\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 176, pp. 1--19.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/176\hfil Weak inverse problems] {Weak inverse problems for parabolic integro-differential equations containing \\ two kernels} \author[K. Kasemets, J. Janno \hfil EJDE-2014/176\hfilneg] {Kairi Kasemets, Jaan Janno} % in alphabetical order \address{Kairi Kasemets \newline Tallinn University of Technology, Ehitajate tee 5, Tallinn, Estonia} \email{kairi.kasemets@ttu.ee} \address{Jaan Janno \newline Tallinn University of Technology, Ehitajate tee 5, Tallinn, Estonia} \email{janno@ioc.ee} \thanks{Submitted April 8, 2014. Published August 15, 2014.} \subjclass[2000]{35R30, 80A23} \keywords{Inverse problem; parabolic integro-differential equation; \hfill\break\indent relaxation kernel; quasi-solution} \begin{abstract} An inverse problem to determine a coefficient and two kernels in a parabolic integro-differential equation is considered. A corresponding direct problem is supposed to be in the weak form. Existence of the quasi-solution is proved and issues related to Fr\'echet differentiation of the cost functional are treated. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction}\label{s:intro} Inverse problems to determine coefficients and kernels in integro-differential heat equations are well-studied in the smooth case when the medium is continuous and corresponding direct problems hold in the classical sense (selection of references: \cite{berca,Ge,gra,j1,jk1,jvw1,jk2,lome,lomo,lovra,PJ}). For instance, in \cite{jk1} problems to determine space-dependent coefficients by means of final over-determination of the solution of the direct problem are dealt with. This paper exploits and generalizes methods developed earlier in the usual parabolic case \cite{Bush,Isakov}. Results are known for particular non-smooth cases, as well. For instance, identification problems for parabolic transmission problems are considered in \cite{jlo2} under additional smoothness assumptions in neighbourhoods of observation areas. Several papers deal with degenerate cases (see \cite{ILS} and references therein). In \cite{jk3} problems to reconstruct free terms and coefficients in a weak parabolic problem containing a single kernel (heat flux relaxation kernel) are considered. In particular, a new method that enables to deduce formulas for Fr\'echet derivatives for cost functionals of inverse problems is proposed. In the present article we consider the inverse problem of determining two kernels and a coefficient in a parabolic integro-differential equation. The corresponding direct problem is posed in the weak form. We prove the Fr\'echet differentiability of the cost functional related to the inverse problem and deduce a suitable form for the Fr\'echet derivative in terms of an adjoint problem. In this connection we use an integrated convolutional form of the weak direct problem that enables to use test functions without classical time derivatives. Finally, we prove the existence of the quasi-solution of the inverse problem under certain restrictions. Inverse problems for smooth models with two kernels were formerly considered in \cite{gra,jvw1,PJ}. \section{Formal statement of problems}\label{s:2} Let $\Omega$ be a $n$-dimensional domain, where $n\ge 1$ and $\Gamma=\partial\Omega$. Further, let $\Gamma= \Gamma_1\cup \Gamma_2$ with $\operatorname{meas} \Gamma_1\cap\Gamma_2=0$, $\operatorname{meas}\Gamma_2>0$ and either $\Gamma_1=\emptyset$ or $\operatorname{meas}\Gamma_1>0$. In case $n\ge 2$ we assume $\Gamma$ to be sufficiently smooth. Define $$ \Omega_t= \Omega\times (0,t),\quad \Gamma_{1,t}= \Gamma_1\times (0,t),\quad \Gamma_{2,t}= \Gamma_2\times (0,t) $$ for $t\ge 0$. Let $T>0$. We pose the formal direct problem: find $u(x,t): \Omega_T\to \mathbb{R}$ such that \begin{gather} \label{e1} u_t+(\mu*u)_t = Au - m*Au + f+\nabla \cdot \phi+\varphi_t\quad \text{in }\Omega_T, \\ \label{e2} u=u_0 \quad \text{in }\Omega\times \{0\}, \\ \label{e3} u=g \quad \text{in }\Gamma_{1,T}, \\ \label{e4} -\nu_{A}\cdot \nabla u + m* \nu_{A}\cdot \nabla u = \vartheta u+h +\nu\cdot \phi\quad \text{in }\Gamma_{2,T}, \end{gather} where \[ Av=\sum_{i,j=1}^n \left(a_{ij}v_{x_j}\right)_{x_i}+av,\quad \nu_{A}= \Big(\sum_{j=1}^n a_{ij}\nu_j\bigl|_{i=1,\ldots,n}\Big), \] $\nu=(\nu_1,\ldots,\nu_n)$ is the outer normal of $\Gamma_2$, $a_{ij},a,u_0 : \Omega\to \mathbb{R}$, $f, \varphi : \Omega_T\to \mathbb{R}$, $\phi : \Omega_T\to \mathbb{R}^n$, $g : \Omega_T\to \mathbb{R}$, $\vartheta : \Gamma_2\to\mathbb{R}$, $h :\Gamma_{2,T}\to \mathbb{R}$, $\mu, m : (0,T)\to \mathbb{R}$ are given functions and $$ z*w(t)=\int_0^t z(t-\tau)w(\tau)d\tau $$ is the convolution with respect to the variable $t$. In the case $\Gamma_1=\emptyset$, the boundary condition \eqref{e3} is omitted. The second and third addend of the free term of the equation \eqref{e1}; i.e., $\nabla\cdot \phi$ and $\varphi_t$ may be singular distributions. The problem \eqref{e1}--\eqref{e4} governs the heat conduction in the body $\Omega$ filled with material with memory, where $\mu$ and $m$ are the relaxation kernels of the internal energy and the heat flux, respectively and $u$ is the temperature \cite{am,Ge,gra,Nu}. Then the condition \eqref{e4} corresponds to the third kind boundary condition, namely it contains the heat flux to the co-normal direction $-\nu_{A}\cdot \nabla u + m* \nu_{A}\cdot \nabla u$. Let us formulate the inverse problem: \subsection*{IP} Find $a$, $m$ and $\mu$ such that the solution of \eqref{e1}--\eqref{e4} satisfies the following final and integral additional conditions: \begin{gather} \label{ip1} u=u_T\quad \text{in }\Omega\times\{T\},\\ \label{ip2} \int_{\Gamma_2}\kappa_j(x,\cdot)u(x,\cdot)d\Gamma= v_j \quad \text{in }(0,T),\; j=1,2, \end{gather} where $u_T: \Omega\to \mathbb{R}$, $\kappa_j: \Gamma_{2,T}\to \mathbb{R}$ and $v_j: (0,T)\to \mathbb{R}$ are prescribed functions. \begin{remark} \rm In the case $n=1$ and $\Omega=(c,d)$, the integral $\int_{\Gamma_2}z(x)d\Gamma$ is merely the sum $\sum_{l=1}^L z(x_l)$, where $x_l\in \Gamma_2\subseteq \{c;d\}$ and $L$ is the number of points in $\Gamma_2$ (i.e $L\in \{1;2\}$). Then the conditions \eqref{ip2} read \begin{equation}\label{ip2n=1} \sum_{l=1}^L \kappa_j(x_l,\cdot)u(x_l,\cdot) = v_j \quad \text{in $(0,T)$,}\quad j=1,2. \end{equation} \end{remark} \section{Results concerning direct problem}\label{s:3} Let us start by a rigorous mathematical formulation of the direct problem. Define the following functional spaces: \begin{gather*} \mathcal{U}(\Omega_t)= C([0,t];L^2(\Omega))\cap L^2((0,t);W^{1}_2(\Omega)), \\ \mathcal{U}_0(\Omega_t)=\Big\{\eta \in \mathcal{U}(\Omega_t): \eta|_{\Gamma_{1,t}}=0\;\;\text{in case $\Gamma_1\ne \emptyset$}\Big\}, \\ \mathcal{T}(\Omega_t)= \big\{\eta \in L^2((0,t);W_2^1(\Omega)): \eta_t\in L^2((0,t);L^2(\Omega))\big\}, \\ \mathcal{T}_0(\Omega_t)=\Big\{\eta \in \mathcal{T}(\Omega_t): \eta|_{\Gamma_{1,t}}=0\text{ in case $\Gamma_1\ne \emptyset$}\big\} \end{gather*} and introduce the following basic assumptions on the data of the direct problem: \begin{gather} \label{assum1} a_{ij}\in L^\infty(\Omega),\quad a_{ij}=a_{ji},\quad \vartheta\in C(\overline\Gamma_{2}),\quad \vartheta\ge 0, \\ \label{assum4} \sum_{i,j=1}^n a_{ij}(x)\lambda_i\lambda_i\ge \epsilon|\lambda|^2, \quad x\in \Omega,\; \lambda\in\mathbb{R}^n \; \text{with some }\epsilon>0, \\ \label{assum1a} a\in L^{q_1}(\Omega),\quad\text{where }q_1=1 \text{ if } n=1,\; q_1>\frac{n}{2} \text{ if } n\ge 2, \\ \label{assum2} \mu\in L^2(0,T),\quad m\in L^1(0,T)\,, \\ \label{assum3aa} u_0\in L^2(\Omega),\quad g\in \mathcal{T}(\Omega_T),\quad h\in L^2(\Gamma_{2,T}), \\ \label{assum3} \begin{gathered} f\in L^2((0,T);L^{q_2}(\Omega)),\text{ where } q_2=1 \text{ if } n=1,\\ q_2\in (1,q_1) \text{ if } n=2,\;\; q_2=\frac{2n}{n+2} \text{ if } n \ge 3, \end{gathered} \\ \label{assum3a} \phi=(\phi_1,\ldots,\phi_n)\in (L^2(\Omega_T))^n\, , \\ \label{assumlisa} \varphi\in \mathcal{U}(\Omega_T), \text{ in case } \Gamma_1\ne\emptyset\\;\exists g_\varphi\in \mathcal{T}(\Omega_T) : \varphi=g_{\varphi}\text{ in }\Gamma_{1,T}. \end{gather} If we assume additional conditions $a_{ij}\in W_2^1(\Omega)$, $\frac{\partial}{\partial x_i} \phi_{i}\in L^2(\Omega_T)$, $i=1,\ldots,n$, $\varphi_t\in L^2(\Omega_T)$ and suppose that \eqref{e1}--\eqref{e4} has a classical solution $u\in L^2(\Omega_T)$ such that $u_t,u_{x_i},u_{x_ix_j}\in L^2(\Omega_T)$, $i,j=1,\ldots,n$, then multiplying \eqref{e1} with a test function $\eta\in \mathcal{T}_0(\Omega_T)$ and integrating by parts we come to the relation \begin{equation} \label{weakprobl} \begin{aligned} 0 &= \int_{\Omega}\left[(u+\mu*u)(x,T)\eta(x,T) - u_0(x)\eta(x,0)\right]dx - \iint_{\Omega_T}(u+\mu*u)\eta_t \,dx\,dt \\ &\quad + \iint_{\Omega_T}\Bigl[\sum_{i,j=1}^n a_{ij}(u_{x_j}-m*u_{x_j})\eta_{x_i}-a(u-m*u)\eta\Bigl] \,dx\,dt \\ &\quad+\iint_{\Gamma_{2,T}} (\vartheta u+h)\eta\, d\Gamma dt - \iint_{\Omega_T} (f\eta-\phi\cdot\nabla\eta) \,dx\,dt \\ &\quad - \int_{\Omega}[\varphi(x,T)\eta(x,T) - \varphi(x,0)\eta(x,0)]dx+ \iint_{\Omega_T}\varphi\eta_t\,dx\,dt. \end{aligned} \end{equation} This relation makes sense also in a more general case when $a_{ij}$, $\phi$, $\varphi$ satisfy \eqref{assum1}, \eqref{assum3a}, \eqref{assumlisa} and $u\in \mathcal{U}(\Omega_T)$. We call a \emph{weak solution} of the problem \eqref{e1}--\eqref{e4} a function belonging to $\mathcal{U}(\Omega_T)$ that satisfies the relation \eqref{weakprobl} for any $\eta\in \mathcal{T}_0(\Omega_T)$ and, in case $\Gamma_1\ne \emptyset$, that fulfills the boundary condition \eqref{e3}. \begin{theorem} \label{thm1} Problem \eqref{e1}--\eqref{e4} has a unique weak solution. This solution satisfies the estimate \begin{equation}\label{t1est} \begin{aligned} \|u\|_{\mathcal{U}(\Omega_T)} &\le C_0\Bigl[\|u_0\|_{L^2(\Omega)}+\|f\|_{L^2((0,T);L^{q_2}(\Omega))} +\|\phi\|_{(L^2(\Omega_T))^n} \\ &\quad+\|\varphi\|_{\mathcal{U}(\Omega_T)}+\theta\{\|g\|_{\mathcal{T}(\Omega_T)} +\|g_\varphi\|_{\mathcal{T}(\Omega_T)}\}+ \|h\|_{L^2(\Gamma_{2,T})} \Bigl], \end{aligned} \end{equation} where $\theta=0$ in case $\Gamma_1=\emptyset$ and $C_0$ is a constant independent of $u_0,f,\phi,\varphi,g,h$. \end{theorem} \begin{proof} Since $\mu\in L^2(0,T)$, the Volterra equation of the second kind \begin{equation}\label{Volt} \widehat\mu+\mu*\widehat\mu=-\mu \quad \text{in $(0,T)$}. \end{equation} has a unique solution $\widehat\mu\in L^2(0,T)$ \cite{Gri}. We call $\widehat\mu$ the resolvent kernel of $\mu$. Further, let us consider the following problem: \begin{gather} \label{e1h} \widehat u_t= A\widehat u - \widehat m*A\widehat u + \widehat f +\nabla \cdot \widehat\phi\quad \text{in }\Omega_T, \\ \label{e2h} \widehat u=\widehat u_0 \quad \text{in }\Omega\times \{0\}, \\ \label{e3h} \widehat u=\widehat g \quad \text{in }\Gamma_{1,T}, \\ \label{e4h} -\nu_{A}\cdot \nabla \widehat u + \widehat m* \nu_{A}\cdot \nabla \widehat u = \vartheta \widehat u+\vartheta\widehat\mu*\widehat u+\widehat h +\nu\cdot \widehat\phi\quad \text{in }\Gamma_{2,T}, \end{gather} where \begin{gather*} \widehat m= m-\widehat\mu+m*\widehat\mu\, ,\quad \widehat f = f+a\varphi-\widehat m*a\varphi, \\ \widehat\phi_i=\phi_i+\sum_{j=1}^n a_{ij}\varphi_{x_j} -\widehat m*\sum_{j=1}^n a_{ij}\varphi_{x_j}, \\ \widehat h=h+\vartheta\varphi+\vartheta\widehat\mu*\varphi\, ,\quad \widehat g=g+\mu*g-g_\varphi\, ,\quad \widehat u_0=u_0-\varphi(\cdot,0). \end{gather*} By the properties of $m$ and $\widehat \mu$ we have $\widehat m\in L^1(0,T)$. Further, \cite[Lemma 1]{jk3} yields \begin{equation}\label{lemma1a} \begin{gathered} \mathcal{U}(\Omega_T)\hookrightarrow L^2((0,T);L^{q_3}(\Omega))\, ,\quad \text{where $q_3=\infty$ if $n=1$,} \\ q_3>\frac{q_1q_2}{q_1-q_2}\text{ if }n=2, \; q_3=\frac{2n}{n-2} \text{ if }n\ge 3 \end{gathered} \end{equation} and \begin{equation}\label{lemma1b} \begin{gathered} av\in L^2((0,T);L^{q_2}(\Omega))\text{ if }a\in L^{q_1}(\Omega),\; v\in L^2((0,T);L^{q_3}(\Omega)), \\ \|av\|_{L^2((0,T);L^{q_2}(\Omega))} \le C\|a\|_{L^{q_1}(\Omega)}\|v\|_{L^2((0,T);L^{q_3}(\Omega))}, \end{gathered} \end{equation} where $C$ is a constant. Using the relations \eqref{lemma1a}, \eqref{lemma1b}, the properties of $\widehat m$, $\widehat\mu$, the assumptions \eqref{assum1}--\eqref{assumlisa}, trace theorems and the Young theorem for convolutions we obtain \begin{align*} &\widehat d:=(\widehat f,\widehat\phi,\widehat u_0,\widehat g,\widehat h) \in \mathcal{X}\\ &:= L^2((0,T);L^{q_2}(\Omega))\times (L^2(\Omega_T))^n\times L^2(\Omega)\times \mathcal{T}(\Omega_T)\times L^2(\Gamma_{2,T}), \end{align*} \begin{equation} \label{qq1} \|\widehat d\|_\mathcal{X}\le \bar C\|d\|_{\bar{\mathcal{X}}} \end{equation} where $d=(f,\phi,u_0,g,h,\varphi,g_\varphi)$ and \[ \bar{\mathcal{X}}=L^2((0,T);L^{q_2}(\Omega)) \times (L^2(\Omega_T))^n\times L^2(\Omega) \times \mathcal{T}(\Omega_T)\times L^2(\Gamma_{2,T}) \times \mathcal{U}(\Omega_T)\times \mathcal{T}(\Omega_T) \] and $\bar C$ is a constant. It was proved in \cite[Theorem 1]{jk3} that problem \eqref{e1}--\eqref{e4} in case $\mu=0$ and $\varphi=0$ has for any $(f,\phi,u_0,g,h)\in \mathcal{X}$ a unique weak solution and the corresponding solution operator $\mathcal{B}$ belongs to $\mathcal{L}(\mathcal{X};\mathcal{U}(\Omega_T))$. (Here $\mathcal{L}(X,Y)$ stands for the space of linear bounded operators from a Banach space $X$ to a Banach space $Y$.) This implies that problem \eqref{e1h}--\eqref{e4h} is equivalent in $\mathcal{U}(\Omega_T)$ to the following operator equation: \begin{equation}\label{qq2} \widehat u= \mathcal{Q}\widehat u\quad \text{with}\quad \mathcal{Q}\widehat u= \mathcal{B}(0,0,0,0,\vartheta\widehat\mu*\widehat u) +\mathcal{B}\widehat d. \end{equation} To study this equation, we will use the inequality \begin{equation}\label{qq3} \|\widehat \mu *y\|_{L^2(\Omega_t)}\le \int_0^t |\widehat \mu(t-\tau)|\, \|y\|_{L^2(\Omega_\tau)}d\tau\,,\quad t\in [0,T] \end{equation} that holds for any $y\in L^2(\Omega_T)$. This was proved in \cite[inequality (3.12)]{jk3}. Let $\widehat u^1,\widehat u^2\in \mathcal{U}(\Omega_T)$, denote $v=\widehat u^1-\widehat u^2$ and estimate $\mathcal{Q}\widehat u^1-\mathcal{Q}\widehat u^2 =\mathcal{B}(0,0,0,0,\vartheta\widehat\mu*v)$. To this end, fix $t\in [0,T]$ and define \begin{equation}\label{Pt} P_tw=\begin{cases} w &\text{in }\Gamma_{2,t}\\ 0 &\text{in }\Gamma_{2,T}\setminus\Gamma_{2,t} \end{cases} \end{equation} for $w: \Gamma_{2,T}\to \mathbb{R}$. Due to the causality, we have $\mathcal{B}(0,0,0,P_t\vartheta\widehat\mu*v)(x,\tau) =\mathcal{B}(0,0,0,\vartheta\widehat\mu*v)(x,\tau)$ for any $(x,\tau)\in\Omega_t$. Since $\mathcal{B}\in \mathcal{L}(\mathcal{X};\mathcal{U}(\Omega_T))$, the continuity of $\vartheta$, the trace theorem and the inequality \eqref{qq3} with $y=v,v_{x_i}$, $i=1,\ldots,n$, it follows that \begin{equation} \begin{aligned} \|\mathcal{Q}\widehat u^1-\mathcal{Q}\widehat u^2\|_{\mathcal{U}(\Omega_t)} &=\|\mathcal{B}(0,0,0,0,\vartheta\widehat\mu*v) \|_{\mathcal{U}(\Omega_t)} \\ &=\|\mathcal{B}(0,0,0,0,P_t\vartheta\widehat\mu*v)\|_{\mathcal{U}(\Omega_t)}\\ &\le\|\mathcal{B}(0,0,0,0,P_t\vartheta\widehat\mu*v)\|_{\mathcal{U}(\Omega_T)} \\ &\le \|\mathcal{B}\| \|P_t\vartheta\widehat\mu*v\|_{L^2(\Gamma_{2,T})} = \|\mathcal{B}\| \|\vartheta\widehat\mu*v\|_{L^2(\Gamma_{2,t})} \\ &\le C_1 \|\widehat\mu*v\|_{L^2((0,t);W_2^1(\Omega))}\\ &\le C_2\int_0^t |\widehat \mu(t-\tau)|\, \|v\|_{L^2((0,\tau);W_2^1(\Omega))}d\tau \end{aligned} \label{qq4} \end{equation} with some constants $C_1$ and $C_2$. Let us define the weighted norm in $\mathcal{U}(\Omega_T)$: $\|v\|_\sigma=\sup_{00$, and estimating by means of the Young and Cauchy inequalities we obtain \begin{align*} \|e^{-\sigma t}\widehat\mu_k\|_{L^2(0,T)} &\le \|e^{-\sigma t}\mu_k*e^{-\sigma t}\widehat\mu_k\|_{L^2(0,T)}+ \|e^{-\sigma t}\mu_k\|_{L^2(0,T)} \\ &\le \|e^{-\sigma t}\mu_k\|_{L^1(0,T)}\|e^{-\sigma t}\widehat\mu_k\|_{L^2(0,T)}+ \|e^{-\sigma t}\mu_k\|_{L^2(0,T)} \\ &\le \|e^{-\sigma t}\|_{L^2(0,T)}\|\mu_k\|_{L^2(0,T)}\|e^{-\sigma t} \widehat\mu_k\|_{L^2(0,T)}+ \|e^{-\sigma t}\mu_k\|_{L^2(0,T)}. \end{align*} Observing that $\|e^{-\sigma t}\|_{L^2(0,T)}\le 1/ \sqrt{2\sigma }$ and choosing $\sigma=\sigma_1=2[\sup\|\mu_k\|_{L^2(0,T)}]^2$ we get $$ \|e^{-\sigma_1 t}\widehat\mu_k\|_{L^2(0,T)}\le 2 \|e^{-\sigma_1 t}\mu_k\|_{L^2(0,T)} \,\Rightarrow\, \|\widehat\mu_k\|_{L^2(0,T)}\le 2 e^{\sigma_1 T}\sup \|\mu_k\|_{L^2(0,T)}. $$ This shows that the sequence $\widehat\mu_k$ is bounded. The difference $\widehat\mu_k-\widehat\mu$ can be expressed as $$ \widehat\mu_k-\widehat\mu=-(\mu_k-\mu)-v_k*(\mu_k-\mu), $$ where $v_k=\widehat\mu+\widehat\mu_k+\widehat\mu*\widehat\mu_k$ is a bounded sequence in $L^2(0,T)$. Denote by $\langle\cdot,\cdot\rangle$ the inner product in $L^2(0,T)$. With an arbitrary $\zeta\in L^2(0,T)$ we have \begin{equation}\label{exis1} \langle\widehat\mu_k- \widehat\mu,\zeta\rangle=-\langle\mu_k- \mu,\zeta\rangle-N_k,\; N_k= \int_0^T v_k(\tau) \int_0^{T-\tau} (\mu_k-\mu)(s)\zeta(\tau+s)dsd\tau. \end{equation} Since $\zeta(\tau+\,\cdot)\in L^2(0,T-\tau)$ for $\tau\in (0,T)$, it holds $\int_0^{T-\tau}(\mu_k-\mu)(s)\zeta(\tau+s)ds\to 0$ for $\tau\in (0,T)$. Moreover, since $\mu_k$ is bounded in $L^2(0,T)$, the sequence of $\tau$-dependent functions $|\int_0^{T-\tau}(\mu_k-\mu)(s)\zeta(\tau+s)ds|$ is bounded by a constant. By the Cauchy inequality and the dominated convergence theorem, we find $$ |N_k|\le \|v_k\|_{L^2(0,T)} \|\int_0^{T-\,\cdot}(\mu_k-\mu)(s)\zeta(\cdot+s)ds \|_{L^2(0,T)}\to 0. $$ Thus, from \eqref{exis1}, in view of $\mu_k\rightharpoonup\mu$, we obtain $\widehat\mu_k\rightharpoonup\widehat\mu$. Let us define $$ \widehat u= u+\mu*u\,,\quad \widehat u_k= u_k+\mu_k*u_k, $$ where $u=u(x,t;z)$ and $u_k=u(x,t;z_k)$ are the weak solutions of \eqref{e1}--\eqref{e4} corresponding to the vectors $z$ and $z_k$, respectively. The relations $u,u_k\in \mathcal{U}(\Omega_T)$ and $\mu,\mu_k\in L^2(0,T)$ imply $\widehat u,\widehat u_k\in \mathcal{U}(\Omega_T)$. Observing the definitions of the resolvent kernels $\widehat\mu$ and $\widehat\mu_k$ we deduce \begin{gather*} u=\widehat u+\widehat\mu*\widehat u\,,\quad u_k= \widehat u_k+\widehat\mu_k*\widehat u_k, \\ u_k-u=\widehat u_k-\widehat u+\widehat\mu_k*(\widehat u_k-\widehat u) +(\widehat\mu_k-\widehat\mu)*\widehat u. \end{gather*} In view of the latter relation we express the difference of values of the functional $J$ as follows: \begin{equation} \label{exis2} \begin{aligned} &J(z_k)-J(z)\\ &=\int_c^d (u_k-u)^2(x,T)dx + 2\int_c^d [u(x,T)-u_T(x)](u_k-u)(x,T)dx\\ &\quad +\sum_{j=1}^2\int_0^T\Big[\sum_{l=1}^L\kappa_j(x_l,t)(u_k-u)(x_l,t)\Big]^2dt \\ &\quad +2\sum_{j=1}^2\int_0^T\Big[\sum_{l=1}^L\kappa_j(x_l,t)u(x_l,t)-v_j(t)\Big] \Big[\sum_{l=1}^L\kappa_j(x_l,t)(u_k-u)(x_l,t)\Big]dt \\ &= I_k^1+I_k^2+I_k^3+I_k^4, \end{aligned} \end{equation} where \begin{gather*} I_k^1=\int_c^d \Bigl(\widehat u_k-\widehat u+\widehat\mu_k*(\widehat u_k -\widehat u)+(\widehat\mu_k-\widehat\mu)*\widehat u\Bigl)^2(x,T)dx, \\ I_k^2= 2\int_c^d [u(x,T)-u_T(x)]\Bigl(\widehat u_k-\widehat u +\widehat\mu_k*(\widehat u_k-\widehat u) +(\widehat\mu_k-\widehat\mu)*\widehat u\Bigl)(x,T)dx, \\ I_k^3=\sum_{j=1}^2\int_0^T\Big[\sum_{l=1}^L\kappa_j(x_l,t)\Bigl(\widehat u_k -\widehat u+\widehat\mu_k* (\widehat u_k-\widehat u)+(\widehat\mu_k-\widehat\mu)*\widehat u\Bigl)(x_l,t)\Big]^2 dt, \\ \begin{aligned} I_k^4&=2\sum_{j=1}^2\int_0^T\Big[\sum_{l=1}^L\kappa_j(x_l,t)u(x_l,t)-v_j(t)\Big] \\ &\quad\times\Big[\sum_{l=1}^L\kappa_j(x_l,t) \Bigl(\widehat u_k-\widehat u+\widehat\mu_k*(\widehat u_k-\widehat u) +(\widehat\mu_k-\widehat\mu)*\widehat u\Bigl)(x_l,t)\Big]dt. \end{aligned} \end{gather*} Using the Cauchy inequality, $\widehat\mu\in L^2(0,T)$, $\widehat u_k,\widehat u\in \mathcal{U}(\Omega_T)$ and the boundedness of the sequence $\widehat\mu_k$ in $L^2(0,T)$ we obtain \begin{align*} |I_k^1|&\le \|\bigl(\widehat u_k-\widehat u +\widehat\mu_k*(\widehat u_k-\widehat u)\bigl)(\cdot,T)\|_{L^2(c,d)}^2 \\ &\quad + 2\|\bigl((\widehat\mu_k-\widehat \mu)*\widehat u\bigl)(\cdot,T) \|_{L^2(c,d)}\|\bigl(\widehat u_k-\widehat u +\widehat\mu_k*(\widehat u_k-\widehat u)\bigl)(\cdot,T)\|_{L^2(c,d)}+R_k^1 \\ &\le \tilde C_1\bigl(\|\widehat u_k-\widehat u\|_{\mathcal{U}(\Omega_T)}^2 +\|\widehat u_k-\widehat u\|_{\mathcal{U}(\Omega_T)}\bigl)+R_k^1 \end{align*} with a constant $\tilde C_1$ and \[ R_k^1=\int_c^d \Bigl[\int_0^T (\widehat\mu_k-\widehat\mu)(\tau) \widehat u(x,T-\tau)d\tau\Bigl]^2dx. \] Since $\widehat u\in \mathcal{U}(\Omega_T)\subset L^2(\Omega_T)$, by Tonelli's theorem it holds $\widehat u(x,\cdot)\in L^2(0,T)$ a.e. $x\in (c,d)$ $\Rightarrow$ $\widehat u(x,T-\cdot)\in L^2(0,T)$ a.e. $x\in (c,d)$. Thus, in view of $\mu_k\rightharpoonup\widehat\mu$ in $L^2(0,T)$ we have $\int_0^T (\widehat\mu_k-\widehat\mu)(\tau)\widehat u(x,T-\tau)d\tau\to 0$ a.e. $x\in (c,d)$. Moreover, $\Bigl[\int_0^T (\widehat\mu_k-\widehat\mu)(\tau) \widehat u(x,T-\tau)d\tau\Bigl]^2 \le \tilde C_{11} \int_0^T[\widehat u(x,\tau)]^2d\tau \in L^1(c,d)$ with a constant $\tilde C_{11}$, because the sequence $\widehat\mu_k$ is bounded in $L^2(0,T)$. Therefore, by the dominated convergence theorem we obtain $R_k^1\to 0$. Similarly for $I_k^2$ we get \begin{align*} |I_k^2|&\le 2\|u(\cdot,T)-u_T\|_{L^2(c,d)}\|\bigl(\widehat u_k-\widehat u +\widehat\mu_k*(\widehat u_k-\widehat u)\bigl)(\cdot,T)\|_{L^2(c,d)}+R_k^2 \\ &\le \tilde C_2 \|\widehat u_k-\widehat u\|_{\mathcal{U}(\Omega_T)} + R_k^2, \end{align*} where $\tilde C_2$ is a constant and \begin{equation}st R_k^2=\int_c^d [u(x,T)-u_T(x)]\int_0^T (\widehat\mu_k-\widehat\mu)(\tau) \widehat u(x,T-\tau)d\tau dx. \end{equation}st By the same reasons as above, it holds $R_k^2\to 0$. Next, let us estimate $I_k^3$: \begin{align*} |I_k^3| &\le L^2\sum_{j=1}^2\max_{1\le l\le L}\Bigl[\|\kappa_j(x_l,\cdot)\|_{L^\infty(0,T)}^2\|\bigl(\widehat u_k-\widehat u+ \widehat\mu_k*(\widehat u_k-\widehat u)\bigl)(x_l,\cdot)\|_{L^2(0,T)}^2\Bigl] \\ &\quad + 2L^2\sum_{j=1}^2\max_{1\le l\le L}\Bigl[\|\kappa_j(x_l,\cdot)\|^2_{L^\infty(0,T)}\|\bigl((\widehat\mu_k-\widehat \mu)*\widehat u\bigl)(x_l,\cdot)\|_{L^2(0,T)} \\ &\quad\times \|\bigl(\widehat u_k-\widehat u+\widehat\mu_k*(\widehat u_k-\widehat u)\bigl)(x_l,\cdot)\|_{L^2(0,T)}\Bigl]+R_k^3 \\ &\le \tilde C_3\bigl(\|\widehat u_k-\widehat u\|_{\mathcal{U}(\Omega_T)}^2+ \|\widehat u_k-\widehat u\|_{\mathcal{U}(\Omega_T)}\bigl)+R_k^3, \end{align*} where $\tilde C_3$ is a constant and \[ R_k^3=L^2\sum_{j=1}^2\max_{1\le l\le L}\Bigl\{\|\kappa_j(x_l,\cdot) \|_{L^\infty(0,T)}^2 \int_0^T \Bigl[\int_0^t (\widehat\mu_k-\widehat\mu)(\tau) \widehat u(x_l,t-\tau)d\tau\Bigl]^2dt\Bigl\}. \] Here we also used the embedding $\mathcal{U}(\Omega_T)\hookrightarrow L^2((0,T);C[c,d])$ that holds in the case $n=1$. Since $\widehat u(x_l,t-\cdot)\in L^2(0,t)$ for all $t\in (0,T)$ we get $\int_0^t (\widehat\mu_k-\widehat\mu)(\tau)\widehat u(x_l,t-\tau)d\tau\to 0$ for all $t\in (0,T)$. Moreover, the sequence $|\int_0^t (\widehat\mu_k-\widehat\mu)(\tau)\widehat u(x_l,t-\tau)d\tau|$ is bounded by a constant. Consequently, $R_k^3\to 0$. Analogously we deduce the estimate \begin{gather*} |I_k^4| \le \tilde C_4\|\widehat u_k-\widehat u\|_{\mathcal{U}(\Omega_T)}+R_k^4,\quad \text{where $\tilde C_4$ is a constant}, \\ \begin{aligned} R_k^4&=2L\sum_{j=1}^2\bigl\|\sum_{l=1}^L\kappa_j(x_l,t)u(x_l,\cdot)-v_j \bigl\|_{L^2(0,T)}\max_{1\le l\le L}\Bigl\{ \|\kappa_j(x_l,\cdot)\|_{L^\infty(0,T)}\\ &\quad\times\Bigl[ \int_0^T \Bigl[\int_0^t (\widehat\mu_k-\widehat\mu)(\tau)\widehat u(x_l, t-\tau)d\tau\Bigl]^2dt\Bigl]^{1/2}\Bigl\}, \end{aligned} \end{gather*} where $R_k^4\to 0$. Note that if we manage to show that $\|\widehat u_k-\widehat u\|_{\mathcal{U}(\Omega_T)}\to 0$ then the proof is complete. Indeed, in this case by virtue of $R_k^i\to 0$, $i=1,2,3,4$, from the estimates of $I_k^i$ we get $I_k^i\to 0$, $i=1,2,3,4$ and due to \eqref{exis2} we obtain $J(z_k)\to J(z)$, which implies the statement of the theorem. As in the proof of Theorem \ref{thm1} we can show that $\widehat u$ and $\widehat u_k$ are the weak solutions of the following problems: \begin{gather} \label{e1e} \widehat u_t= A\widehat u - \widehat m*A\widehat u + f+\phi_x\quad \text{in }\Omega_T, \\ \label{e2e} \widehat u= u_0 \quad \text{in }\Omega\times \{0\}, \\ \label{e3e} \widehat u=\widehat g \quad \text{in }\Gamma_{1,T}, \\ \label{e4e} -\nu_{A}\cdot \nabla \widehat u + \widehat m* \nu_{A}\cdot \nabla \widehat u = \vartheta \widehat u+\vartheta\widehat\mu*\widehat u+ h +\nu\cdot \phi\quad \text{in }\Gamma_{2,T}, \\ \label{e1ek} \widehat u_{k,t}= A_k\widehat u_k - \widehat m_k*A_k\widehat u_k + f+\phi_x\quad \text{in }\Omega_T, \\ \label{e2ek} \widehat u_k= u_0 \quad \text{in }\Omega\times \{0\}, \\ \label{e3ek} \widehat u_k=\widehat g_k \quad \text{in }\Gamma_{1,T}, \\ \label{e4ek} -\nu_{A}\cdot \nabla \widehat u_k + \widehat m_k* \nu_{A}\cdot \nabla \widehat u_k = \vartheta \widehat u_k+\vartheta\widehat\mu_k*\widehat u_k+ h +\nu\cdot \phi\quad \text{in }\Gamma_{2,T}, \end{gather} where $A_kv=(a_{11}v_{x})_{x}+a_kv$, \begin{gather*} \widehat m= m-\widehat\mu+m*\widehat\mu\, ,\quad \widehat m_k= m_k-\widehat\mu_k+m_k*\widehat\mu_k,\\ \widehat g=g+\mu*g\, ,\quad \widehat g_k=g+\mu_k*g. \end{gather*} We now show that $\widehat m_k\rightharpoonup \widehat m$. With any $\zeta\in L^2(0,T)$ we compute \begin{gather*} \langle \widehat m_k-\widehat m, \zeta\rangle =\langle m_k- m, \zeta\rangle -\langle \widehat \mu_k-\widehat \mu, \zeta\rangle +N_k^1,\\ \begin{aligned} N_k^1 &= \int_0^T\widehat\mu_k(\tau)\int_0^{T-\tau}(m_k-m)(s)\zeta(\tau+s)dsd\tau \\ &\quad+ \int_0^T m(\tau)\int_0^{T-\tau}(\widehat\mu_k-\widehat\mu)(s) \zeta(\tau+s)dsd\tau. \end{aligned} \end{gather*} We use the relations $m_k\rightharpoonup m$, $\widehat \mu_k\rightharpoonup \widehat \mu$ and treat the term $N_k^1$ similarly to the term $N_k$ in \eqref{exis1} to get $N_k^1\to 0$. As a result we get $\langle \widehat m_k-\widehat m, \zeta\rangle\to 0$, hence $\widehat m_k\rightharpoonup \widehat m$. Subtracting the problem of $\widehat u$ from the problem of $\widehat u_k$ we see that $w_k:=\widehat u_k-\widehat u$ is a weak solution of the problem \begin{gather} \label{e1w} w_{k,t}= A w_k- \widehat m*A w_k + \tilde f_k+\tilde\phi_{k,x}\quad \text{in $\Omega_T$,} \\ \label{e2w} \widehat u= 0 \quad \text{in }\Omega\times \{0\}, \\ \label{e3w} \widehat u=\tilde g_k \quad \text{in }\Gamma_{1,T}, \\ \label{e4w} -\nu_{A}\cdot \nabla w_k + \widehat m* \nu_{A}\cdot \nabla w_k = \vartheta w_k+\tilde h_k +\nu\cdot \tilde\phi_k\quad \text{in }\Gamma_{2,T}, \end{gather} where \begin{gather*} \tilde f_k=(a_k-a)(\widehat u_k-\widehat m_k*\widehat u_k) -a(\widehat m_k-\widehat m)*\widehat u_k, \\ \tilde \phi_k=-a_{11}(\widehat m_k-\widehat m)*\widehat u_{k,x},\quad \tilde g_k=(\mu_k-\mu)*g, \\ \tilde h_k=\vartheta[\widehat \mu_k*w_k+ (\widehat \mu_k-\widehat\mu)*\widehat u]. \end{gather*} To use the weak convergence $a_k\rightharpoonup a$ in forthcoming estimations we have to introduce the functions $\rho_k\in W_2^2(c,d)$ being the solutions of the following Neumann problems: $$ \rho_k''-\rho_k=a_k-a \quad \text{in $(c,d)$}\,,\qquad \rho_k'(c)=\rho_k'(d)=0. $$ Then $\rho_k(x)=\int_c^d G(x,y)(a_k-a)(y)dy$, $x\in (c,d)$, where $$ G(x,y)=\frac{1}{2(e^{c-d}-e^{d-c})}\begin{cases} (e^{c-y}+e^{y-c})(e^{d-x}+e^{x-d}) &\text{for }yx \end{cases} $$ is a Green function that satisfies the properties $G,G_x\in L^\infty(\Omega_T)$. The weak convergence $a_k\rightharpoonup a$ in $L^2(c,d)$ implies \begin{equation}\label{exis3} \|\rho_k\|_{W_2^1(c,d)}\to 0. \end{equation} Using $\rho_k$ we rewrite the term $(a_k-a)(\widehat u_k-\widehat m_k*\widehat u_k)$ in $\tilde f_k$ as follows: \begin{align*} &(a_k-a)(\widehat u_k-\widehat m_k*\widehat u_k)\\ &= [\rho_k'(\widehat u_k-\widehat m_k*\widehat u_k)]_x -\rho_k'(\widehat u_k-\widehat m_k*\widehat u_k)_x -\rho_k(\widehat u_k-\widehat m_k*\widehat u_k). \end{align*} According to this relation we change the form of the problem for $w_k$ as follows: \begin{gather} \label{e1ww} w_{k,t}= A w_k- \widehat m*A w_k + \overline f_k+\overline\phi_{k,x}\quad \text{in }\Omega_T, \\ \label{e2ww} \widehat u= 0 \quad \text{in }\Omega\times \{0\}, \\ \label{e3ww} \widehat u=\tilde g_k \quad \text{in }\Gamma_{1,T}, \\ \label{e4ww} -\nu_{A}\cdot \nabla w_k + \widehat m* \nu_{A}\cdot \nabla w_k = \vartheta w_k+\tilde h_k +\nu\cdot \overline\phi_k\quad \text{in }\Gamma_{2,T}, \end{gather} where \begin{gather*} \overline f_k=-\rho_k'(\widehat u_k+\widehat m_k*\widehat u_k)_x -\rho_k(\widehat u_k+\widehat m_k*\widehat u_k) -a(\widehat m_k-\widehat m)*\widehat u_k, \\ \overline \phi_k=\rho_k'(\widehat u_k+\widehat m_k*\widehat u_k) -a_{11}(\widehat m_k-\widehat m)*\widehat u_{k,x}. \end{gather*} Let $t$ be an arbitrary number in $[0,T]$. To estimate $w_k$ we will use the projection operators $P_t$, defined in \eqref{Pt}, and $\overline P_tw=\begin{cases} w & \text{in }\Omega_{t}\\ 0 & \text{in }\Omega_{T}\setminus\Omega_{t} \end{cases}$. for $w: \Omega_{T}\to \mathbb{R}$. Let $w^t_k$ stand for the weak solution of problem \eqref{e1ww}--\eqref{e4ww} with $\overline f_k$, $\overline\phi_k$ and $\tilde h_k$ replaced by $\overline P_t\overline f_k$, $\overline P_t\overline\phi_k$ and $P_t\tilde h_k$, respectively. Then, due to the causality $w_k^t=w_k$ in $\Omega_t$. Applying \eqref{t1est} for $w_k^t$ we obtain \begin{equation}\label{exis3a} \begin{split} \|w_k\|_{\mathcal{U}(\Omega_t)} &= \|w_k^t\|_{\mathcal{U}(\Omega_t)}\le \|w_k^t\|_{\mathcal{U}(\Omega_T)} \le \overline C_0\Bigl[\|\overline P_t\overline f_k\|_{L^2((0,T);L^{1}(c,d))} \\ &\quad +\|\overline P_t\overline\phi_k\|_{(L^2(\Omega_T))^n}+\theta\|\tilde g_k\|_{\mathcal{T}(\Omega_T)} +\|P_t\tilde h_k\|_{L^2(\Gamma_{2,T})} \Bigl] \\ & = \overline C_0\Bigl[\|\overline f_k\|_{L^2((0,t);L^{1}(c,d))} +\|\overline\phi_k\|_{L^2(\Omega_t)}+\theta\|\tilde g_k\|_{\mathcal{T}(\Omega_T)} +\|\tilde h_k\|_{L^2(\Gamma_{2,t})} \Bigl] \end{split} \end{equation} with a constant $\overline C_0$. Using the relation $a\in L^2(c,d)$, Cauchy inequality, the inequality \eqref{qq3}, $g(x,0)=0$, the embedding $W_2^1(c,d)\hookrightarrow C[c,d]$ and $\widehat u_k=w_k+\widehat u$ we estimate: \begin{gather} \label{exis3b} \begin{aligned} \|\overline f_k\|_{L^2((0,t);L^{1}(c,d))} &\le \overline C_1\Bigl[\|(\widehat m_k-\widehat m)*\widehat u_k\|_{L^2((0,t); L^{2}(c,d))}\\ &\quad + \|\rho_k\|_{W_2^1(c,d)} (1+\|\widehat m_k\|_{L^2(0,T)})\|\widehat u_k\|_{\mathcal{U}(\Omega_t)}\Bigl]\\ &\le \overline C_1\Bigl[\int_0^t |(\widehat m_k-\widehat m)(t-\tau)|\, \|w_k\|_{L^2(\Omega_\tau)}d\tau\\ &\quad + \|\rho_k\|_{W_2^1(c,d)}(1+\|\widehat m_k\|_{L^2(0,T)}) \|w_k\|_{\mathcal{U}(\Omega_t)}\Bigl] +\overline R_k^1, \end{aligned}\\ \label{exis3c} \begin{aligned} \|\overline \phi\|_{L^2(\Omega_t)} &\le \overline C_2\Bigl[\|(\widehat m_k-\widehat m)*\widehat u_{k,x}\|_{L^2(\Omega_t)}\\ &\quad + \|\rho_k\|_{W_2^1(c,d)}(1+\|\widehat m_k\|_{L^2(0,T)}) \|\widehat u_k\|_{L^2((0,T);C[c,d])}\Bigl] \\ &\le \overline C_2\Bigl[\int_0^t |(\widehat m_k-\widehat m)(t-\tau)|\, \|w_{k,x}\|_{L^2(\Omega_\tau)}d\tau\\ &\quad +\|\rho_k\|_{W_2^1(c,d)}(1+\|\widehat m_k\|_{L^2(0,T)})\|w_k\|_{L^2((0,t); C[c,d])}\Bigl]+\overline R_k^2, \end{aligned} \\ \label{exis3d} \|\tilde g_k\|_{\mathcal{T}(\Omega_T)}\le \overline R_k^3, \\ \label{exis3e} \begin{aligned} \|\tilde h_k\|_{L^2(\Gamma_{2,t})} &\le \overline C_4 \Bigl[\|\widehat \mu_k*w_k\|_{L^2((0,t);W_2^1(c,d))} +\|(\widehat \mu_k-\widehat\mu)*\widehat u\|_{L^2((0,t);W_2^1(c,d))}\Bigl] \\ &\le \overline C_4\int_0^t |\widehat\mu_k(t-\tau)|\, \|w_{k}\|_{L^2((0,\tau);W_2^1(c,d))}d\tau + \overline R_k^4, \end{aligned} \end{gather} where $\overline C_1, \overline C_2, \overline C_4$ are constants and \begin{gather*} \overline R_k^1=\overline C_1\Bigl[\|(\widehat m_k-\widehat m)*\widehat u\|_{L^2(\Omega_T)} + \|\rho_k\|_{W_2^1(c,d)}(1+\|\widehat m_k\|_{L^2(0,T)}) \|\widehat u\|_{\mathcal{U}(\Omega_T)}\Bigl], \\ \begin{aligned} \overline R_k^2&=\overline C_2\Bigl[\|(\widehat m_k-\widehat m)*\widehat u_x\|_{L^2(\Omega_T)} + \|\rho_k\|_{W_2^1(c,d)}\big(1 \\ &\quad +\|\widehat m_k\|_{L^2(0,T)}\big) \|\widehat u\|_{L^2((0,T);C[c,d])}\Bigl], \end{aligned}\\ \overline R_k^3=\|(\mu_k-\mu)*g\|_{L^2(\Omega_T)} + \|(\mu_k-\mu)*g_x\|_{L^2(\Omega_T)}+\|(\mu_k-\mu)*g_t\|_{L^2(\Omega_T)}, \\ \overline R_k^4=\overline C_4 \|(\widehat \mu_k-\widehat\mu)*\widehat u\|_{L^2((0,T); W_2^1(c,d))}. \end{gather*} By the weak convergence $\widehat m_k\rightharpoonup \widehat m$, $\mu_k\rightharpoonup \mu$, $\widehat \mu_k \rightharpoonup \widehat u$ in $L^2(0,T)$ and the relation $\|\rho_k\|_{W_2^1(c,d)}\to 0$ it holds \begin{equation}\label{exis4} \overline R_k^j\to 0, \quad j=1,2,3,4. \end{equation} Indeed, to prove that $\|z_k*\hat v\|_{L^2(\Omega_T)}\to 0$, where $z_k$ is one of the functions $\widehat m_k-\widehat m$, $\mu_k-\mu$ or $\widehat \mu_k-\widehat\mu$ and $\hat v\in L^2(\Omega_T)$ is one of the functions $\widehat u$, $\widehat u_x$, $g$, $g_x$ or $g_t$, it is possible to use the dominated convergence theorem, again. More precisely, \[ \|z_k*\hat v\|_{L^2(\Omega_T)} =\Bigl\{\int_0^T\int_c^d\Bigl[\int_0^t z_k(\tau)\hat v(x,t-\tau)d\tau\Bigl]^2dx\,dt\Bigl\}^{1/2}, \] where the component $\Bigl[\int_0^t z_k(\tau)\hat v(x,t-\tau)d\tau\Bigl]^2$ is bounded by an integrable in $x\in (c,d)$ function $\sup\|z_k\|_{L^2(0,T)}^2 \|\hat v(x,\cdot)\|_{L^2(0,T)}^2$ and tends to zero for all $t\in (0,T)$ and a.e. $x\in (c,d)$, because $z_k\rightharpoonup 0$ and $\hat v(x,t-\cdot)\in L^2(0,T)$ for all $t\in (0,T)$ and a.e. $x\in (c,d)$. (The latter relation follows from $\hat v\in L^2(\Omega_T)$ and Tonelli's theorem.) Thus, $\|z_k*\hat v\|_{L^2(\Omega_T)}\to 0$. As in proof of Theorem \ref{thm1}, we use the norms $\|w\|_\sigma=\sup_{00$ and $K_2\in \mathbb{N}$ such that $$ \|e^{-\sigma_2 t}\|_{L^2(0,T)}\|r_k\|_{L^2(0,T)} +\|\rho_k\|_{W_2^1(c,d)}(1+\|\widehat m_k\|_{L^2(0,T)})\le \frac{1}{2\overline C_5} $$ for $k\ge K_2$. This, along with the previous inequality, implies $$ \|w_k\|_{\sigma_2}\le 2\overline C_5 \sum_{j=1}^4 \overline R_k^j \quad \text{and hence}\quad \|w_k\|_{\mathcal{U}(\Omega_T)}\le 2e^{\sigma_2 T}\overline C_5 \sum_{j=1}^4 \overline R_k^j $$ for $k\ge K_2$. Taking \eqref{exis4} into account we obtain the desired convergence: $\|\widehat u_k-\widehat u\|_{\mathcal{U}(\Omega_T)} =\|w_k\|_{\mathcal{U}(\Omega_T)}\to 0$. The theorem is proved. \end{proof} \subsection*{Acknowledgement} The research was supported by Estonian Ministry of Education and Science target financed theme SF0140011s09. \begin{thebibliography}{99} \bibitem{am} G. Amendola, M. Fabrizio, J. M. Golden; \emph{Thermodynamics of Materials with Memory. Theory and Applications}. Springer, New York, 2012. \bibitem{berca} E. Beretta, C. Cavaterra; Identifying a space dependent coefficient in a reaction-diffusion equation. \emph{Inverse Probl. Imaging} {\bf 5} (2011), 2, 285–-296. \bibitem{Bush} I. Bushuyev; Global uniqueness for inverse parabolic problems with final observation. \emph{Inverse Problems} {\bf 11} (1995), L11–-L16. \bibitem{Ge} G. Gentili; Dissipativity conditions and inverse problems for heat conduction with linear memory. \emph{Inverse problems} {\bf 7} (1991), 77–-84. I, II. \emph{J. Math. Anal. Appl}. {\bf 213} (1997), 1, 32–-62, 63–-90. \bibitem{gra} M. Grasselli; An identification problem for a linear integrodifferential equation occurring in heat flow. \emph{Math. Meth. Appl. Sci.} {\bf 15} (1992), 3, 167–-186. \bibitem{Gri} G. Gripenberg, S.-O. Londen, O. Staffans; \emph{Volterra Integral and Functional Equations}. Cambridge University Press, Cambridge, 1990. \bibitem{Isakov} V. Isakov; Inverse parabolic problems with final overdetermination. \emph{Commun. Pure Appl. Math.} {\bf 44 } (1991), 185–-209. \bibitem{ILS} M. Ivanchov, A. Lorenzi, N. Saldina; Solving a scalar degenerate multidimensional identification problem in a Banach space. \emph{J. Inverse Ill-Posed Probl.} {\bf 16} (2008), 397–-415. \bibitem{j1} J. Janno; Determination of a time- and space-dependent heat flux relaxation function by means of a restricted Dirichlet-to-Neumann operator. \emph{Math. Meth. Appl. Sci.} {\bf 27} (2004), 11, 1241--1260. \bibitem{jk1} J. Janno, K. Kasemets; A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. \emph{Inverse Probl. Imaging} {\bf 3} (2009), 1, 17--41. \bibitem{jlo2} J. Janno, A. Lorenzi; Recovering memory kernels in parabolic transmission problems. \emph{J. Inv. Ill-Posed Probl.} {\bf 16} (2008), 239--266. \bibitem{jvw1} J. Janno, L. v. Wolfersdorf; Identification of memory kernels in general linear heat flow. \emph{J. Inverse Ill-Posed Probl.} {\bf 6 } (1998), 2, 141--164. \bibitem{jk2} K. Kasemets, J. Janno; Recovery of a source term in a parabolic integro-differential equation from final data. \emph{Math. Model. Anal.} {\bf 16} (2011), 2, 199--219. \bibitem{jk3} K. Kasemets, J. Janno; Inverse problems for a parabolic integro-differential equation in a convolutional weak form. \emph{Abstract and Applied Analysis}, Article ID 297104 (2013), pp 1--16. \bibitem{lome} A. Lorenzi, F. Messina; An identification problem with evolution on the boundary of parabolic type. \emph{Adv. Differential Equations} {\bf 13} (2008), 11-12, 1075–-1108. \bibitem{lomo} A. Lorenzi, G. Mola; Identification of unknown terms in convolution integro- differential equations in a Banach space. \emph{J. Inverse Ill-Posed Probl.} {\bf 18} (2010), 3, 321–-355. \bibitem{lovra} A. Lorenzi, I. I. Vrabie; An identification problem for a linear evolution equation in a Banach space and applications. \emph{Discrete Contin. Dyn. Syst.} Ser. S {\bf 4} (2011), 3, 671–-691. \bibitem{Nu} J. W. Nunziato; On heat conduction in materials with memory. \emph{Quart. Appl. Math.} {\bf 29} (1971), 187–-204. \bibitem{PJ} E. Pais, J. Janno; Identification of two degenerate time- and space-dependent kernels in a parabolic equation. \emph{Electronic Journal of Differential Equations}, Article 108 (2005), pp. 1--20. \bibitem{zeidler} E. Zeidler; \emph{Applied Functional Analysis. Main Principles and their Applications}. Springer, New York, 1995. \end{thebibliography} \end{document}