\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 196, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/196\hfil Existence of solutions] {Existence of solutions to fractional-order impulsive hyperbolic partial differential inclusions} \author[S. Abbas, M. Benchohra \hfil EJDE-2014/196\hfilneg] {Sa\"id Abbas, Mouffak Benchohra} % in alphabetical order \address{Sa\"id Abbas \newline Laboratory of Mathematics, University of Sa\"{\i}da, PO Box 138, 20000 Sa\"{\i}da, Algeria} \email{abbasmsaid@yahoo.fr} \address{Mouffak Benchohra \newline Laboratory of Mathematics, University of Sidi Bel-Abb\`es, PO Box 89, 22000, Sidi Bel-Abb\`es, Algeria \newline Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia} \email{benchohra@univ-sba.dz} \thanks{Submitted February 3, 2014. Published September 18, 2014.} \subjclass[2000]{26A33, 34A60} \keywords{Impulsive hyperbolic differential inclusions; fractional order; \hfill\break\indent upper solution; lower solution; left-sided mixed Riemann-Liouville integral; \hfill\break\indent Caputo fractional-order derivative; fixed point} \begin{abstract} In this article we use the upper and lower solution method combined with a fixed point theorem for condensing multivalued maps, due to Martelli, to study the existence of solutions to impulsive partial hyperbolic differential inclusions at fixed instants of impulse. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} The theory of differential equations and inclusions of fractional order play a very important role in describing some real world problems. For example some problems in physics, mechanics, viscoelasticity, electrochemistry, control, porous media, electromagnetic, etc. (see \cite{Hi,Pod}). Recently, numerous research papers and monographs have appeared devoted to fractional differential equations, for example see the monographs of Abbas et al \cite{ABN}, Kilbas et al \cite{KiSrJuTr}, Lakshmikantham et al \cite{LLV}, and Malinowska and Torres \cite{MT}, and the papers of Abbas and Benchohra \cite{AbBe1,AbBe4}, Abbas et al \cite{AbAgBe,AbBeGo}, Belarbi et al \cite{BeBeOu}, Benchohra and Ntouyas \cite{BeNt}, Kilbas et al \cite{KiBoTr}, Kilbas and Marzan \cite{KiMa}, Semenchuk \cite{Se},Vityuk and Golushkov \cite{ViGo}, and the references therein. The method of upper and lower solutions has been successfully applied to study the existence of solutions for fractional order ordinary and partial partial differential equations and inclusions. See the monographs by Benchohra et al \cite{BeHeNt}, Heikkila and Lakshmikantham \cite{HeLa}, Ladde et al \cite{LaLaVa}, the papers of Abbas and Benchohra \cite{AbBe2, AbBe3}, Benchohra and Ntouyas \cite{BeNt} and the references therein. This article deals with the existence of solutions to impulsive fractional order initial value problems (IVP for short), for the system \begin{gather}\label{e1} (^{c}D_{\theta_k}^{r}u)(x,y)\in F(x,y,u(x,y)),\quad \text{if }(x,y)\in J_k;\ k=0,\ldots,m;\\ \label{e2} u(x_k^+,y)=u(x_k^-,y)+I_{k}(u(x_k^-,y)),\quad \text{if }y\in [0,b], \; k=1,\dots,m; \\ \label{e3} \left\{\begin{gathered} u(x,0)=\varphi (x), \quad x\in [0,a],\\ u(0,y)=\psi (y), \quad y\in[0,b],\\ \varphi(0)=\psi(0), \end{gathered}\right. \end{gather} where $J_0=[0,x_1]\times[0,b]$, $J_k:=(x_k,x_{k+1}]\times [0,b]$, $k=1,\ldots,m$, $\theta_k=(x_k,0)$, $k=0,\ldots,m$, $a,b>0$, $\theta=(0,0)$, $^{c}D_{\theta}^{r}$ is the fractional caputo derivative of order $r=(r_1,r_2)\in (0,1]\times (0,1]$, $0=x_00 $ and $r=(r_1,r_{2})$. For $u\in L^{1}(J_z,\mathbb{R}^n)$, the expression $$ (I_{z^+}^{r}u)(x,y)=\frac{1}{\Gamma (r_1)\Gamma (r_{2})}\int_{a_1^+}^{x} \int_0^{y}(x-s)^{r_1-1}(y-t)^{r_{2}-1}u(s,t)\,dt\,ds, $$ is called the left-sided mixed Riemann-Liouville integral of order $r$ of $u$. \begin{definition}[\cite{ViGo}] \label{def.25.} \rm For $u\in L^{1}(J_z,\mathbb{R}^n)$ where $D^{2}_{xy}u$ is Lebesque integrable on $[x_{k},x_{k+1}]\times[0,b]$, $k=0,\ldots,m$, the Caputo fractional-order derivative of order $r$ of $u$ is defined by the expression $(^{c}D_{z^+}^{r}f)(x,y)=( I_{z^+}^{1-r}D ^{2}_{xy}f)(x,y)$. The Riemann-Liouville fractional-order derivative of order $r$ of $u$ is defined by $(D_{z^+}^{r}f)(x,y)=(D ^{2}_{xy}I_{z^+}^{1-r}f)(x,y)$. \end{definition} We need also some properties of set-valued Maps. Let $(X,\|\cdot\|)$ be a Banach space. Denote $\mathcal{P}(X)=\{Y\in X: Y\neq\emptyset\}$, $\mathcal{P}_{cl}(X)=\{Y\in \mathcal{P}(X): Y\text{ closed}\}$, $\mathcal{P}_{b}(X)=\{Y\in \mathcal{P}(X): Y\text{ bounded}\}$, $\mathcal{P}_{cp}(X)=\{Y\in \mathcal{P}(X): Y\text{ compact}\}$ and $\mathcal{P}_{cp,cv}(X)=\{Y\in \mathcal{P}(X): Y\text{ compact and convex}\}$. \begin{definition} \rm A multivalued map $T:X\to \mathcal{P}(X)$ is convex (closed) valued if $ T(x)$ is convex (closed) for all $x\in X. \ T$ is bounded on bounded sets if $T(B)=\cup_{x\in B}T(x)$ is bounded in $X$ for all $B\in \mathcal{P}_{b}(X)$ (i.e. $\sup_{x\in B}\sup_{y\in T(x)}\|y\|<\infty$). $T$ is called upper semi-continuous (u.s.c.) on $X$ if for each $x_0\in X$, the set $T(x_0)$ is a nonempty closed subset of $X$, and if for each open set $N$ of $X$ containing $T(x_0)$, there exists an open neighborhood $N_0$ of $x_0$ such that $T(N_0)\subseteq N$. $T$ is lower semi-continuous (l.s.c.) if the set $ \{x\in X: T(x)\cap A\not=\emptyset\}$ is open for any open subset $A\subseteq X$. $T$ is said to be completely continuous if $T({\mathcal B})$ is relatively compact for every ${\mathcal B}\in P_{b}(X)$. $T$ has a fixed point if there is $x\in X$ such that $x\in T(x)$. The fixed point set of the multivalued operator $T$ will be denoted by $Fix T$. A multivalued map $G:X\to \mathcal{P}_{cl}(\mathbb{R}^n)$ is said to be measurable if for every $v\in \mathbb{R}^n$, the function $x\mapsto d(v,G(x))=\inf\{\|v-z\|: z\in G(x)\}$ is measurable. \end{definition} \begin{lemma}\cite{HuPa} \label{L0} Let $G$ be a completely continuous multivalued map with nonempty compact values, then $G$ is u.s.c. if and only if $G$ has a closed graph (i.e. $u_{n}\to u$, $w_{n}\to w$, $w_{n}\in G(u_{n})$ imply $w\in G(u)$). \end{lemma} \begin{definition} \rm A multivalued map $F: J\times\mathbb{R}^n\to\mathcal{P}(\mathbb{R}^n)$ is said to be Carath\'eodory if \begin{itemize} \item[(i)] $(x,y)\mapsto F(x,y,u)$ is measurable for each $u\in\mathbb{R}^n$; \item[(ii)] $u\mapsto F(x,y,u)$ is upper semicontinuous for almost all $(x,y)\in J$. \end{itemize} $F$ is said to be $L^{1}$-Carath\'eodory if (i), (ii) and the following condition holds; \begin{itemize} \item[(iii)] for each $c>0$, there exists $\sigma_c \in L^{1}(J,\mathbb{R}_{+})$ such that \begin{align*} \|F(x,y,u)\|_\mathcal{P} &= \sup\{\|f\|: f\in F(x,y,u)\}\\ &\leq \sigma_c(x,y) \quad \text{ or all $\|u\|\leq c$ and for a.e. $(x,y)\in J$}. \end{align*} \end{itemize} \end{definition} For each $u\in C(J)$, define the set of selections of $F$ by $$ S_{F,u}=\{w\in L^{1}(J): w(x,y)\in F(x,y,u(x,y)) \text{ a.e. } (x,y)\in J \}. $$ Let $(X,d)$ be a metric space induced from the normed space $(X, \|\cdot \|)$. Consider $H_{d}:\mathcal{P}(X)\times \mathcal{P}(X)\to\mathbb{R}_{+}\cup\{\infty\}$ given by $$ H_{d}(A,B)=\max\{\sup_{a\in A}d(a,B),\sup_{b\in B}d(A,b)\}, $$ where $d(A,b)=\inf_{a\in A}d(a,b),\ d(a,B)=\inf_{b\in B}d(a,b)$. Then $(\mathcal{P}_{b,cl}(X),H_{d})$ is a metric space and $(\mathcal{P}_{cl}(X),H_{d})$ is a generalized metric space (see \cite{Kis}). For more details on multi-valued maps we refer the reader to the books of Deimling \cite{Dei}, Gorniewicz \cite{Gor}, Graef et al \cite{GHO}, Hu and Papageorgiou \cite{HuPa} and Tolstonogov \cite{Tol}. \begin{lemma}[\cite{LaOp}] \label{L1} Let $X$ be a Banach space. Let $F:J\times X\to \mathcal{P}_{cp,cv}(X)$ be an $L^{1}$-Carath\'eodory multivalued map and let $\Lambda$ be a linear continuous mapping from $L^{1}(J,X)$ to $C(J,X)$, then the operator \begin{align*} \Lambda \circ S_{F}:C(J,X) & \to \mathcal{P}_{cp,cv}(C(J,X)), \\ u & \mapsto (\Lambda \circ S_{F})(u):=\Lambda(S_{F,u}) \end{align*} is a closed graph operator in $C(J,X)\times C(J,X)$. \end{lemma} \begin{lemma}[\cite{Mar}] \label{L2}(Martelli) Let $X$ be a Banach space and $N:X\to \mathcal{P}_{cl,cv}(X)$ be an u. s. c. and condensing map. If the set $\Omega:=\{u\in X:\lambda N(u)=N(u)\ for\ some\ \lambda>1\}$ is bounded, then $N$ has a fixed point. \end{lemma} \section{Main Result} To define the solutions of problems \eqref{e1}-\eqref{e3}, we shall consider the Banach space \begin{align*} PC=\big\{&u: J\to\mathbb{R}^n: u \in C(J_{k}) ; k=0, \ldots,m, \text{ and there exist } u(x_{k}^-,y)\\ &\text{and } u(x_{k}^+,y);\; y\in[0,b],\; k=1,\ldots,m, \text{ with } u(x_{k}^-,y)=u(x_{k},y) \big\}, \end{align*} with the norm $$ \|u\|_{PC}=\sup_{(x,y)\in J}\|u(x,y)\|. $$ \begin{definition}\label{d1} \rm A function $u\in PC\cap\cup_{k=0}^{m} AC(J_k)$ whose $r$-derivative exists on $J_k$ is said to be a solution of \eqref{e1}-\eqref{e3} if there exists a function $f\in L^{1}(J)$ with $f(x,y)\in F(x,y,u(x,y))$ such that $u$ satisfies $(^{c}D_{\theta_k}^{r}u)(x,y)= f(x,y)$ on $J_k$, $k=0,\dots m$ and conditions \eqref{e2}, \eqref{e3} are satisfied. \end{definition} Let $z, \bar z\in C(J)$ be such that $$ z(x,y)=(z_1(x,y),z_{2}(x,y),\ldots,z_{n}(x,y)), \quad (x,y)\in J, $$ and $$ \bar z(x,y)=(\bar z_1(x,y),\bar z_{2}(x,y),\ldots,\bar z_{n}(x,y)),\quad (x,y)\in J. $$ The notation $z\leq \bar z$ means that $$ z_{i}(x,y)\leq \bar z_{i}(x,y)\quad \text{for } i=1,\dots,n. $$ \begin{definition} A function $z\in PC\cap\cup_{k=0}^{m}AC(J_k)$ is said to be a lower solution of \eqref{e1}-\eqref{e3} if there exists a function $ f\in L^{1}(J)$ with $f(x,y)\in F(x,y,u(x,y))$ such that $z$ satisfies \begin{gather*} (^{c}D_{\theta_k}^{r}z)(x,y)\leq f(x,y,z(x,y)), \quad\text{on } J_k;\\ z(x_k^+,y)\leq z(x_k^-,y)+I_{k}(z(x_k^-,y)),\quad \text{if } y\in[0,b],\; k=1,\dots,m;\\ z(x,0)\leq \varphi(x),\; x\in[0,a];\\ z(0,y)\leq \psi(y),\quad y\in[0,b];\\ z(0,0)\leq \varphi(0). \end{gather*} The function $z$ is said to be an upper solution of \eqref{e1}-\eqref{e3} if the reversed inequalities hold. \end{definition} Let $h\in C(J_k)$, $k=1,\dots,m$ and set $$ \mu(x,y):=\varphi(x)+\psi(y)-\varphi(0),\quad (x,y)\in J. $$ For the existence of solutions for problem \eqref{e1}-\eqref{e3}, we need the following lemma. \begin{lemma}[\cite{AbBe3}] \label{L3} Let $r_1,r_2\in(0,1]$ and let $h:J \to\mathbb{R}^n$ be continuous. A function $u$ is a solution of the fractional integral equation $$ u(x,y)=\begin{cases} \mu(x,y)+\frac{1}{\Gamma(r_1)\Gamma(r_2)}\int_0^{x}\int_0^{y}(x-s)^{r_1-1}(y-t)^{r_2-1}h(s,t)\,dt\,ds;\\ \quad \text{if } (x,y)\in [0,x_1]\times[0,b], \\[3pt] \mu(x,y)+\sum_{i=1}^{k}(I_{i}(u(x_{i}^{-},y))-I_{i}(u(x_{i}^{-},0)))\\ +\frac{1}{\Gamma(r_1)\Gamma(r_2)}\sum_{i=1}^{k}\int_{x_{i-1}}^{x_{i}}\int_0^{y} (x_{i}-s)^{r_1-1}(y-t)^{r_2-1}h(s,t)\,dt\,ds\\ + \frac{1}{\Gamma(r_1)\Gamma(r_2)} \int_{x_{k}}^{x}\int_0^{y}(x-s)^{r_1-1}(y-t)^{r_2-1}h(s,t)\,dt\,ds;\\ \quad \text{if } (x,y)\in (x_{k},x_{k+1}]\times[0,b],\ k=1,\dots,m, \end{cases} $$ if and only if $u$ is a solution of the fractional IVP \begin{gather*} ^{c}D^{r}u(x,y)= h(x,y), \quad (x,y)\in J_k,\\ u(x_{k}^{+},y)= u(x_{k}^{-},y)+I_{k}(u(x_{k}^{-},y)),\quad y\in[0,b],\; k=1,\dots,m. \end{gather*} \end{lemma} To study problem \eqref{e1}-\eqref{e3}, we first list the following hypotheses: \begin{itemize} \item[(H1)] $F: J\times \mathbb{R}^n\to \mathcal{P}_{cp,cv}(\mathbb{R}^n)$ is $L^1$-Carath\'eodory; \item[(H2)] There exist $v$ and $w\in PC\cap AC(J_k)$, $k=0,\ldots,m$, lower and upper solutions for the problem \eqref{e1}-\eqref{e3} such that $v(x,y)\leq w(x,y)$ for each $(x,y)\in J$; \item[(H3)] For each $y\in[0,b]$, we have \[ v(x_k^{+},y)\leq\min_{u\in[v(x_{k}^{-},y),w(x_{k}^{-},y)]}I_k(u) \leq\max_{u\in[v(x_{k}^{-},y),w(x_{k}^{-},y)]}I_k(u)\leq w(x_k^{+},y), \] with $k=1,\ldots,m$. \end{itemize} \begin{theorem}\label{T1} Assume that hypotheses {\rm (H1)-(H3)} hold. Then problem \eqref{e1}-\eqref{e3} has at least one solution $u$ such that $$ v(x,y)\leq u(x,y)\leq w(x,y),\quad \text{for all } (x,y)\in J. $$ \end{theorem} \begin{proof} We transform problem \eqref{e1}-\eqref{e3} into a fixed point problem. Consider the modified problem \begin{gather}\label{e8} (^{c}D_{\theta_k}^{r}u)(x,y)\in F(x,y,g(u(x,y))),\quad \text{if } (x,y)\in J_k,\; k=0,\ldots,m; \\ \label{e9} u(x_k^+,y)=u(x_k^-,y)+I_{k}(g(x_k^-,y,u(x_k^-,y))),\quad \text{if } y\in [0,b],\; k=1,\dots,m; \\ \label{e10} u(x,0)=\varphi(x),\quad x\in[0,a],\; u(0,y)=\psi(y)\,; y\in[0,b],\; \varphi(0)=\psi(0), \end{gather} where $g:PC\to PC$ be the truncation operator defined by $$ (gu)(x,y)=\begin{cases} v(x,y), & u(x,y)1\}$ in bounded. Let $u\in\Omega$. Then, there exists $f \in\Lambda(\tilde S^{1}_{F,g(u)})$, such that \begin{align*} \lambda u(x,y) &= \mu(x,y)+\sum_{0 0, $$ for some $k=0,\dots,m$. We distinguish the following cases. \textbf{Case 1.} If $ (\overline{x}_{k},\overline y)\in (x_{k}^{+},x_{k+1}^{-})\times[0,b]$ there exists $(x_{k}^{*},y^{*})\in (x_{k}^{+},x_{k+1}^{-})\times[0,b]$ such that \begin{equation}\label{e11} \begin{aligned} &[u(x,y^{*})-w(x,y^{*})]+[u(x_{k}^{*},y)-w(x_{k}^{*},y)] -[u(x_{k}^{*},y^{*})-w(x_{k}^{*},y^{*})]\\ &\leq 0, \quad \text{for all } (x,y)\in([x_{k}^{*},\overline x_{k}] \times\{y^{*}\})\cup(\{x_{k}^{*}\}\times[y^{*},b]), \end{aligned} \end{equation} and \begin{equation}\label{e12} u(x,y)-w(x,y)>0,\quad \text{for all } (x,y)\in(x_{k}^{*}, \overline x_{k}]\times(y^{*},b]. \end{equation} By the definition of $g$, one has \begin{equation}\label{e13} ^{c}D_{\theta}^{r}u(x,y)\in F(x,y,w(x,y)),\quad \text{for all } (x,y)\in [x_{k}^{*},\overline x_{k}]\times[y^{*},b]. \end{equation} An integration of \eqref{e13}, on $[x_{k}^{*},x]\times[y^{*},y]$ for each $(x,y)\in[x_{k}^{*},\overline{x}_{k}]\times[y^{*},b]$, yields \begin{equation}\label{e14} \begin{aligned} &u(x,y)+u(x_{k}^{*},y^{*})-u(x,y^{*})-u(x_{k}^{*},y) \\ &=\frac{1}{\Gamma(r_1)\Gamma(r_{2})} \int_{x_{k}^{*}}^{x}\int_{y^{*}}^{y}(x-s)^{r_1-1}(y-t)^{r_{2}-1}f(s,t)\,dt\,ds, \end{aligned} \end{equation} where $f(x,y)\in F(x,y,w(x,y))$. From \eqref{e14} and using the fact that $w$ is an upper solution to \eqref{e1}-\eqref{e3} we get $$ u(x,y)+u(x_{k}^{*}, y^{*})-u(x,y^{*})-u(x_{k}^{*},y) \leq w(x,y)+w(x_{k}^{*},y^{*})-w(x,y^{*})-w(x_{k}^{*},y), $$ which gives \begin{equation}\label{e15} \begin{aligned} &u(x,y)-w(x,y)\\ &\leq [u(x,y^{*})-w(x,y^{*})]+[u(x_{k}^{*},y)-w(x_{k}^{*},y)] -[u(x_{k}^{*},y^{*})-w(x_{k}^{*},y^{*})]. \end{aligned} \end{equation} Thus from \eqref{e11}, \eqref{e12} and \eqref{e15} we obtain the contradiction \begin{align*} 0&<[u(x,y)-w(x,y)]\leq[u(x,y^{*})-w(x,y^{*})] +[u(x_{k}^{*},y)-w(x_{k}^{*},y)]\\ &\quad -[u(x_{k}^{*},y^{*})-w(x_{k}^{*},y^{*})]\leq 0, \quad \text{for all } (x,y)\in [x_{k}^{*},\overline x_{k}]\times[y^{*},b]. \end{align*} \textbf{Case 2.} If $ \overline{x}_{k}=x_{k}^{+},\ k=1,\ldots,m$, then $$ w(x_{k}^{+},\overline y)