\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 199, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/199\hfil Fractional porous medium equation] {Fractional porous medium and mean field equations in Besov spaces} \author[X. Zhou, W. Xiao, J. Chen \hfil EJDE-2014/199\hfilneg] {Xuhuan Zhou, Weiliang Xiao, Jiecheng Chen} % in alphabetical order \address{Xuhuan Zhou \newline Department of Mathematics, Zhejiang University, 310027 Hangzhou, China} \email{zhouxuhuan@163.com} \address{Weiliang Xiao \newline Department of Mathematics, Zhejiang University, 310027 Hangzhou, China} \email{xwltc123@163.com} \address{Jiecheng Chen \newline Department of Mathematics, Zhejiang Normal University, 321004 Jinhua, China} \email{jcchen@zjnu.edu.cn} \thanks{Submitted April 10, 2014. Published September 23, 2014.} \subjclass[2000]{35K55, 35K65, 76S05} \keywords{Fractional porous medium equation; mean field equation; \hfill\break\indent local solution; Besov space} \begin{abstract} In this article, we consider the evolution model $$ \partial_t{u} -\nabla\cdot(u\nabla Pu)=0,\quad Pu=(-\Delta)^{-s}u, \quad 0< s\leq 1,\; x\in\mathbb{R}^d,\; t>0. $$ We show that when $s\in[1/2,1)$, $\alpha>d+1$, $d\geq 2$, the equation has a unique local in time solution for any initial data in $B^\alpha_{1,\infty}$. Moreover, in the critical case $s=1$, the solution exists in $B^\alpha_{p,\infty}$, $2\leq p\leq\infty$, $\alpha> d/p$, $d\geq3$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} Let $0< s\leq 1$, we consider the evolution equation \begin{equation} \label{e1.1} \partial_t{u} -\nabla\cdot(u\nabla Pu)=0,\quad Pu=(-\Delta)^{-s}u,\quad u(x,0)=u_0(x). \end{equation} where $x\in\mathbb{R}^d$, $t>0$. $u=u(x,t)$ is a real-valued function, representing the density or concentration. $P$ represents the pressure. When $00$. In this article, we are interested in finding the strong solutions of \eqref{e1.1} in the Besov spaces $B^\alpha_{p,\infty}$. We will show that when $d\geq2$, $s\in[1/2,1)$, $\alpha> d+1$, equation \eqref{e1.1} has a unique local in time solution for any initial data in $B^\alpha_{1,\infty}$. When $s=1$, the solution extends to $B^\alpha_{p,\infty}$, $\alpha> d/p$, $2\leq p\leq\infty$, $d\geq3$. The idea of our proof is inspired by the methods used in \cite{c3,w1}, where the authors studied the quasi-geostrophic equation. In our proof, we construct two commutators, give three estimates of them, and construct a function sequence fitting our equation. The rest of this article is divided in four parts. Section 2 recalls the definition and some properties of the Besov spaces, the Bernstein inequality involving both integer and fractional derivatives, as well as some properties of the fractional Laplacian. In Section 3 we prove three estimates about the constructed commutators and a priori estimate of the solution. Section 4 proves the existence and uniqueness of the fractional porous medium equation. Section 5 is devoted to the mean field equation. The main results are the following two theorems. \begin{theorem} \label{thm1.1} Let $d\geq2,s\in[1/2,1],\alpha>d+1$. Assume that the initial data $u_0 \in B^\alpha_{1,\infty}$. Then we can find $T=T(\|u_0\|_{B^\alpha_{1,\infty}})$, such that a unique solution $u$ to \eqref{e1.1} on $[0,T]\times \mathcal {\mathbb{R}}^d$ exists. And the solution belongs to $C^1([0,T];B^{\alpha+2s-2}_{1,\infty})\cap L^\infty([0,T];B^{\beta}_{1,\infty})$, and $\beta\in[\alpha+2s-2,\alpha]$. \end{theorem} \begin{theorem} \label{thm1.2} Let $d\geq3,\alpha> d/p$ when $2\leq p\leq\infty$. Assume that the initial data $u_0 \in B^\alpha_{p,\infty}$. Then we can find $T=T(\|u_0\|_{B^\alpha_{p,\infty}})$, such that a unique solution $u$ to the given mean field equation \eqref{e1.2} on $[0,T]\times \mathcal {\mathbb{R}}^d$ exists. And the solution belongs to $C^1([0,T];B^{\beta}_{p,\infty})\cap L^\infty([0,T];B^{\alpha}_{p,\infty})$, $\beta\in(d/p,\alpha)$, $2\leq p\leq\infty$. \end{theorem} \section{Preliminaries} In this section, we recall the definition of the Besov space. We start with a dyadic decomposition of $\mathcal {\mathbb{R}}^d$. Suppose $\chi \in C_0^\infty(\mathcal {\mathbb{R}}^d), \phi\in C_0^\infty(\mathcal {\mathbb{R}}^d\setminus \{0\})$ satisfying \begin{gather*} \operatorname{supp}\chi \subset \{\xi\in {\mathbb{R}}^d:|\xi|\leq \frac 43\},\\ \operatorname{supp}\phi \subset \{\xi\in {\mathbb{R}}^d:\frac 34<|\xi|< \frac 83\},\\ \chi(\xi)+\sum_{j\geq 0}\phi(2^{-j}\xi)=1,\quad \xi \in \mathcal {\mathbb{R}}^d,\\ \sum_{j\in \mathbb{Z}}\phi(2^{-j}\xi)=1,\quad \xi \in \mathcal {\mathbb{R}}^d\backslash\{0\}. \end{gather*} Define the operators \begin{equation} \label{e2.1} \begin{gathered} \Delta_ju=\phi(2^{-j}D)u=2^{jd}\int h(2^jy)u(x-y)\,dy, \\ S_jf=\sum_{k\leq j-1}\Delta_kf=\chi(2^{-j}D)u=2^{jd}\int g(2^jy)u(x-y)\,dy, \end{gathered} \end{equation} where $g=\chi^\vee$ and $h=\phi^\vee$ are the inverse Fourier transform of $\chi$ and $\phi$, respectively. It can be easily verified that with our choice of $\phi$, \begin{equation} \label{e2.2} \Delta_j\Delta_k f\equiv 0, \ if \ |j-k|\geq 2,\quad \Delta_j(S_{k-1}f\Delta_kf)\equiv 0,\quad\text{if } |j-k|\geq 5. \end{equation} \begin{definition} \label{def2.1} \rm For any $\alpha\in \mathcal {\mathbb{R}}$, and $p,q \in [1,\infty]$, the homogeneous Besov spaces $\dot{B}^r_{p,q}$ are defined as \[ \dot{B}^\alpha_{p,q}= \{ f \in \mathcal {Z}'(\mathbb{R}^d): \|f\|_{\dot{B}^\alpha_{p,q}} < \infty\}. \] Here, \[ \|f\|_{\dot{B}^\alpha_{p,q}} = \Big[\sum_{j\in \mathbb{Z}}2^{j\alpha q}\|\Delta_j f\|_{L^p}^q\Big]^{1/q} , \quad\text{where } q<\infty. \] When $q=\infty$, \[ \|f\|_{\dot{B}^\alpha_{p,\infty}} = \sup_{j \in \mathbb{Z}} 2^{j\alpha}\|\Delta_j f\|_{L^p}. \] $\mathcal {Z}'(\mathbb{R}^d)$ denotes the dual space of $\mathcal {Z}(\mathbb{R}^d)= \{f \in \mathcal {S}(\mathbb{R}^d): \partial^\gamma \hat{f}(0)=0, \forall \gamma \in \mathbb{N}^d\}$ and can be identified by the quotient space of $\mathcal {S}'/ \mathcal {P}$ with the polynomials space $\mathcal {P}$. \end{definition} \begin{definition} \label{def2.2} \rm For any $\alpha\in \mathcal {\mathbb{R}}$, and $p,q \in [1,\infty]$, the inhomogeneous Besov space $B^r_{p,q}$ is defined as \[ B^\alpha_{p,q}= \{ f \in \mathcal {S}'(\mathbb{R}^d): \|f\|_{B^\alpha_{p,q}} < \infty\}. \] Here, \[ \|f\|_{B^\alpha_{p,q}} = \Big(\sum_{j\geq 0}^\infty 2^{j\alpha q}\|\Delta_j f\|_{L^p}^q\Big)^{1/q} +\|S_0(f)\|_{L^p} ,\quad\text{when } q<\infty. \] When $q=\infty$, \[ \|f\|_{B^\alpha_{p,\infty}} = \sup_{j \geq 0} 2^{j\alpha}\|\Delta_j f\|_{L^p}+\|S_0(f)\|_{L^p} . \] \end{definition} Let us state some basic properties of the Besov spaces. \begin{proposition} \label{prop2.1} Let $s\in \mathbb{R}$, $1\leq p\leq \infty$, $1\leq q\leq \infty$. \begin{itemize} \item[(i)] If $\alpha>0$, then $B^\alpha_{p,q}=\dot{B}^\alpha_{p,q}\cap L^p$, and $\|f\|_{B^\alpha_{p,q}}=\|f\|_{\dot{B}^{\alpha}_{p,q}}+\|f\|_{L^p}$; \item[(ii)] If $\alpha_1\leq \alpha_2$, then $ B^{\alpha_2}_{p,q} \subset B^{\alpha_1}_{p,q}$. If $1\leq q_1\leq q_2 \leq\infty$, then $\dot{B}^{\alpha}_{p,q_1}\subset \dot{B}^{\alpha}_{p,q_2}$ and $B^{\alpha}_{p,q_1}\subset B^{\alpha}_{p,q_2}$; \item[(iii)] If $ \alpha> \frac dp$, then $B^\alpha_{p,q}\hookrightarrow L^\infty$. If $p_1\leq p_2$, $\alpha_1-\frac d{p_1}>\alpha_2-\frac d{p_2}$, then $B^{\alpha_1}_{p_1,q_1}\hookrightarrow B^{\alpha_2}_{p_2,q_2}$, $B^\alpha_{p,\min(p,2)}\hookrightarrow H^\alpha_p\hookrightarrow B^\alpha_{p,\max(p,2)}$; \item[(iv)] If $\alpha>0$, $p\geq 1$, then $\|uv\|_{B^\alpha_{p,\infty}}\leq C\|u\|_{L^\infty}\|v\|_{B^\alpha_{p,\infty}} +C\|u\|_{B^\alpha_{p,\infty}}\|v\|_{L^\infty}$. \end{itemize} \end{proposition} We now turn to Bernstein's inequalities. When the Fourier transform of a function is supported on a ball or an annulus, the $L^p$-norms of the derivatives of the function can be bounded in terms of the $L^p$-norms of the function itself. And it also exists when one replaces the derivatives by the fractional derivatives (see \cite{l1,w3}). \begin{proposition} \label{prop2.2} Let $1\leq p \leq q\leq \infty$, $\gamma\in \mathbb{N}^d$. (1) If $\alpha\geq 0$ and $\operatorname{supp}\hat{f} \subset\{\xi\in \mathcal {\mathbb{R}}^d : |\xi|\leq K2^j \}$ for some $K>0$ and integer $j$, then \[ \|(-\Delta)^\alpha D^\gamma f\|_{L^q}\leq C2^{j(2\alpha+|\gamma|) +jd(\frac 1p -\frac 1q)}\|f\|_{L^p}. \] (2) If $\alpha\in \mathbb{R}$ and $\operatorname{supp}\hat{f} \subset\{\xi\in \mathcal {\mathbb{R}}^d : K_12^j\leq|\xi|\leq K_22^j \}$ for some $K_1,K_2>0$ and integer $j$, then \[ C2^{j(2\alpha+|\gamma|)+jd(\frac 1p -\frac 1q)}\|f\|_{L^p} \leq \|(-\Delta)^\alpha D^\gamma f\|_{L^q} \leq \widetilde{C}2^{j(2\alpha+|\gamma|)+jd(\frac 1p -\frac 1q)}\|f\|_{L^p}, \] where $C$ and $\widetilde{C}$ are positive constants independent of $j$. \end{proposition} Next we state two pointwise inequalities which were proved in \cite{c5,w2}. \begin{proposition} \label{prop2.3} Let $0\leq \alpha\leq 1$, $f\in C^2(\mathbb{R}^d)$ decay sufficiently fast at infinity. Then for any $x \in \mathbb{R}^d$, \[ 2f(x)(-\Delta)^\alpha f(x)\geq (-\Delta)^\alpha f^2(x). \] \end{proposition} \begin{proposition} \label{prop2.4} Let $0\leq \alpha\leq 1$, $p_1=\frac {k_1}{l_1}\geq0$, $p_2=\frac {k_2}{l_2}\geq1$ be rational numbers with $l_1,l_2$ odd, and $k_1l_1+k_2l_2$ even. Then for any $f\in C^2(\mathbb{R}^d)$ that decays sufficiently fast at infinity, and for any $x \in \mathbb{R}^d$, \[ (p_1+p_2)f^{p_1}(x)(-\Delta)^\alpha f^{p_2}(x) \geq p_2(-\Delta)^\alpha f^{p_1+p_2}(x). \] \end{proposition} \section{A priori estimate} \begin{proposition} \label{prop3.1} Let $\alpha>0$, $s\in(0,1)$, $p \in [1,\infty]$ be given. Assume $r>d/p $. Then there exists some constant $C$ such that \begin{equation} \label{e3.1} 2^{j\alpha}\|[\Delta_j,\partial_i(-\Delta)^{-s}u]\partial_iv\|_{L^p} \leq C\|v\|_{B^{r+1}_{p,\infty}}\|u\|_{B^{\alpha+1-2s}_{p,\infty}} +C\|u\|_{B^{r+2-2s}_{p,\infty}}\|v\|_{B^{\alpha}_{p,\infty}}, \end{equation} where the brackets $[,]$ represents the commutator, namely \[ [\Delta_j,\partial_i(-\Delta)^{-s}u]\partial_iv =\Delta_j(\partial_i(-\Delta)^{-s}u)\partial_iv) -\partial_i(-\Delta)^{-s}u\Delta_j(\partial_iv). \] \end{proposition} \begin{proof} Using Bony's para-product decomposition, we have \[ [\Delta_j,\partial_i(-\Delta)^{-s}u]\partial_iv=L_1+L_2+L_3+L_4+L_5, \] where \begin{gather*} L_1=\sum_{|k-j|\leq 4}\Delta_j[S_{k-1}(\partial_i(-\Delta)^{-s}u)\Delta_k(\partial_iv)]- S_{k-1}(\partial_i(-\Delta)^{-s}u)\Delta_k(\Delta_j(\partial_iv)),\\ L_2=\sum_{|k-j|\leq 4}\Delta_j[S_{k-1}(\partial_iv)\Delta_k(\partial_i(-\Delta)^{-s}u)],\\ L_3=\sum_{k\geq j-2}\Delta_j(\Delta_k(\partial_i(-\Delta)^{-s}u)\widetilde{\Delta}_k(\partial_iv)),\\ L_4=\sum_{k}S_{k-1}(\Delta_j(\partial_iv))\Delta_k(\partial_i(-\Delta)^{-s}u),\\ L_5=\sum_{|j'-j''|\leq 1}\Delta_{j'}(\Delta_j(\partial_iv))\Delta_{j''}(\partial_i(-\Delta)^{-s}u). \end{gather*} We shall estimate the above terms separately. First observe \begin{align*} L_1&=\sum_{|k-j|\leq4}2^{jd}\int h(2^j(x-y))\big[S_{k-1}(\partial_i(-\Delta)^{-s}u)(y)\\ &\quad -S_{k-1}(\partial_i(-\Delta)^{-s}u)(x)\big]\Delta_k(\Delta_j(\partial_iv))(y)\,dy. \end{align*} By Young's inequality and Bernstein's inequality, \begin{align*} \|L_1\|_{L^p} &\leq C\sum_{|k-j|\leq4}2^{-j}\|\nabla \partial_i(-\Delta)^{-s}u\|_{L^\infty}\|\Delta_j(\partial_iv)\|_{L^p}\int|y||h(y)|\,dy \\ &\leq C2^{-j}2^j\|(-\Delta)^{1-s}u\|_{L^\infty}\|\Delta_jv\|_{L^p}\\ &\leq C\|\Delta_jv\|_{L^p}\|u\|_{B^{r+2-2s}_{p,\infty}}. \end{align*} Similarly, \[ \|L_2\|_{L^p}\leq C2^{j(1-2s)}\|\nabla v\|_{L^\infty}\|\Delta_ju\|_{L^p} \leq C2^{-j\alpha}\|v\|_{B^{r+1}_{p,\infty}}\|u\|_{B^{\alpha+1-2s}_{p,\infty}}. \] We can also estimate, \begin{align*} \|L_3\|_{L^p} &\leq C\sum_{k\geq j-2}\|\Delta_k(\partial_i(-\Delta)^{-s}u)\|_{L^p} \|\nabla v\|_{L^\infty}\\ &\leq C2^{-j\alpha}\sum_{k\geq j-2}2^{(j-k)\alpha}2^{k(\alpha+1-2s)} \|\Delta_ku\|_{L^p}\|v\|_{B^{r+1}_{p,\infty}}\\ &\leq C2^{-j\alpha}\|u\|_{B^{\alpha+1-2s}_{p,\infty}} \|v\|_{B^{r+1}_{p,\infty}}. \end{align*} To estimate $L_4$, by the definition of $S_j$ and $\Delta_j$, we can observe that only $k$ satisfying $k\geq j$ survive. Thus \begin{align*} \|L_4\|_{L^p} &\leq \sum_{k\geq j} C\|\nabla v\|_{L^\infty}2^{k(1-2s)}\|\Delta_ku\|_{L^p}\\ &\leq C2^{-j\alpha}\sum_{k\geq j}2^{(j-k)\alpha}\|v\|_{B^{r+1}_{p,\infty}}\|u\|_{B^{\alpha+1-2s}_{p,\infty}}\\ &\leq C2^{-j\alpha}\|v\|_{B^{r+1}_{p,\infty}}\|u\|_{B^{\alpha+1-2s}_{p,\infty}}. \end{align*} Since $\Delta_k\Delta_j=0$, for $|j-k|\geq 2$, we have \[ \|L_5\|_{L^p} \leq C\|\nabla v\|_{L^\infty}2^{j(1-2s)}\|\Delta_ju\|_{L^p} \leq C2^{-j\alpha}\|v\|_{B^{r+1}_{p,\infty}}\|u\|_{B^{\alpha+1-2s}_{p,\infty}}. \] Collecting the estimates above, we obtain \begin{align*} & 2^{j\alpha}\|[\Delta_j,\partial_i(-\Delta)^{-s}u]\partial_iv\|_{L^p}\\ & \leq C2^{j\alpha}\|\Delta_jv\|_{L^p}\|u\|_{B^{r+2-2s}_{p,\infty}} +2^{j(\alpha+1-2s)}\|v\|_{B^{r+1}_{p,\infty}}\|\Delta_ju\|_{L^p} +\|u\|_{B^{\alpha+1-2s}_{p,\infty}}\|v\|_{B^{r+1}_{p,\infty}}\\ &\leq \|v\|_{B^{\alpha}_{p,\infty}}\|u\|_{B^{r+2-2s}_{p,\infty}}+\|u\|_{B^{\alpha+1-2s}_{p,\infty}}\|v\|_{B^{r+1}_{p,\infty}}. \end{align*} This completes the proof. \end{proof} \begin{proposition} \label{prop3.2} Let $\alpha,s,p,r$ be as in Proposition \ref{prop3.1}. Then there exists a constant $C$ such that \begin{equation} \label{e3.2} 2^{j\alpha}\|[\Delta_j,\partial_i(-\Delta)^{-s}u]\partial_iv\|_{L^p} \leq C\|v\|_{B^{r}_{p,\infty}}\|u\|_{B^{\alpha+2-2s}_{p,\infty}}+C\|u\|_{B^{r+2-2s}_{p,\infty}}\|v\|_{B^{\alpha}_{p,\infty}}. \end{equation} When $p=\infty$, this inequality becomes: for any $r>0$, \begin{equation} \label{e3.3} 2^{j\alpha}\|[\Delta_j,\partial_i(-\Delta)^{-s}u]\partial_iv\|_{L^\infty} \leq C\|v\|_{B^{r}_{\infty,\infty}}\|u\|_{B^{\alpha+2-2s}_{\infty,\infty}} +C\|u\|_{B^{r+2-2s}_{\infty,\infty}}\|v\|_{B^{\alpha}_{\infty,\infty}}. \end{equation} \end{proposition} \begin{proof} We want to give a new estimate of the commutator in Proposition \ref{prop3.1}. Following the above proof, the estimate of $L_1$ unchanged, we give different bounds for $L_2,L_3,L_4,L_5$. First, \begin{align*} L_2&=\sum_{|k-j|\leq4}2^{jd}\int h(2^j(x-y))(S_{k-1}\partial_iv)(y) \Delta_k(\partial_i(-\Delta)^{-s}u)(y)\,dy\\ &=\sum_{|k-j|\leq4}2^{jd}\int \partial_ih(2^j(x-y))2^j(S_{k-1}v)(y)\Delta_k(\partial_i(-\Delta)^{-s}u)(y)\,dy\\ &\quad -\sum_{|k-j|\leq4}2^{jd}\int h(2^j(x-y))(S_{k-1}v)(y)\Delta_k(\partial_{ii}(-\Delta)^{-s}u)(y)\,dy. \end{align*} So we obtain \begin{align*} \|L_2\|_{L^p}&\leq C2^{2-2s}(\|\partial_ih\|_{L^1}+\|h\|_{L^1}) \|v\|_{L^\infty}\|\Delta_ju\|_{L^p}\\ &\leq C2^{-j\alpha}\|u\|_{B^{\alpha+2-2s}_{p,\infty}}\|v\|_{B^{r}_{p,\infty}}. \end{align*} Similarly, \begin{align*} \|L_3\|_{L^p} &\leq C\sum_{k\geq j-2}2^{jd}\int \partial_ih(2^j(x-y))2^j \Delta_k(\partial_i(-\Delta)^{-s}u)(y)\Delta_kv(y)\,dy\\ &\quad -2^{jd}\int h(2^j(x-y))\Delta_k(\partial_{ii} (-\Delta)^{-s}u)(y)\Delta_kv(y)\,dy. \end{align*} Hence we obtain, \begin{align*} \|L_3\|_{L^p} &\leq C\sum_{k\geq j-2}(2^{(j-k)(\alpha+1)}+2^{(j-k)\alpha})2^{k(\alpha+2-2s)} \|v\|_{L^\infty}\|\Delta_ku\|_{L^p}\\ &\leq C2^{-j\alpha}\|u\|_{B^{\alpha+2-2s}_{p,\infty}}\|v\|_{B^{r}_{p,\infty}}. \end{align*} Also, \begin{align*} \|L_4\|_{L^p} &\leq \sum_{k\geq j} C2^j\|\Delta_jv\|_{L^\infty}2^{k(1-2s)}\|\Delta_ku\|_{L^p}\\ &\leq C2^{-j\alpha}\sum_{k\geq j}2^{(j-k)(\alpha+1)}2^{k(\alpha+2-2s)} \|v\|_{B^{r}_{p,\infty}}\|\Delta_ku\|_{L^p}\\ &\leq C2^{-j\alpha}\|v\|_{B^{r}_{p,\infty}}\|u\|_{B^{\alpha+2-2s}_{p,\infty}}. \end{align*} Finally, \[ \|L_5\|_{L^p} \leq C\|\Delta_jv\|_{L^\infty}2^{j(2-2s)}\|\Delta_ju\|_{L^p} \leq C2^{-j\alpha}\|v\|_{B^{r}_{p,\infty}}\|u\|_{B^{\alpha+2-2s}_{p,\infty}}. \] Collecting the estimates above, we can obtain \begin{align*} 2^{j\alpha}\|[\Delta_j,\partial_i(-\Delta)^{-s}u]\partial_iv\|_{L^p} &\leq C2^{j\alpha}\|\Delta_jv\|_{L^p}\|u\|_{B^{r+2-2s}_{p,\infty}} +\|v\|_{B^{r}_{p,\infty}}\|u\|_{B^{\alpha+2-2s}_{p,\infty}}\\ &\leq \|v\|_{B^{\alpha}_{p,\infty}}\|u\|_{B^{r+2-2s}_{p,\infty}}+\|u\|_{B^{\alpha+2-2s}_{p,\infty}}\|v\|_{B^{r}_{p,\infty}}. \end{align*} This completes the proof. \end{proof} \begin{proposition} \label{prop3.3} Let $\alpha>0$, $s\in(0,1)$, $p \in [1,\infty]$. Assume $r>\frac dp $. Then there exists a constant $C$ such that \begin{equation} \label{e3.4} 2^{j\alpha}\|[\Delta_j,v](-\Delta)^{1-s}u\|_{L^p} \leq C\|v\|_{B^{r+1}_{p,\infty}}\|u\|_{B^{\alpha+1-2s}_{p,\infty}} +C\|u\|_{B^{r+2-2s}_{p,\infty}}\|v\|_{B^{\alpha}_{p,\infty}}, \end{equation} where the brackets $[,]$ represents the commutator, \begin{equation} \label{e3.5} [\Delta_j,v](-\Delta)^{1-s}u=\Delta_j(v(-\Delta)^{1-s}u) -v\Delta_j((-\Delta)^{1-s}u). \end{equation} \end{proposition} \begin{proof} This proposition is proved similarly to Proposition \ref{prop3.1}. We start the proof by writing \[ [\Delta_j,v](-\Delta)^{1-s}u=I_1+I_2+I_3+I_4+I_5, \] where \begin{gather*} I_1=\sum_{|k-j|\leq 4}\Delta_j(S_{k-1}v\Delta_k(-\Delta)^{1-s}u)- S_{k-1}v\Delta_k(\Delta_j(-\Delta)^{1-s}u),\\ I_2=\sum_{|k-j|\leq 4}\Delta_j(S_{k-1}(-\Delta)^{1-s}u)\Delta_kv),\\ I_3=\sum_{k\geq j-2}\Delta_j(\Delta_kv)\widetilde{\Delta}_k(-\Delta)^{1-s}u),\\ I_4=\sum_{k}S_{k-1}(\Delta_j(-\Delta)^{1-s}u)\Delta_kv,\\ I_5=\sum_{|j'-j''|\leq 1}\Delta_{j'}v\Delta_{j''}(\Delta_k(-\Delta)^{1-s}u). \end{gather*} Similar to the proof for Proposition \ref{prop3.1}, first we observe that \begin{align*} \|I_1\|_{L^p} &=\|\sum_{|k-j|\leq4}2^{jd}\int h(2^j(x-y))(S_{k-1}v(y) -S_{k-1}v(x))\Delta_k(-\Delta)^{1-s}u)(y)dy\|_{L^p}\\ &\leq C\sum_{|k-j|\leq4}2^{-j}\|\nabla v\|_{L^\infty}\|\Delta_j(-\Delta)^{1-s}u\|_{L^p}\int|y||h(y)|\,dy \\ &\leq C2^{-j}2^{2j(1-s)}\|\nabla v\|_{L^\infty}\|\Delta_ju\|_{L^p}\\ &\leq C2^{j(1-2s)}\|\Delta_ju\|_{L^p}\|v\|_{B^{r+1}_{p,\infty}}. \end{align*} Also we obtain \begin{gather*} \|I_2\|_{L^p} \leq C\|(-\Delta)^{1-s}u\|_{L^\infty}\|\Delta_jv\|_{L^p} \leq C\|u\|_{B^{r+2-2s}_{p,\infty}}\|\Delta_jv\|_{L^p}, \\ \begin{aligned} \|I_3\|_{L^p} &\leq C\sum_{k\geq j-2}\|\Delta_kv\|_{L^p}2^{k(2-2s)}\|\Delta_ku\|_{L^\infty}\\ &\leq C2^{-j\alpha}\sum_{k\geq j-2}2^{(j-k)\alpha}2^{k\alpha} \|\Delta_kv\|_{L^p}2^{k(2-2s)}\|\Delta_ku\|_{L^\infty}\\ &\leq C2^{-j\alpha}\|v\|_{B^{\alpha}_{p,\infty}}\|u\|_{B^{r+2-2s}_{p,\infty}}. \end{aligned} \end{gather*} Similarly, we estimate \begin{align*} \|I_4\|_{L^p} &\leq C\sum_{k\geq j}\|(-\Delta)^{1-s}u\|_{L^\infty}\|\Delta_kv\|_{L^p}\\ &\leq C2^{-j\alpha}\sum_{k\geq j}2^{(j-k)\alpha} \|(-\Delta)^{1-s}u\|_{L^\infty}2^{k\alpha}\|\Delta_jv\|_{L^p}\\ &\leq C2^{-j\alpha}\|u\|_{B^{r+2-2s}_{p,\infty}}\|v\|_{B^{\alpha}_{p,\infty}}, \end{align*} \[ \|I_5\|_{L^p} \leq C\|(-\Delta)^{1-s}u\|_{L^\infty}\|\Delta_jv\|_{L^p}\leq C\|u\|_{B^{r+2-2s}_{p,\infty}}\|\Delta_jv\|_{L^p}. \] Collecting the estimates above, we obtain \begin{align*} 2^{j\alpha}\|[\Delta_j,v](-\Delta)^{1-s}u\|_{L^p} &\leq C2^{j(\alpha+1-2s)}\|\Delta_ju\|_{L^p}\|v\|_{B^{r+1}_{p,\infty}}\\ &\quad + C2^{j\alpha}\|u\|_{B^{r+2-2s}_{p,\infty}}\|\Delta_jv\|_{L^p} +C\|v\|_{B^{\alpha}_{p,\infty}}\|u\|_{B^{r+2-2s}_{p,\infty}}\\ &\leq C\|v\|_{B^{r+1}_{p,\infty}}\|u\|_{B^{\alpha+1-2s}_{p,\infty}} +C\|v\|_{B^{\alpha}_{p,\infty}}\|u\|_{B^{r+2-2s}_{p,\infty}}. \end{align*} This completes the proof. \end{proof} \begin{proposition} \label{prop3.4} Let $s\in[1/2,1]$, $p=k/l$ be a rational number with $k$ even, $l$ odd, and $\alpha>\frac dp+1$. Assume that $u(x,t)\in B_{p,\infty}^\alpha$ is a solution of \eqref{e1.1} with $u_0\in B_{p,\infty}^\alpha$ for $t\in [0,T]$. Then, when $u(x,t)\geq0$, we can find some $C=C(p,\alpha)$, that for any $t\leq T$, \begin{equation} \label{e3.6} \|u\|_{B^{\alpha}_{p,\infty}} \leq C\|u_{0}\|_{B^{\alpha}_{p,\infty}}\exp \{C\int_0^t\|u\|_{B^{\alpha}_{p,\infty}}d\tau\}. \end{equation} \end{proposition} \begin{proof} Applying $\Delta_j$ on \eqref{e1.1}, we obtain \begin{align*} \partial_t\Delta_ju&=\sum[\Delta_j,\partial_i(-\Delta)^{-s}u]\partial_iu +\nabla(-\Delta)^{-s}u\Delta_j(\nabla u)\\ &\quad -[\Delta_j,u](-\Delta)^{1-s}u-u\Delta_j((-\Delta)^{1-s}u. \end{align*} Multiplying both sides by $p\Delta_ju|\Delta_ju|^{p-2}$ and integrating over $\mathbb{R}^d$, the equation becomes \begin{align*} &\frac d{dt}\|\Delta_ju\|^p_{L^p}\\ &=\sum\int p\Delta_ju|\Delta_ju|^{p-2}[\Delta_j,\partial_i(-\Delta)^{-s}u]\partial_iu +\int p\Delta_ju|\Delta_ju|^{p-2}\nabla(-\Delta)^{-s}u\Delta_j(\nabla u)\\ &\quad -\int p\Delta_ju|\Delta_ju|^{p-2}[\Delta_j,u](-\Delta)^{1-s}u -\int p\Delta_ju|\Delta_ju|^{p-2}u\Delta_j((-\Delta)^{1-s}u\\ &=J_1+J_2+J_3+J_4. \end{align*} From Propositions \ref{prop3.1} and \ref{prop3.3}, we obtain the estimates \begin{gather*} J_1\leq C2^{-j\alpha}\|\Delta_ju\|^{p-1}_{L^p}\|u\|_{B^{\alpha}_{p,\infty}} \|u\|_{B^{\alpha+1-2s}_{p,\infty}} \leq C2^{-j\alpha}\|\Delta_ju\|^{p-1}_{L^p}\|u\|^2_{B^{\alpha}_{p,\infty}}, \\ J_3\leq C2^{-j\alpha}\|\Delta_ju\|^{p-1}_{L^p} \|u\|_{B^{\alpha}_{p,\infty}} \|u\|_{B^{\alpha+1-2s}_{p,\infty}} \leq C2^{-j\alpha}\|\Delta_ju\|^{p-1}_{L^p}\|u\|^2_{B^{\alpha}_{p,\infty}}. \end{gather*} It is easy to see that \begin{align*} J_2&=\int\nabla(-\Delta)^{-s}u)\nabla(|\Delta_j(u)|^p) =\int (-\Delta)^{1-s}u|\Delta_ju|^pdx\\ &\leq C\|(-\Delta)^{1-s}u\|_{B^{\alpha-1}_{p,\infty}}\|\Delta_ju\|^{p}_{L^p} \leq C\|u\|_{B^{\alpha+1-2s}_{p,\infty}}\|\Delta_ju\|^{p-1}_{L^p}\|\Delta_ju\|_{L^p}\\ &\leq C2^{-j\alpha} \|u\|_{B^{\alpha+1-2s}_{p,\infty}} \|u\|_{B^{\alpha}_{p,\infty}}\|\Delta_ju\|^{p-1}_{L^p}. \end{align*} Using the fact that $u\geq0$ and Propositions \ref{prop2.3} and \ref{prop2.4}, we estimate \begin{align*} J_4&\leq- \int p|\Delta_ju|^{p-2}u(-\Delta)^{1-s}|\Delta_ju|^2 \leq -\int u(-\Delta)^{1-s}|\Delta_ju|^p\\ &=-\int (-\Delta)^{1-s}u|\Delta_ju|^p \leq C\|(-\Delta)^{1-s}u\|_{B^{\alpha-1}_{p,\infty}}\|\Delta_ju\|^{p}_{L^p}\\ &\leq C2^{-j\alpha}\|u\|_{B^{\alpha+1-2s}_{p,\infty}} \|u\|_{B^{\alpha}_{p,\infty}}\|\Delta_ju\|^{p-1}_{L^p}. \end{align*} Combining the above four estimates, we set $ \frac d{dt}\|u\|_{\dot{B}^{\alpha}_{p,\infty}} \leq C\|u\|_{B^{\alpha}_{p,\infty}}^2$. Since $u\geq 0$, it follows \begin{align*} \frac d{dt}\|u\|_{L^p} &=\frac d{dt}\int u^p dx=p\int u^{p-1}u_tdx\\ &=p\int u^{p-1}\nabla\cdot(u\nabla(-\Delta)^{-s}u) =-(p-1)\int\nabla u^{p}\cdot(\nabla(-\Delta)^{-s}u)\\ &=-(p-1)\int u^{p}((-\Delta)^{1-s}u)\\ &\leq C\|u\|_{L^p}^{p-1}\|u\|_{B^{\alpha}_{p,\infty}} \|u\|_{B^{\alpha+1-2s}_{p,\infty}}. \end{align*} This implies \[ \frac d{dt}\|u\|_{B^{\alpha}_{p,\infty}} \leq C\|u\|_{B^{\alpha}_{p,\infty}}\|u\|_{B^{\alpha}_{p,\infty}}, \] which with the Gronwall's inequality yield \eqref{e3.6}. \end{proof} \section{Proof of Theorem \ref{thm1.1}} From the definition of Riesz potentials $(-\Delta)^{-s}u=c(n,s)|x|^{-d+2s}\ast u$, $0<2sd/p$, \[ \frac d{dt}\|u^{(n+1)}\|_{\dot{B}^{\alpha}_{p,\infty}} \leq C\|u^{(n+1)}\|_{B^{\alpha}_{p,\infty}}\|u^{(n)}\|_{B^{\alpha}_{p,\infty}}. \] Letting $p\to\infty$, \begin{align*} \frac d{dt}\|\Delta_ju^{(n+1)}\|_{L^\infty}&\leq C\|[\Delta_j,\partial_i(-\Delta)^{-1}u^{(n)}]\partial_iu^{(n+1)}\|_{L^\infty}\\ &\quad+C\|u^{(n)}\|_{L^\infty}\|\Delta_ju^{(n+1)}\|_{L^\infty}+C\|\Delta_j(u^{(n+1)}u^{(n)})\|_{L^\infty}. \end{align*} So for any $\alpha>0$, \[ \frac d{dt}\|u^{(n+1)}\|_{\dot{B}^{\alpha}_{\infty,\infty}} \leq C\|u^{(n+1)}\|_{B^{\alpha}_{\infty,\infty}}\|u^{(n)}\|_{B^{\alpha}_{\infty,\infty}}. \] It is easy to prove that when $p=1$, \begin{align*} \frac d{dt}\int |u^{(n+1)}| dx &=\int \frac{u^{(n+1)}}{|u^{(n+1)}|}u^{(n+1)}_tdx\\ &=\int \nabla\cdot(|u^{(n+1)}|(|x|^{-d+2}\ast\sigma_\epsilon)\ast u^{(n)})=0. \end{align*} Noting $u^{(n+1)}(x,0)=u_0^{n+1}=S_{n+2}u_0$, we know $\|u^{(n+1)}\|_{L^1}\leq C$. When $p\geq 2$, \begin{align*} \frac d{dt}\int |u^{(n+1)}|^p dx &=p\int |u^{(n+1)}|^{p-2}u^{(n+1)}u^{(n+1)}_tdx\\ &=p\int |u^{(n+1)}|^{p-2}u^{(n+1)}\nabla\cdot(u^{(n+1)}\nabla(-\Delta)^{-1}u_\epsilon^{(n)})\\ &=-(p-1)\int\nabla|u^{(n+1)}|^{p}\cdot(\nabla(-\Delta)^{-1}u_\epsilon^{(n)})\\ &=(p-1)\int|u^{(n+1)}|^{p}u_\epsilon^{(n)}\leq C\|u^{(n+1)}\|_{L^p}^{p}\|u^{(n)}\|_{L^\infty}. \end{align*} It means \[ \frac d{dt}\|u^{(n+1)}\|_{L^p}\leq\|u^{(n+1)}\|_{L^p}\|u^{(n)}\|_{L^\infty} \leq C\|u^{(n+1)}\|_{B^{\alpha}_{p,\infty}}\|u^{(n)}\|_{B^{\alpha}_{p,\infty}}. \] Again letting $p\to\infty$, we obtain \[ \frac d{dt}\|u^{(n+1)}\|_{L^\infty}\leq C\|u^{(n+1)}\|_{B^{\alpha}_{\infty,\infty}}\|u^{(n)}\|_{B^{\alpha}_{\infty,\infty}}. \] Collecting the estimates above, we now obtain \begin{gather*} \frac d{dt}\|u^{(n+1)}\|_{B^{\alpha}_{p,\infty}} \leq C\|u^{(n+1)}\|_{B^{\alpha}_{p,\infty}}\|u^{(n)}\|_{B^{\alpha}_{p,\infty}}, \quad p<\infty, \; \alpha>\frac dp, \\ \frac d{dt}\|u^{(n+1)}\|_{B^{\alpha}_{\infty,\infty}} \leq C\|u^{(n+1)}\|_{B^{\alpha}_{\infty,\infty}}\|u^{(n)} \|_{B^{\alpha}_{\infty,\infty}},\quad p=\infty,\; \alpha>0. \end{gather*} For any $\beta\in(d/p,\alpha)$, $p<\infty$, or $\beta\in(0,\alpha)$, $p=\infty$ we have \[ \frac d{dt}\|u^{(n+1)}\|_{B^{\beta}_{p,\infty}} \leq \|u^{(n+1)}\|_{B^{\beta}_{p,\infty}}\|u^{(n)}\|_{B^{\beta}_{p,\infty}}, \] and \begin{align*} \frac d{dt}\|u^{(n+1)}-u^{(n)}\|_{B^{\beta}_{p,\infty}} &\leq \|u^{(n+1)}-u^{(n)}\|_{B^{\beta}_{p,\infty}}\|u^{(n)} \|_{B^{\beta}_{p,\infty}}\\ &\quad+ \|u^{(n)}-u^{(n-1)}\|_{B^{\beta}_{p,\infty}} \|u^{(n)}\|_{B^{\beta}_{p,\infty}}. \end{align*} The rest of the proof is similar to the proof of Theorem \ref{thm1.1}, we omit it. \subsection*{Acknowledgments} This research was supported by the National Natural Science Foundation of China (11201103). \begin{thebibliography}{00} \bibitem{c1} L. A. Caffarelli, F. Soria, J. L. V\'{a}zquez; \emph{Regularity of solutions of the fractional porous medium flow}, arXiv preprint arXiv:1201.6048, 2012. \bibitem{c2} L. A. Caffarelli, J. L. V\'{a}zquez; \emph{Nonlinear porous medium flow with fractional potential pressure}, Arch.Rational Mech.Anal, 202(2011), 537-565. \bibitem{c3} D. Chae; \emph{The quasi-geostrophic equation in the Triebel¨CLizorkin spaces}, Nonlinearity, 16(2003), 479-495. \bibitem{c4} Q. Chen, C. Miao, Z. Zhang; \emph{A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation}, Communications in mathematical physics, 271(2007), 821-838. \bibitem{c5} A. C\'ordoba, D. C\'ordoba; \emph{A maximum principle applied to quasi-geostrophic equations}, Communications in mathematical physics, 249(2004), 511-528. \bibitem{l1} P. G. Lemar\"i-Rieusset; \emph{Recent development in the navier-stokes problem}, CRC Press, 2002. \bibitem{l2} F. Lin, P. Zhang; \emph{On the hydrodynamic limit of Ginzburg-Landau wave vortices}, Communications on pure and applied mathematics, 55(2002), 831-856. \bibitem{t1} H. Triebel; \emph{Theory of Function Spaces. Monograph in Mathematics}, Vol.78, Basel: Birkhauser Verlag, 1983. \bibitem{v1} J. L. V\'{a}zquez; \emph{The Porous Medium Equation: Mathematical Theory}, Oxford Mathematical Monographs, 2006. \bibitem{v2} J. L. V\'{a}zquez; \emph{Nonlinear diffusion with fractional Laplacian operators}, Nonlinear Partial Differential Equations. Springer Berlin Heidelberg, 2012: 271-298. \bibitem{v3} J. L. V\'{a}zquez, S. Serfaty; \emph{A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators}, Calculus of Variations and Partial Differential Equations, 49 (2014), 1091-1120. \bibitem{w1} J. Wu; \emph{Solutions of the 2D quasi-geostrophic equation in H\"{o}lder spaces}, Nonlinear Anal,62(2005), 579-594. \bibitem{w2} J. Wu; \emph{Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces}, Communications in mathematical physics, 263(2006), 803-831. \bibitem{w3} J. Wu; \emph{Existence and uniqueness results for the 2-D dissipative quasi-geostrophic equation}, Nonlinear Anal,67(2007), 3013-3036. \end{thebibliography} \end{document}