u_0\|_{L^2(\Omega)}=1$. Utilizing theorem \ref{lurianthem} and remark \ref{levelsetofu}, we conclude $\lambda(D_1)<\lambda(D_0)$ provided \[ D_1=\{x: |\nabla u_0|\leq t\}, \quad t=\inf\{s\in \mathbb{R} : |\{x: |\nabla u_0|\leq s\}|\geq A\}, \] and $D_0\neq D_1$. One can observe that $u_0$ satisfies the transmission problem \begin{equation} \label{traneq} \begin{gathered} -\beta \Delta v_1 = \lambda v_1\quad \text{in } D_0, \\ -\alpha \Delta v_2 = \lambda v_2\quad \text{in } D_0^c, \\ v_1(x)=v_2(x) \quad\text{on }\partial D_0, \\ \beta\frac{\partial}{\partial \mathfrak{n}} v_1 =\alpha\frac{\partial}{\partial \mathfrak{n}} v_2\quad \text{on } \partial D_0m \\ v_2(x)=0\quad\text{on } \partial \Omega, \end{gathered} \end{equation} where $\mathfrak{n}$ is the unit outward normal. According to the above representation, $u_0$ is an analytic function in the closure of sets $D_0$ and $D_0^c$ employing the analyticity theorem \cite{john}. We should assert that $D_0\neq D_1$. To this end, let us note that $u_0$ is a radial function and so $u_0(x)=y(r)$, $r=\|x\|$, where the function $y$ solves \begin{equation} \label{radialeq} \begin{gathered} y''(r)+\frac{n-1}{r}y'(r)+\frac{\lambda}{\beta} y(r) =0 \quad \text{in }(0,\rho) \\ y''(r)+\frac{n-1}{r}y'(r)+\frac{\lambda}{\alpha} y(r) =0 \quad \text{in }(\rho,1) \\ y(\rho^-)=y(\rho^+) \\ \beta y'(\rho^-)=\alpha y'(\rho^+) \\ y'(0)=0,\quad y(1)=0. \end{gathered} \end{equation} We introduce $y_1(r)$ and $y_2(r)$ as the solutions of \eqref{radialeq} in $[0, \rho]$ and $[\rho, 1]$ respectively. We claim that if \begin{equation}\label{maininequality} |y_2'(1)|< z=\underset{r\in[0,\rho]}{\max} |y_1'(r)|, \end{equation} then $D_1$ contains a radially symmetric subset of $D_0^c$ and so $D_1$ is not equal to $D_0$. Recall that level sets of $|\nabla u_0|$ have measure zero. Hence, if $|y_2'(r)|>z$ for all $r$ in $[\rho,1]$ then $D_1=\{x:\; |\nabla u_0|\leq t\}=D_0$ with $t=z$. On the other hand, if $|y_2'(1)|0$ when $\rho>\rho_n$. Thus, if $\beta$ is close to $\alpha$ enough, we have \begin{equation}\label{lastrel1} \|y_2'(\rho)|-|y_2'(1)\|> {d_n}/2, \end{equation} and \begin{equation}\label{lastrel2} |y_2'(\rho)|\to |\psi'(\rho)|,\quad |y_2'(1)|\to |\psi'(1)|,\quad |y_2'(\rho)|\to |y_1'(\rho)|, \end{equation} as $\beta$ converges to $\alpha$. Applying \eqref{lastrel1} and \eqref{lastrel2}, leads us to inequalities \[ |y_2'(1)|<|y_1'(\rho)| \leq z. \] \end{proof} \begin{thebibliography}{99} \bibitem{Alvino} A. Alvino, G. Trombetti, P.-L. Lions; \emph{On optimization problems with prescribed rearrangements,} Nonlinear Anal. {13} (1989) 185--220. \bibitem{john} L. Bers, F. John, M. Schechter; \emph{Partial differential equations}, Lectures in applied mathematics, vol III, American Mathematical Society, Providence, RI, 1964. \bibitem{Bowman} F. Bowman; \emph{Introduction to Bessel Functions,} Dover, New York, 1958. \bibitem{bu89} G. R. Burton; \emph{Variational problems on classes of rearrangements and multiple configurations for steady vortices,} Ann. Inst. H. Poincar\'e. Anal. Non Lin\'eaire 6. {4} (1989) 295--319. \bibitem{chanillo} S. Chanillo, D. Grieser, M. Imai, K. Kurata, I. Ohnishi; \emph{Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes}, Commun. Math. Phys. 214 (2000) 315--337. \bibitem{Conca3} C. Conca, A. Laurain, R. Mahadevan; \emph{Minimization of the ground state for two phase conductors in low contrast regime,} Siam J. Appl. Math. 72 (2013) 1238--1259. \bibitem{Conca2} C. Conca, R. Mahadevan, L. Sanz; \emph{Shape derivative for a two-phase eigenvalue problem and optimal configurations in a ball,} In CANUM 2008, ESAIM Proc. 27, EDP Sci., Les Ulis, France, 2009, 311--321. \bibitem{Conca1} C. Conca, R. Mahadevan, L. Sanz; \emph{A minimax principle for nonlinear eigenproblems depending continuously on the eigenparameter,} Appl. Math. Optim. {60} (2009) 173--184. \bibitem{coxlipton} S. Cox, R. Lipton; \emph{Extremal eigenvalue problems for two-phase conductors,} Arch. Ration. Mech. Anal. {136} (1996) 101--117. \bibitem{emamipro} F. Cuccu, B. Emamizadeh, G. Porru; \emph{Optimization of the first eigenvalue in problems involving the p-Laplacian}, Proc. Amer. Math. Soc. 137 (2009) 1677--1687. \bibitem{Ketab} M. Dambrine, D. Kateb; \emph{On the shape sensitivity of the first Dirichlet eigenvalue for two-phase problems,} Appl. Math. Optim. {63} (2011) 45--74. \bibitem{emamielec-1} B. Emamizadeh, J. V. Prajapat; \emph{Symmetry in rearrangenemt optimization problems,} Electron. J. Differential Equations. {149} (2009) 1--10. \bibitem{gilbarg} D. Gilbarg, N. S. Trudinger; \emph{Elliptic partial differential equations of second order,} second edt, Springer-Verlag, New York, 1998. \bibitem{Kerien} M. G. Krien; \emph{On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability }, Amer. Math. Soc. Transl. {2} (1955) 163--187. \bibitem{rutman} M. G. Krein, M. A. Rutman; \emph{Linear operators leaving invariant a cone in a Banach space}, Uspekhi Mat. Nauk. 3 (1948) 3--95. \bibitem{lieb} E. H. Lieb, M. Loss; \emph{Analysis}, American Mathematical Society, Providence, RI, 1997. \bibitem{abbasali2} A. Mohammadi, F. Bahrami; \emph{A nonlinear eigenvalue problem arising in a nanostructured quantum dot,} Comm. Nonlinear Sci. Numer. Simul. 19 (2014) 3053-3062. \bibitem{abbasali} A. Mohammadi, F. Bahrami, H. Mohammadpour; \emph{Shape dependent energy optimization in quantum dots}, Appl. Math. Lett. 25 (2012) 1240--1244. \bibitem{murat} F. Murat, L. Tartar; \emph{Calculus of variations and homogenization (eng. trans. of origin french article)}, Topics in the mathematical modeling of composite materials, Eds. A. Charkaev and R.V. Kohn, PNLDE 31. Birkh\"{a}user. \bibitem{rellich} F. Rellich; \emph{Perturbation theory of eigenvalue problems}, Note on Mathemathics and its Applications, Gordon and Breach, New York, 1969. \bibitem{Watson} G. N. Watson; \emph{A Treatise on the Theory of Bessel Function,} second edt, Cambridge University Press, 1995. \end{thebibliography} \end{document}